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Understanding human balance is a key issue in many research areas. One goal is to suggest analytical models for the human
balance. Specifically, we are interested in the stability of a subject when a lateral perturbation is being applied. Therefore, we
conducted an experiment, laterally perturbing five subjects on a mobile platform. We observed that the recorded motion is
divided into two parts. The legs act together as a first, the head-arms-trunk segment as a second rigid body with pelvis, and the
ankle as hinge joints. Hence, we suggest using a planar double-inverted pendulum model for the analysis. We try to reproduce
the human reaction utilizing torque control, applied at the ankle and pelvis. The fitting was realized by least square and
nonlinear unconstrained optimization on training sets. Our model is not only able to fit to the human reaction, but also to
predict it on test sets. We were able to extract and review key features of balance, like torque coupling and delays as outcomes of
the aforementioned optimization process. Furthermore, the delays are well within the ranges typically for such compensatory
motions, composed of reflex and higher level motor control.

1. Introduction

How the human motor apparatus finds solutions to stabilize
upright stance in the face of the body designed as a highly
unstable multilinked-inverted pendulum has attracted the
curiosity of modern scientists since at least 150 years [1], with
quantitative analysis being intensified about 100 years ago by
Murray et al. [2]. General neuromuscular control concepts
have been derived therefrom by Asatryan and Feldman [3];
Feldman [4–6].

Until today, analyses of human upright stance have been
mainly performed in the sagittal plane. There has always
been a separation in analyses of quiet and disturbed human
stance. Contrary to quiet stance, disturbed stance has earlier
been identified to be at least a double-inverted pendulum
(DIP) problem by Nashner and McCollum [7]; Horak and
Nashner [8]; Yang et al. [9]; Kuo [10]; Kuo et al. [11]; Runge

et al. [12]; Kuo [13]; Fujisawa et al. [14]; Kiemel et al. [15];
Roth et al. [16] in the sagittal plane. Since about ten years
ago, however, most researchers bore in mind a single-
inverted pendulum (SIP) model by Geursen et al. [17] as an
accompanying paradigm Winter et al. [18]; Morasso and
Schieppati [19]; Morasso and Sanguineti [20]; Gage et al.
[21] for their examinations of quiet stance in the sagittal
plane. When examining quiet stance, even DIP models by
Geursen et al. [17] equipped with just one additional degree
of freedom (DOF) were not given attention until about a
decade ago. Then, modern findings by Creath et al. [22];
Hsu et al. [23]; Saffer et al. [24]; Pinter et al. [25]; Günther
et al. [26–28]; Yamamoto et al. [29] had finally pinpointed
that quiet stance is in fact a multijoint phenomenon for
which it takes at least triple-inverted pendulum (TIP) models
to gain an understanding of its dynamics in the sagittal plane
by Günther et al. [30]; Günther andWagner [31]. To the best
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of our knowledge, only one study by Günther et al. [32] has
examined rotations around the long axis of the body so far.
And few studies by Bonnet et al. [33, 34] focused on the
lateral (or frontal, resp.) plane, for which Day et al. [35]
provided an analytic benchmark.

It can be expected that stance dynamics in the lateral
plane, be it externally disturbed or undisturbed (quiet),
should show some similarity to those in the sagittal plane,
with the primary difference that stance width is clearly higher
than foot length, and the knees are rather compliant in sagit-
tal but stiff in lateral direction. This leads us to the assump-
tion that the DIP would be a well-suited model for lateral
stance, accepting that the TIP is a well-suited “minimal
model” for the sagittal plane, and that the knee joint is “miss-
ing” in the lateral direction. Anyone, gently pushed aside at
the shoulder, or as in our perturbations case, undergoing a
lateral shift of the ground, would probably respond with just
a compensatory bending movement in the lower spine and
hip, maybe combined with some load shift between both legs.
The similarity to disturbed stance in the sagittal plane would
be a DIP-like movement plus a shift in center of pressure
(COP). Thus, aiming at an enhanced understanding of con-
trol strategies for lateral disturbances, we developed the
aforementioned DIP model for simulating responses to such
disturbances. We did this purposefully without modeling
physiological structures for neural signal excitation and force
generation (muscle-tendon units).

Instead, we restricted ourselves to formulating abstract
joint torque generators, as simple as possible. In particular,
we based our control for both joints on an approach that
can be seen as a “classical engineering method”:
proportional-differential (PD) controllers. This abstract and
simple approach allows a line of reasoning and inferences
just reversal to an a priori implementation of physiologically
based signal-processing and force-generating: initially
neglecting all physiological properties (of control) but allow-
ing some of them as a possible result of an optimization pro-
cess can help to reveal their significance for the motor task
under consideration. Accordingly, in this study, we chose
the outlined approach to try and identify principal strategies
and feedback loop properties supportive for stabilizing later-
ally disturbed human stance. The chosen approach particu-
larly allows to disclose interdependences of control
parameters like beneficial ratios (compare, e.g., Yang et al.
[9]; Alexandrov et al. [36, 37]) and their relation to mechan-
ical body design or beneficial time relations between sensor
signals, actuator inputs, and actuator outputs. Based thereon,
conclusions are possible relating to basic properties that may
be imprinted into physiological and anatomical structures
due to fundamental requirements for realizing the motor task
(i.e., to the structures’ function): the mechanical body design
(e.g., mechanical coupling through biarticular muscles) and
the physical constraints (e.g., reaction times) the body is
exposed to during the intended motor task.

2. Material and Methods

2.1. Inverse Kinematic Model. As can be seen in Figure 1, the
planar mechanical model consists of three rigid bodies. The

feet are represented by a box ((0.2× 0.2× 0.02)[m], 1 kg).
They are to be considered, a graphical component of the
model, aside from lifting the ankle joint to a height of hf =
0 02m. Furthermore, the DIP is composed of two rigid bod-
ies: “Leg,” lumping both legs into one and “HAT,” depicting
the head, arms, and trunk of the human body. The segments
are defined between the centers (Ca, Ch, and Cs) by their
masses, lengths, center of mass (COM) positions and inertia.
Part of the anthropometric data were measured (i.e., total
body height, segment lengths, and total body mass), while
the segment masses and COM positions were calculated
according to Winter [38]. Moments of inertia (2D) of the
model segments with respect to their centers’ of mass are
given in the following equation (infinitely thin, but rigid rod):

JLeg =mLeg ⋅ l
2
Leg ⋅

1
12

⋅ I,

JHAT =mHAT ⋅ l
2
HAT ⋅

1
12

⋅ I,
1

where I is the identity matrix. The COMs are located at dis-
tance 0 45 ⋅ lLeg (leg) and 0 5 ⋅ lHAT (HAT) from the hip joint
point, respectively (Figure 1).

The kinematics of the model are as follows: the “HAT”
segment rotates around the upper end of the “Leg” segment
(Ch) and the “Leg” segment around the center of the feet
(Ca). The feet are laterally translated from their initial
position (=perturbation). Thus, the mechanical model’s

lHAT

dCoMHATCoMHAT
JHAT �휃h
mHAT

Ch
dCoMLeg

CoMLeg
JLeg
mLeg

Ca

lLeg

z

x

hf

Cs
Sr Cs

Ch

hlhr

Sl

Ca
alar

�휃a

Figure 1: The marker positions (as in the experiment) at ankle, hip,
and shoulder and their corresponding centers and the DIP model
with: feet (height hf ), ankle joint (defined by Ca and angle: Θa),
Leg segment between Ca and Ch (defined by: lLeg, COMLeg which
is at dCOMHAT

from Ch and by mLeg, and inertia JLeg), hip joint (Ch,
Θh), and the HAT segment between Ch and Cs (lHAT, COMHAT at
dCOMHAT

from Ch, and by mHAT, JHAT).
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three DOFs are the two angles Θa and Θh and the trans-
lational DOF x of the foot. Note that we did not con-
strained the DOFs which occur in the human body, for
example, by ligaments. We assumed that Θa and Θh, as
well as their first two derivatives and the acceleration of
the perturbation p (acting on Ca) may be sensed. These
system states (and derivatives) are combined to form the
input to the controllers that generate the torques applied
to the ankle and hip. For further reading on the construc-
tion of the mechanical model utilizing the experimental
data (i.e., marker positions), the physical properties of
the model, and the implementation in SimMechanics, we
refer to Appendix B.

2.2. Control. The DIP is perturbed by a motion signal
( p, p, p T) along x, deviating the feet laterally from their
initial position. For our simulations, the perturbation signal
p is experimentally obtained (lateral translation of Ca) and
filtered by a PT2 low-pass filter at 6Hz (as all experimentally
obtained data). Note that the filter also provides the two
derivatives p, p (for filtering, see Appendix A.4).

As an abstraction of muscle force acting in humans
ankle (A) and hip (H), joints are controlled by joint torques
(MA,MH). Different control approaches are applied in order
to represent central nervous system (CNS) strategies (note
that I and IIa/b are reference strategies):

(I) There is no control, simulating “no reaction” of the
CNS to the perturbation (i.e., free falling/collapse of
the body in response to the perturbation).

(II) A “P(200)D(20)” controller with set point 0°, for
both joints: (a) without delay and (b) with 20 ms
delay. This “technical” controller is representing
the intuitive “control to 0°” strategy, similar to a
SIP control strategy. Note that delays are introduced
due to finite signal propagation velocities in the ner-
vous system.

(III) A dynamic spring-damper system is assumed by
(2), based on that human posture is controlled by
muscle-tendon complexes and sensor feedback,
including proprioception and information about
the perturbation:

Mds
a ←delay1 M1 = −k1 ⋅ y1 − d1 ⋅ y1 + q1 ⋅ p,

Mds
h ←delay2 M2 = −k2 ⋅ y2 − d2 ⋅ y2 + q2 ⋅ p

2

The parameters X = delay1/2, k1/2, d1/2, q1/2 are acquired
by unconstrained nonlinear optimization (see Appendix
A.5), minimizing the squared error between given angular
trajectories (i.e., experimental data) and those obtained in
the simulation of the model (Eang):

min
X

 Eang = min
X

 〠
i

Θexp
A,i −Θsim

A,i
2 + Θexp

H,i −Θsim
H,i

2 ,

3

where i is the sampling points. Following approaches for y1/2
for the controller III (2) are implemented to compare (a)
uncoupled torques, (b) torques coupled by coupling angles
one-to-one, and (c) torques coupled by coupling angles with
the mixing ratios β:

IIIa : y1 =Θa, y2 =Θh ; 4a

IIIb : y1 = y2 =Θa +Θh ; 4b

IIIc : y1 = β11 ⋅Θa + β12 ⋅Θh, y2 = β21 ⋅Θa + β22 ⋅Θh

4c

In approach (IIIc), the weight factors (i.e., mixing ratios)
β equal the inertia tensor of the mechanical model (fitted to
the current trials participant, not to be confused with the
inertia of the model segments JLeg/HAT), numerically calcu-
lated by the inverse dynamics approach, which is explained
in the next Section 2.2.1.

2.2.1. Weights by Inverse Dynamics. Performing an inverse
dynamics approach, the measured angular trajectories (Θexp

a
t ,Θexp

h t ) were considered moving set points, of high gain
(hg) PD controllers (P = 2000, D = 20, and N = 100), to be

retraced. The resulting torques Mhg
a and Mhg

h are the bases
for the computation of the weight factors.

Alternatively starting from theNewtonianperspective, the
joint torquesmay be simply approximated by a dependency of
angular accelerations with M = I ∗α where I is a moment of
inertia and α an angular acceleration. With this ansatz

MLSQ
a = β11 ⋅Θa + β12 ⋅Θh + β31 ⋅ psim,

MLSQ
h = β21 ⋅Θa + β22 ⋅Θh + β32 ⋅ psim,

5

we assume an inertia tensor β of dimension 3 × 2 . The
upper 2 × 2 part of β (given in kg ⋅m2), corresponding to
the contributions from the angular accelerations in the ankle
and hip joints, approximates the 2D inertia tensor of the DIP
(parametrized according to the participant). It is used as
weighting factor between the ankle and hip angle in the states
y1/2 of the controller (IIIc), see (4c). The lower part including
β31 and β32 (given in kg ⋅m) is not used further and thus
ignored in the following.

β is found from minimizing the squared and summed
error of both Newtonian torque approximations Etot = E2

a +
E2
h, over all time steps ts (LSQ):

Ea =〠
ts

Mhg
a −MLSQ

a ,

Eh =〠
ts

Mhg
h −MLSQ

h

6

In (4c) (IIIc), β11,12,21,22 (kg ⋅m2) are multiplied with
Θi (deg); thus, yi has the unit (kg ⋅m2 ⋅ deg). Since in (2)
the left hand side has to be a torque (Nm= kg ⋅m2/s2),
the unit for ki is given by (1/deg ⋅ s2), for di is given
by (1/deg ⋅ s), and for qi is given by (kg ⋅m), since qi
is multiplied with an acceleration.
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2.3. Experiment. Experiments were conducted to (i) calculate
the parameters of our assumed controllers, (ii) check the
robustness of these controllers, and (iii) verify validity of
the model. Five university students, four (1, 3–5) healthy
and one (2) with occasionally light knee, hip, and back pain
(i.e., rather “stiff” back and hip joint), of very similar phy-
sique participated in the experiment: all male, 26± 1.5 yrs,
69.4± 5.03 kg, 1.756± 0.03m.

The risk to fall for the healthy young adults is minimal,
when perturbing stance with the BaMPer system; thus, no
additional safety measures had to be taken. All participants
gave informed consent. The experiments took place, all on
the same date, in the “Schwartz Movement Analysis and
Rehabilitation Laboratory,” Faculty of Health Sciences,
Ben-Gurion University of the Negev, Beer-Sheva, Israel.
The subjects took part on a purely voluntary basis. Studies
on the BaMPer system were approved by the Helsinki Com-
mittee of Barzilai University Medical Center, Ashkelon, Israel
(ClinicalTrials.gov registration number NCT01439451).

The perturbations were applied using the BalanceTu-
tor© by MediTouch Ltd. which is based on the BaMPer
system developed by Shapiro and Melzer [39]. Motion
analysis was provided by the Ariel Performance Analysis
Software (APAS version 10.100.0.1) running on a lab PC,
utilizing two camcorders (Cannon NTC ZR100) with a
frame rate of 59.94 fps. Six reflective LED markers (1 cm
diameter) were placed on the participants’ front: one on
each foot, placed directly above the ankle joint, two at
the hip, on the most protruding points of each sides of
pelvic bone, and another two at the shoulder, placed at
the most protruding point of the clavicle. Additional
markers were placed on the moving part of the treadmill
in order to capture the perturbation, as well as a global
reference marker on the lab wall.

The participants were individually led into the lab and
instructed to stand barefoot, upright, in hip-wide stance (on
individually placed ground markers) on the BalanceTutor.
They were asked to fold their hands behind their backs and
keep them and the feet at their initial positions, throughout
the whole experiment, if possible. Participants knew that they
would receive lateral perturbations at their base of support,
repeatedly during a period of a couple of minutes, executed
through a shift of the laterally movable treadmill, to either
the left or right.

The set of at least 12 perturbations was of increasing
magnitude (each to the left and right, for 10/14/18 cm
distance with acceleration capped to either 150 cm/s2 or
200cm/s2) and was executed with no prior notice. Thus,
perturbations were random in direction and time of
onset, to mimic unexpected loss and recovery of balance.
If arm movement or stepping was recorded, the trial
was repeated once.

2.4. Average Controller and Prediction of Trials. From the set
of valid experimental trials, we built a training (Str) and two

test sets (Ste, S 4
te ). Training is done by optimizing the

controller, individually for each trial and by then building
the average over all obtained parameters. The final controller

is then verified by predicting on the test sets. Due to strong
qualitative similarities, we did not distinguish between the
different perturbation magnitudes and directions, as well as
the (in magnitude) different responses of the participants.

2.5. Overview: Data/Workflow. Figure 2 depicts the data and
workflow of the whole project.

3. Results

3.1. Experiment

3.1.1. Perturbation. A set of 12 perturbations was executed in
the experiment. They differ in magnitude and direction but
not qualitatively. In Figure 3, the motion signal used for per-
turbing the DIPmodel is shown for a test case. The test case is
a trial by participant (5) (which is 14 cm displacement and
200cm/sec2 acceleration trial; from now on referred to as
(5)14200lt), as this is closest to the average in the experiment.
Trial (5)14200lt is shown in Figure 4 as an example. The
whole motion, from preperturbation (A), to perturbation
(B, C), to initial participant response (D), to full balance
recovery (E, F), is explained in the following.

3.1.2. Results of the Experiment and Strategy-Dependent
Variations. A simple segment length criterion (see Appendix
A.2) identified two participants (1, 2), which deviated from
the basic strategy, invalidating almost all their trials due to
length changes of up to 15 cm in the Leg segment and up to 6
cm in the HAT segment. This was confirmed visually by the
video, where in nearly all trials, participant (1) is extremely
bending the knees and rotating the hip and spine horizontally,
resulting inheavyA/P tilting. Participant (2) on theotherhand
acts extreme stiff around the lumbar spine andhip, resulting in
a lift of one or both feet, see also Section 4.2.

Loss of balance (i.e., falling) indeed never occurred, as
participants used arm raising or stepping if needed, resulting
in 71/87 (81 6%) initially marked as “successful trials” (no
arm movement and intentional stepping detected). Aside
from that, within the participants (3, 4, 5) exhibiting a
“proper” execution of the strategy (e.g., no A/P movement),
only 5/36 trials (13 9%) had to be excluded.

Participant (4), as can also be seen in Figure 5 exhib-
ited bending of the lumbar spine (just like participant
(1) and in contrast to (2, 3, 5)). However in his case, this
led to changes of the segment length within the error
margin r, and thus, his trials were not excluded. Here,
the hip angle excursions were up to 3.5 times higher than
those of participants (3 and 5).

Within the valid trials, the ankle bends to a peak
5–7.5° while the “extended hip” (i.e., hip + lower spine) bends
to a peak of up to 10° (34° for participant (4)). The higher
variety within the hip stems from bending of the lumbar
spine, which was accepted if segment lengths did not
change significantly and thus lumped into the “hip”
DOF. However, bending of the spine in the coronal
plane, together with bending of the hip in the sagittal
plane (often together with a rotation in the transversal
plane), occurs in some trials, in all participants and
thus, leading to greater segment length changes. Such
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trials were excluded from our data set as our planar model
could not cope with them. In Figure 5, valid trials of the
experiment are plotted, while in Table 1, the mean of all
max angles and angular velocities over all valid trials is given
for each participant.

3.2. Model and Control

3.2.1. Reference Controller (I) and (IIa/b). In Figure 6, we are
presenting a comparison of results obtained by using “no
control” (I), “P(200)D(20)” (IIa), and “P(200)D(20) + 20ms

Experiment (BaMPer and APAS)

Experimental data processing (MATLAB)

Goal: Capture human reaction to perturbation by marker tracking

Output:
(i) Marker position in global CS (discrete time)

(ii) Measured: total bofy height/mass

Goal: Process exp. data such that:
(i) DIP model can be constructed

(ii) Marker positions are transformed to angular/perturbation trajectories

Output:
(i) (Winter et al): W = {segment masses, lengths, CoM positions, and inertia}

(ii) Marker positions are transformed to angular/perturbation trajectories

Inverse kinematics (Simulink/SimMechanics)

Goal: Torques necessary to retrace exp. trajectories by PD
Components: DIP (W), high gain PD (P = 2000, D = 20, N = 100)

Output:

(ii) By sensors:

W

W
X

Filter, used on
exp. data (also
for calculating
the derivatives)

Inverse dynamics/LSQ (MATLAB)

Goal: Get weights/rations �훽 for mixing
(needed in approach like IIIc)
LSQ (Matlab):

Optimization (MATLAB)

Goal/output:
Parameters X for the
controller(s) by
“fminsearch” (Nelder-
Mead simplex method)

Controlled model (Simulink/SimMechanics)

Goal: Reproduction of huan reaction, by using sensable system states (and derivatives)

(i) Θsim

(ii) Optimization: (controller lllc) parameter vector X = {k1/2, d1/2, q1/2, delay1/2,} for all trials

sim

Mhg Mhg�훽 =
�훽11
�훽21
�훽31

�훽12
�훽22
�훽32

 = [ ] / [ ]

Output:
Weights / ratios: �훽11, �훽12 = �훽21, �훽22

�훽11, �훽12 = �훽21, �훽22

)

Output:

Further steps:
(i) Average controller (using mean of X for all trials in the training set)

(ii) Sensitivity analysis (robustness of lllc in X and �훽)

Components: DIP (W), controller (I,II, and III), sensors (

exp
A/HΘ exp

A/HΘ

(i) High gain PD: torques , needed to approximate byexp
A/HΘ

exp
A/HΘ

exp
A/HΘ

sim
A/HΘ

sim
a/hΘ

sim
a/hΘ ,

hg
A

hg
H A H

A/H

Figure 2: Data and workflow of the project. This sketch illustrates what was done, in which order and with the help of which tools. Large
subscript A/H are used if the trajectory ismeant, and small subscript a/h are used if only one value (e.g., sensor signals at a certain point in time).
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delay” (IIb), to the results obtained in the experiment. While,
obviously, none of the approaches can reproduce the experi-
mental data, it is still possible to stabilize the system using a
common PD controller (which is making the model behave
very similar to a SIP), however, only if there is no delay intro-
duced in the sensor signals or the controller output. Note that
delay on either the output or delay on the sensor signals leads
to a similar result (Figure 6(b)) and that delays are inevitable
in humans. Consequently, any simple PD control must fail to
stabilize in the biologically restricted system.

3.2.2. Controller (IIIa/b). Figure 7 depicts the best fits of the
first two approaches (IIIa, b) in comparison to the test case
(5)14200lt. The parameters of the dynamic system (IIIa/b)
are optimized such that Θsim

a/h t are fitted to Θexp
a/h t of a

single experimental trial ((5)14200lt), which is done by
unconstrained nonlinear optimization.

The approach (IIIa) was invalidated, as it completely fails
to reproduce the angular trajectories (not stabilizing the
mechanical model at all).

The approach (IIIb), which, by using a linear combina-
tion of both angles, is a lot closer to the sought solution, is
nevertheless also invalid: the remaining error after optimiza-
tion is big, and the controller is unable to stabilize the
mechanical model.

3.2.3. Controller (IIIc). First, the weights for y1/2 (see (4c)) are
calculated by an inverse dynamics approach via least square
optimization. They are specific to the participant (not to
the perturbation), that is, β 5 is the same for all trials of
participant (5), within small numerical differences. Thus,
the weights can be calculated a priori, individually for each

participant. The weights of participant (5) are β11 = 1 12,
β12 = β21 = 0 23, β22 = 0 06 (kg ⋅m2). Note that it is a result
of the simulation that β12 = β21, within an accuracy 0 1%.
The before mentioned unconstrained nonlinear optimization
algorithm is used to find well-suited control parameters
X = k1, d1, q1, delay1, k2, d2, q2, delay2

“Optimal” (i.e., localminimum)values for ((5)14200lt) are

k1 = 0 72
1

deg ⋅ s2
,

d1 = 2 04
1

deg ⋅ s
,

q1 = 0 83 kg ⋅m,

delay1 = 0 06 s,

k2 = 0 66
1

deg ⋅ s2
,

d2 = 1 7
1

deg ⋅ s
,

q2 = 0 57 kg ⋅m,

delay2 = 0 13 s

7

The left plot in Figure 8 depicts the “exact” reproduction

of Mhg
a and Mhg

h by the LSQ algorithm (used to find β,
remember (5)) and the trajectories of the corresponding con-
troller, utilizing the upper 2 × 2 part of β, in comparison to
the experiments on the right.

3.3. Average Controller “IIIcavrg.” Of the 31 valid trials, we
took 10 for the training set Str and 11 for the test set Ste. Par-
ticipant (4) is not part of training and test set due to his great
(quantitative) deviation in strategy (extreme hip angles by
bending the lower spine a lot more than other participants);
he was treated separately by checking the performance, by
the set Str parametrized average controller, on all his trials.

In Table 2, the average of all parameters after optimiza-
tion on the training set is listed. The column “Error” is the
average error made by the controller optimized for each spe-
cific trial in Str. This value is useful comparing the average
controller error on the training and test set to the error made
by the controller optimized to specific trials. The mean error
thus is 0.4 deg/ts, while the best fit is trial (5)14200lt with 0.18
deg/ts and the worst fit is trial (3)14150lt with 0.58 deg/ts.

Note that the average is taken over the controller
parameter set X, not over the β values. The latter are partic-
ipant specific and thus have to be changed according to the
current participant in every simulation (see also Robustness
Analysis and Discussion).

When applying controller IIIc without the informa-
tion about the disturbances (pi = 0 kg ⋅m, IIIc.1) and
additionally even without the explicit angular information
(ki = 0 1/deg ⋅ s2 , IIIc.2), qualitatively nothing changes on
the training set except for an increase in error by 100%.
This means that, in principle, only angular velocity infor-
mation is needed for stabilization and qualitative correct

0 0.2 0.4 0.6 0.8 1 1.2
‒0.2

0

0.2
Displacement

(m
)

0 0.2 0.4 0.6 0.8 1 1.2
‒1

0

1
Velocity

(m
/s

)

0 0.2 0.4 0.6 0.8 1 1.2
‒5

0

5

(m
/s

2 )

Time (s)

Acceleration

Figure 3: Filtered perturbation signal. For each trial, a qualitatively
similar signal, containing change in position, velocity, and
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reproduction of the trials, all other information just
enhance the fit and prediction quality.

3.3.1. Training. We applied the average controller (parame-
ters given in Table 2), to the trials both in the training and
the test set and evaluated the corresponding errors.

The mean error of IIIcavrg on Str was 1.35 deg/ts
(assuming a mean trial length of 1.6 sec and thus 1600 time
steps ts per angle making a total of 3200 ts for the trial).
The greatest error made was on the trial (5)14200lt with an
error of 2.17 deg/ts. Trial (3)10150lt was the best, with 0.87
deg/ts. The respective fits are shown in Figure 9.

3.3.2. Test. The average controller was tested on Ste, the mean
error on the test set was 2.24 deg/ts (again mean trial
length=1.6 sec), while trial (5)14150rt was the best fit with
an error of 0.89 deg/ts, and the second best was (5)10150lt
with 1.52 deg/ts and the greatest error was made on trial
(3)18200lt with an error of 3.32 deg/ts, while the second
greatest was 2.43 deg/ts in (3)18150lt. The average error
without the worst two and the best two fits was 1.7 deg/ts.
The best and worst fit are again shown in Figure 10.

3.3.3. Participant (4).We furthermore compared the average
controller’s performance to all nine trials of participant (4)

(S 4
te ). While the time courses of the ankle angle fits are

always reasonable, the great hip angle deflection cannot be
reproduced by the controller fitted to the training set. The
error in the least square step (calculating the ratios β) is
already two magnitudes higher than with the other partici-
pants (usually between 20–200, for participant (4); however,
errors are in the thousands). Also the error when applying
the average controller is 1-2 magnitudes higher than for the
other participants (mean error is 6.12 deg/ts, best fit is for
trial (4)14150rt with 3.24 deg/ts, and worst fit is for
(4)14150lt with 7.55 deg/ts). In comparison, the controller
optimized to the specific trials of participant (4) has an mean
error of 0.77 deg/ts, with the best fit for (4)14150rt with an
error of 0.3 deg/ts and the worst fit for trial (4)18150lt with
1.14 deg/ts. Nevertheless, the average controller manages to
reproduce the experiment trajectories qualitatively, which is
shown in Figure 11, and the model restabilizes in response
to the disturbance.

3.4. Robustness Analysis. Finally, we conducted a robustness
analysis, by varying controller parameters of the controller
IIIc optimized to a single trial (again (5)14200lt) manually,
in order to assess the robustness of the simulated responses
with respect to the parameters of the controller. Robustness

in our context is defined as still showing qualitatively the
same time course of the responses and stability (low remain-
ing error between simulation and experiment at the end of
balance recovery, t = tend).

3.4.1. Parameters X. The controller IIIc has proven to be
robust, not at last since it can cope with a range of perturba-
tion strengths and varying kinematics in responses. Varia-
tions in the parameters k1, k2, q1, q2, delay1, delay2 of X
more than 10% did not change qualitative behavior of the
controller and still allowed for a good fit to the experimental
curves to be made, even in the extreme case, where more than
one parameter is varied by more than 10%. If only one
parameter from k1, k2, q1, q2, delay1, delay2 is varied by
10%, the error goes up to about 0.55 deg/ts. By varying all
parameters in X at once by ±10% (thus not changing the ratio
between d1 and d2) the error grows from 0.18 deg/ts to 0.86
deg/ts, no loss of stability and no significant change in kine-
matics occur. The ratio between d1 and d2, that is, the ratio
between the velocity contributions to both joints is the most
critical one and should be varied by at most 5%; thus, if the
ratio between the coupled torque generation of the control-
lers (which is mainly dependent on d1, d2) is changed, qual-
itative change and loss of stability is the consequence, for
example, variation of d1 by 5% (for a fixed d2) leads to an
error of 1.16 deg/ts, and a variation of 10% leads to qualita-
tive change in behavior (especially in the hip) with an error
of 2.4 deg/ts. For all trials, with a small enough remaining
error (local minimumwith an error ≤0 75deg/ts after optimi-
zation to a specific trial), the ratio was found to be the same,
namely d1/d2 = 1 14 ± 0 03. Thus, also if one varies all
parameters of the ankle controller k1, d1, q1, delay1 by 10
% without changing the hip controller parameters, the error
goes to 2.62 deg/ts with qualitative change in response.

Furthermore, in unconstrained nonlinear optimization,
several (equivalent) local optima may be found

X∗ = arg min
X

 

Eang = min
X

 〠
i

Θexp
A,i −Θsim

A,i
2 + Θexp

H,i −Θsim
H,i

2 ,
8

where i is the sampling points. So for example, opti-
mization for (5)14200lt returned the set of parame-
ters X1 = 0 72 1/deg ⋅ s2 , 2 04 1/deg ⋅ s , 0 83 kg ⋅m, 0 06
s, 0 66 1/deg ⋅ s2 , 1 7 1/deg ⋅ s , 0 57 kg ⋅m, 0 13 s with a
remaining error of 0.16 deg/ts and the second local mini-
mum X2 = 1 40 1/deg ⋅ s2 , 1 79 1/deg ⋅ s , 0 62 kg ⋅m, 0 06
s,1 23 1/deg ⋅ s2 , 1 57 1/deg ⋅ s , 0 59 kg ⋅m, 0 15 s with a

Table 1: Mean and standard deviation of the maximal absolute angle and angular velocity for the ankle and hip for all valid trials.

Participant Θmax
a Θmax

h Θmax
a Θmax

h

(3) 5 26 ± 1 94 deg 10 38 ± 5 42 deg 19 88 ± 7 09deg/s 60 29 ± 26 98deg/s

(4) 3 73 ± 1 55 deg 22 40 ± 8 76 deg 24 00 ± 8 73deg/s 106 7 ± 39 45deg/s

(5) 5 62 ± 0 9 deg 7 45 ± 2 57 deg 25 94 ± 4 08deg/s 50 14 ± 10 42deg/s
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remaining error of 0.18 deg/ts, depending on initial condi-
tions X0. However, note the ratio d1/d2 = 1 12 for X1 and
1.14 for X2 (please refer to Figure 8 to see the controller
with X1), which is within the margin for both optimiza-
tion results.

As can be seen in Table 2, the delays of the ankle were
60ms in average (represented by delay1 of (2)) and the delays
in the hip 171ms in average (represented by delay2 of (2)).
Even if the controller seems pretty robust in the delays (men-
tionable is that they were pretty robust if decreased but hit a
limit very fast when increased at around +15%), all delays
were found closely to these values in the optimization, with
an at least twice as high delay in the hip as in the ankle.
The balance compensatory responses in the hip are “reflex-
like” responses. They are long latency responses that involved
the central nervous system (CNS) and not only the spinal
cord, as compared to the delays at the ankle joint.

3.4.2. Ratios β.However, regarding the angular mixing ratios
β (remember β is dependent on the participants’ individual
physique, for example, inertia and geometry, see Table 3),
the controller shows altered qualitative behavior with loss
of stability if varied too much, and even for small variations,
a remaining angular deviation from zero (or from the exper-
imental curve) remains at the end of simulation (t = tend)
which is too great. This was again a result firstly obtained
from the construction of the average controller IIIcavrg, where
in a first approach also the mean values of all β values in Str
were used, while the DIP model still adapted segment data
according to the current trial. This practice was leading to
qualitatively wrong (and unstable) controller behavior (not
fitting well to the experiment trajectory).

Furthermore, we manually tried to determine robust
ranges for the parameters β or more precise for the ratios
β11/β12 and β22/β21 and thus the ratios between mixing
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Figure 6: (a) Experiment trajectory in blue, “no control” (I) in red, and PD control (IIa) in dashed red. (b) Experiment trajectory in blue and
PD control with 20ms delay (IIb) in dashed red. First plot is the ankle trajectory, second is the hip, and third is the perturbation. While with
no control applied, the system obviously collapses, also simple PD control, while being able to stabilize was not able to match the angular
trajectories of the experiment. If a delay is introduced, the system becomes highly unstable. The PD controller used here is the
MATLAB : Simulink build in PID controller with P = 200, D = 20, I = 0, and N = 100.
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angles for the coupled torques, by varying the parameters
β12 = β21. For the test trial (5)14200lt, β12 = β21 cannot
exceed variations of ±2 5%, without undergoing qualitative
changes (e.g., only positive/negative angles) and for variations
greater than ±5% loss of stability. Analogous outcome for var-
iation of β11 or β22. This is reflected in the errors for varying
β11 or β22: for the original parameters, it is 0.18 deg/ts and for
a variation of 2 5% it is 0.68 deg/ts, exhibiting slight under
and over fitting of the angular trajectories. For a variation of
5%, it is 1.18 deg/ts with a remaining error at the end of bal-
ancing, and for a variation of 10%, it is 2.5 deg/ts, with loss
of stability. If all values in β are changed by the same ±10%,
the error grows to 0.87 deg/ts. Thus, the controller still works,
if the ratios of angular mixing are left untouched (which are
thus mainly depended on β and d1/2 in X).

Remember, the error values alone are not sufficient to
detect qualitative change. Only by looking at the trajectories
one may determine if qualitative change has indeed
occurred. The error is merely an indicator, which works
good to determine if a fit or prediction was correct (low
error values) but not if it was incorrect just because the
error values are high(er).

4. Discussion

4.1. Generality of the Controller. The controller IIIc is not
only used to reproduce trials (to which it was parame-
trized to), but also to predict trials not used in training
(remember training error of 1.35 deg/ts). The quality of
prediction for this test set is absolutely within the range of
the fitting to the training set (even if the numerical error
value on the test set with 2.24 deg/ts or 1.7 deg/ts is higher
than in training, the fits are very good as can be seen, com-
paring Figures 9 and 10).

Notable is that the training consisted of trials from two
participants, which were used regardless of their magnitude,
over the full range of perturbations tested in the experiment,
also ignoring the direction. As this was not only possible, but
also leading to good results, the strong correlation between
trials of different magnitudes and participants could be
verified: the same control scheme, with one parameter set
could be used. The full range of reactions to the perturbation,
tolerable by the controller, is also illustrated by Figure 5. We
are certain that for a greater number of trials, participants,
and magnitudes, this mean result would converge to a
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Figure 7: (a) Controller IIIa, best fit, with an remaining error of 45.73 deg/ts. (b) Controller IIIb, best fit, with an remaining error of 2.7 deg/ts.
Both fitted to the same experimental trial (5)14200lt. First plot is the ankle trajectory, second is the hip, and third is the perturbation. While
IIIa fails to stabilize (no torque coupling), even the introduction of simple one to one torque coupling (IIIb) is enough to (1) stabilize the
system and (2) almost reproduce the experimental trajectories.
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smaller error than possible now, under the prior men-
tioned premises, and to a certainly much more accurate
prediction if only one magnitude of perturbations is used
with many participants. It would also be possible to extend
the found control law such that it considers the perturbation
strength to a higher degree and apply different magnitudes of
reaction accordingly.

However, we have chosen this advance to prove some
generality of the controller (e.g., robustness over a broad
range of trials). Even for participant (4), where a variation
of strategy could be observed (much greater angles in the
hip due to extended spinal bending in l1-l5), the average
controller (IIIcavrg) was able to qualitatively reproduce the
behavior. If participant (4), however, would have been part

of training, the controller would fit much better to these trials,
but also worse for the other two participants which did not
bend the lower spine to that extend.

The extreme numerical values of the errors on the set of

participant (4), S 4
te , show, if again comparing Figures 9, 10,

and 11, that the error value is/can be used only as a proof
of correct response and only as an indicator for possibly
incorrect response.

4.2. Limits of This Study. First of all, we have to state that an
uncertainty quantification (UQ) was not performed in a
mathematical rigorous manner.

The present study contains several potential sources of
errors which could lead to wrong conclusions. Most
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Figure 8: (a) The torques generated by the high gain PD:Mhg
i versusMLSQ

i , i ∈ a, h with virtuallyMLSQ =Msim. y-axis is torque in Nm over
time steps of the simulation on the x-axis. (b) Response of controller IIIc. The best fit, with an remaining error of 0.16 deg/ts. First plot is the
ankle trajectory, second is the hip, and third is the perturbation. Finally, the controller IIIc with torque coupling according to the numerical
inertia tensor β realized the almost exact reproduction of the experiments.

Table 2: Average parameter set X for controller IIIc on the training set Str referred to by IIIcavrg.

Controller Error k1 d1 q1 delay1 k2 d2 q2 delay2
IIIc 0.35 deg/s 1.18 1/deg ⋅ s2 1.97 1/deg ⋅ s2 0.45 kg ⋅m 0.06 s 0.85 1/deg ⋅ s2 1.73 1/deg ⋅ s 0.53 kg ⋅m 0.17 s

IIIc.1 0.54 deg/ts 1.27 1/deg ⋅ s2 2.53 1/deg ⋅ s — 0.06 s 1.19 1/deg ⋅ s2 2.06 1/deg ⋅ s — 0.12 s

IIIc.2 0.55 deg/ts — 2.53 1/deg ⋅ s — 0.06 s — 2.05 1/deg ⋅ s — 0.12 s
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importantly, the choice of an appropriate model is crucial to
analyse the measured data. Moreover, model parameters
have to be found and are subject to an uncertain quantifica-
tion. Further, the experimental data itself is also known to
be a typical source of errors.

Some sources of errors are easy to mention, for example,
the data recording had an error in the marker tracking of
approximately 1 cm, which lead to maximum errors in the
calculated segment lengths of up to 2 cm. Please refer to
Appendix A.2 (invalid trials and exceeder of the “basic” strat-
egy) for a further discussion.

Other potential biases are not so trivial to judge. In par-
ticular, the level of detail of the model is a crucial first-hand
choice. For this study, we chose a double-inverted pendulum
(DIP) model. However, simpler single-inverted pendulum
(SIP) or more complex models are also used in literature
for representing human upright stance balance Günther
et al. [30]; Günther and Wagner [31]. Among the more
complex models, triple-inverted pendulum (TIP) models
are used for lateral stance control, but it exist also models
incorporating even a higher complexity, like multiple multi-
body systems, taking the spinal movement into account, for
example, Rupp et al. [40].

For the case of simpler models, like the SIP model, they
can be eliminated due to two reasons: First, the experimental
results of our study show that all participants exhibited
roughly the same magnitude of movement in the hip and
ankle joint following the perturbation. A SIP would depict

only one of these degrees of freedom, totally ignoring the
dynamics in the other. Second, the simulated controller IIa
(simple PD control) is not reproducing the experimental
results and also fails to stabilize, if small delays are introduced
(IIb, Figure 6). This controller behaves roughly like a SIP
with almost all movement occurring in the ankle joint.

More interestingly from our perspective would be the
case of using more complex models for the analysis. First,
currently, some trials had to be excluded from the analysis
due to the length criterion (see Appendix A.2) based on ante-
rior/posterior movement. Using a 3D model including 3D
joints, the variation of the balance strategy (extension of the
basic planar strategy) could have been pictured. By that, the
biological system benefits by (i) increasing robustness by fur-
ther lowering the COM. Furthermore, by using a 3D TIP, the
hip and ankle would also move in the A/P direction and the
knee joint could be included for even greater increase of
robustness too. (ii) The biological system further benefits by
a higher flexibility, which is equivalent to a situational
dependent change of the balance strategy. Second, all
participants exhibited movement in (at least) the lower spine.
Some subjects were very stiff in the lower spine region. In
some, however, one could see with the naked eye that the
lower spine bending contributed more to lateral angular
excursions of the trunk than rotations around the hip joints.
A model considering a flexible upper segment, in total or in
part, would improve the reproduction and depiction of
this motion.
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Figure 9: Best (a) and worst (b) prediction on Str. Plotted are the ankle and hip angle in deg. over time in seconds. The red/dashed lines are the
experimental trials, and the blue/solid lines are the corresponding simulation of controller IIIcavrg. On the test set, the averaged controller ranged
in quality of reproduction between those two trials. Obviously the prediction is good, since the test set trials were used to find the parameters X.
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The last source of uncertainty we want to mention is the
commonly known fact that unconstrained nonlinear optimi-
zation may end up in several local minima that may or may
not be roughly equivalent (see also Results). So better solu-
tions cannot be fully excluded.

4.3. Restabilization Strategy. In the present work, we were
able to establish and review key factors of balance. Therefore, we
want to especially discuss the need for coupling of torques and
the role of delays imposed on balance control.Wewere also able
to draw a line of reasoning between our findings and the
eigenmovement theory [37], which is discussed together with
the predicted delays at the second part of this section.

The necessity for torque coupling, where one joint torque
needs to take into account the other joint torques in order to
account for their changes and influence on the other joints,
was proposed and reviewed by earlier studies [9, 37] and
was again confirmed by our work. We realize this by sensor
signal coupling, utilizing β in (4c) and thus in the generation
of motor actions (2). We found that in the latter (2), the most
critical parameters are the damping parameters d1 and d2 as
they influence torque generation the most (y has the highest
influence on the torques, see Figure 12). Especially the ratio
between d1 and d2 was found to be roughly d1/d2 = 1 14 ±
0 03 within our trials and to ensure a certain ratio between
the two torques in the ankle and the hip, which was preestab-
lished by the ratios β, variations of one of the d parameters

while fixing the other should not exceed 5%. Aside from that
critical relation, the possibility of variation of the parameters
X is intuitive since a slight change of reaction strength and
time (i.e., onset) should not be a problem. If they would, sta-
bility in an uncertain system like the upright standing human
bodywouldnotbepossible.Thus, theobserved robustness inX
is nosurprise.Also, the smaller robustness inβ,whichcontains
information about the inertia and geometry (which are rather
fixed properties of the mechanobiological system), is clear.
Already slight change in these ratios results in qualitative
changes and instability. Thus, with β and the relation d1/d2,
which are together defining the coupling of torques, being
the least robust, the necessity of (correct) coupling and
relations between torques of different joints becomes obvi-
ous. The simulation yielded β12 = β21, which states that
into each joint torque, the same amount of information
about the other joint (angle and angular velocity) is taken
into account.

For our motor task, the found parameters of X and β fur-
ther impose that y is mainly generated by utilizing ankle
angle information (y1: β11 is roughly 5 times larger than β12
and y2: β21 is roughly 4 times larger than β22) and that the
torque in the ankle is 5 times larger than in the hip as well
(again the ratio between β11 and β21). Numerical values of
the fixed relation between torques in different joints were
given for A/P balance in [9], with ratios for hip to knee at
1.5 and ankle to knee at 2. Further, it was stated that
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Figure 10: Best (a) and worst (b) prediction on Ste. Plotted are the ankle and hip angle in deg. over time in seconds. The red/dashed lines are
the experimental trials, and the blue/solid lines are the corresponding simulation of controller IIIcavrg. Both trials are qualitatively correct and
the system is stabilized. The best prediction on the left shows a slight underestimation in the ankle and a slight overestimation in the hip at the
end of trial, predicting the rest of the trajectory with high precision. The right (worst) prediction on the test set underestimates the
experimental trajectory midtrial, while the beginning and end are predicted fine.
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biarticulated muscles “have the architectural capacity to elicit
fixed proportions of two torques about the joints they cross.”
According to [9], the delay between ankle and hip could be
the hip “waiting” for the ankle reaction to start, in order to
react correctly.

The predicted delays between kinematic signals and joint
torques for controller IIIc (about 60ms for ankle and 170ms
for hip) are intriguing, because 60ms in particular seems to
be a good reflexion of a neuromuscular delay between
changes in muscle proprioceptive signals (muscle spindles,
Golgi tendon organs) and corresponding changes in motor
output, that is, muscle force or joint torque, respectively.

Propagation velocities in afferent and efferent, mamma-
lian motor nerves are about 100m/s (typ I) or 50m/s (typ
II) ([41]). The distance between muscle and motoneuron is
roughly 0 5m for human leg muscles and between muscle
and brain about 1 5m. The fastest conceivable way of delayed

sensor information feedback from mechanical actuator or
joint sensors back to the actuator in a biological system is
via the monosynaptic pathway muscle-motoneuron-muscle.
According to the above-mentioned distances, the total
monosynaptic delay would thus be about 10ms (and 30ms
in the brain case). Another synaptic delay is added at the neu-
romuscular junction (between the axon’s end terminal and
muscle surface: about 1ms Katz and Miledi [42]). A third
contribution to neuromuscular delay seems to be the prevail-
ing one in humans: the electromechanical delay (EMD) as
the time passing between the onset of a finite change in elec-
trical muscle surface stimulus beyond the junction, measur-
able, for example, by a surface electromyography (EMG), to
the onset of a measurable, finite change in muscle force
([43]). EMD was found in human’s quadriceps muscle to be
50ms ([44]), when starting from inactivity. Signal processing
in neural nets like the motoneuron pool in the spinal cord or
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Figure 11: Best (a) and worst (b) prediction for participant (4). Plotted are the ankle and hip angle in deg. over time in seconds. The red/
dashed lines are the experimental trials, and the blue/solid lines are the corresponding simulation of controller IIIcavrg. Without
considering participant (4) in finding the control parameters X, the controller is able to predict his trials, however with a considerable
amount of under and overestimation, but not to that point where qualitative change in behavior or instability is observed.

Table 3: Participant specific ratios β.

Participant β11 β12 = β21 β22 β11/β12 β22/β21

(3) 1.34 kg ⋅m2 0.25 kg ⋅m2 0.06 kg ⋅m2 5.45 0.24

(4) 1.03 kg ⋅m2 0.20 kg ⋅m2 0.05 kg ⋅m2 5.06 0.26

(5) 1.12 kg ⋅m2 0.23 kg ⋅m2 0.06 kg ⋅m2 4.8 0.27
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in the cerebellum introduces additional contributions to
feedback loop delays.

Monosynaptic delay in leg muscles via the motoneuron
pool is thus about 60ms and matches well the delay between
joint angle proprioception and ankle torque as found here to
be effective for restabilization. This fact is an indication of the
neuromuscular design of human beings to be well adapted to
the mechanical requirements of regulating human upright
posture which is a salient feature in the animal world due
to the unique mechanical design of the human foot. A hip
joint torque contribution effective for the same requirements
is, however, even more delayed by further 110ms. Are there
indications that may help to understand this further delay?

A delay between distinct subfeatures of motor commands
was found to be effective in a different, yet related, motor
task: voluntary trunk bending of humans during upright
standing ([37, 45]). More precisely, Alexandrov et al. [37]
had found for voluntary trunk bending that (i) a superposi-
tion of A- and H-eigenmovement is optimal for fulfilling
the bending movement and stability at once and that (ii) a
delay between the onset of both eigenmovements is essential
(A-eigenmovement must start earlier than H-eigenmove-
ment). A- and H-eigenmovements are two motor commands
based on differently weighted combinations in joint angular
shifts (the eigenvectors of the mechanical, three-link system).
In our case, the task is different, somehow an inverse prob-
lem: the body has to be restabilized after a disturbance,
whereas in the experiments of Alexandrov et al. [45], humans
bent their trunks voluntarily. In our case, obviously a
delay between the joint torque contributions within a

near-A-eigenmovement (i.e., ankle and hip contributions)
must become effective (difference between 170 ms and
60 ms).

In the first instance, this finding of a delay between local
joint torque contributions when compensating a lateral dis-
turbance is clearly different from time sequencing the onset
of A- and H-eigenmovements. However, the approach of
Alexandrov et al. [37] to motor synthesis based on utilizing
the eigenvectors of the mechanical system may be appropri-
ate as a general background with explanatory potential, if
particularly combined with ideas ([46]) about the mutual
relation of sensory signals and motor commands within the
three-dimensional, redundant neuromusculoskeletal system
and their potential processing in the central nervous system.
Our findings seem to provide some further support for use of
the eigenvector approach. Since, the restabilization strategy
(2) with (4c) identified in our study is very similar to the A-
eigenmovement identified by ((10) in [37]) in trunk bending
(“A” refers to the ankle joint). To see this, we have to com-
pare our joint torques Mds

a and Mds
h , respectively, to the first

and third components of their vector uA, that is, we first have
to compare the ratios of our weightings (Table 3) of ankle
and hip angles in (4c) β11/β12 ≈ 5 as well as β21/β24 ≈ 4
—determining Mds

a and Mds
h in (2) by k1 · y1 and k2 · y2 (k1

≈ k2 ≈ 0 7 s2/deg, see (7)), respectively—to the ratio wA,1/
wA,3 ≈ 3 of the first and third components in the A-eigenvec-
tor ωA in ((10) in [37]). Second, due to k1 ≈ k2, a ratio Mds

a /
Mds

h ≈ β11/β21 ≈ 5 of the angle-dependent joint torque
contributions in Mds

a and Mds
h for the same angle deflections
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Figure 12: Controller IIIcavrg in the test trial ((5)14200lt). (a)M1 (undelayedMA) full and split into components. (b)M2 (undelayedMH) full
and split into components. As can be easily seen, the primary influence on the applied torques always stems from the velocity contributions,
while the other two contributions (displacement and perturbation acceleration) just slightly alter the final torques.
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in ankle and hip compares to the ratio of first and third com-
ponents uA,1/uA,3 ≈ 4 7 in the left equation (11) in [37]. Alto-
gether, we may thus call our identified strategy a “near”-A-
eigenmovement because the ratios β11/β12 and β21/β22 of
the ankle and hip angle-dependent contributions to the joint
torquesMds

a andMds
h , respectively, in this strategy are slightly

distorted as compared to wA,1/wA,3 in the A-eigenmovement
(see left equation (10) in [37]), whereas eventually regarding
the ratio of the angle-dependent ankle and hip torque contri-
butions themselves (compare β11/β21 and β12/β22 to uA,1/uA,3
in the left equation (11) in [37], there is almost no difference
to the A-eigenmovement in terms of the joint torque ratio
Mds

a /Mds
h .

Velocity-dependent contributions are an implicit part of
the eigenvector-based approach in Alexandrov et al. [37].
They are explicitly reflected in the restabilization strategy
(2) with (4c) for compensating lateral disturbances as treated
here. The ratio of linearly velocity-dependent contributions
to Mds

a and Mds
h is approximately d1/d2 ⋅ β11/β21 ≈ 5 5 times

higher for Mds
a than for Mds

h , which thus makes little differ-
ence to the ratio of angle-dependent contributions because
d1/d2 ≈ 1. With angular velocities that are typically about
the same in the hip and the ankle (see Table 1 with maximum
angular velocities), the ratio of velocity-dependent contribu-
tions to Mds

a and Mds
h is also similar to the ratio of the angle-

dependent parts. Remarkably, the velocity-dependent torque
contributions (i) dominate the whole restabilization strategy
(2) with (4c) by far (compare magnitudes of angle- and
velocity-dependent contributions in Figure 12) and (ii) the
strategy works even without any “knowledge” of the control
system about the disturbance (qi = 0) and the angular
position (ki = 0). Using the word “work” implies that
this strategy restabilized the model in the simulations
of all trials available, including even those by participant
(4) exhibiting exceptional angular amplitudes, albeit the
intermittent and final states deviating from corresponding
measured ones more than when using angular information
(ki ≠ 0). All this indicates that sensor information about rates
of mechanical state variables is of fundamental importance
for human upright stance. Positional information takes a
back seat as does explicit disturbance sensation.

As the velocity-dependent torque contributions are
time-delayed, they do not represent mechanical friction
or “damping” but are rather forecasts (see McMahon
[47], p.154–156) of an angle-dependent torque contribu-
tion that corresponds to a first-order prediction of a
change in joint angle ΔΘj = di/ki ⋅Θj (j = a, h) predicted

to occur for a given angular velocity Θj that will, however,
not take mechanical effect before an instant delayis later.
Such velocity-dependent torque contributions compensate
for potential deflections in the future that would be much
larger than will actually occur as long as their compensa-
tory effect is in fact stabilizing. Here, these torque
contributions take mechanical effect delayed by times
comparable to the typical time to reach the maximum
angular deflections (100… 200ms). Introducing motor

actions like (2) which are not due to locally instantaneous
mechanical effects but based on delayed sensor signals of
mechanical variables fed into an information transmission
channel to be decoded and transformed into a propor-
tional actuator force later on is information-costly ([48])
but enables access to a greatly enlarged diversity of move-
ment solutions.

A rather simple control system based on the system’s
mechanical eigenvectors and one or another tailored time
delay can be evidently set up for initiating voluntary
movements or compensating significant disturbances of
an N-link-inverted pendulum without escalating the move-
ment system into resonance disaster. It should be checked
whether a recently suggested stabilization strategy for a
TIP model simulating quiet human stance in the sagittal
plane ([31]) is in fact similar, related, or even more or less
identical to the eigenvector approach. It seems an obvious
thing to take further steps and broaden the check for how
general this idea of motor control based on mechanical
eigenvectors is. Since, to the best of our knowledge and
somehow surprisingly, this approach has solely been
explicitly applied to human stance [9, 10, 13, 49–51] in
the field of model-based, biomechanical movement synthe-
sis of multilink systems so far. We cannot see obvious
reasons, however, why cyclic or goal-directed movement
should not be a promising field alike for eigenvector-
based investigations to their motor control.

Appendix

A. Technical Details

A.1. Discretization and Solver. Experimental trajectories are
discretized in time according to the camera frame rate with
60 data points per second. All output trajectories in
MATLAB : Simulink (e.g., measured controller inputs Θsim

A/H)
are time wise discretized with the (fixed) solver step size of
0.001 s and thus 1000 data points per second. A fixed step size
(0.001 sec) fourth-order Runge-Kutta (ode4) solver was used.

A.2. Invalid Trials and Exceeder of the “Basic” Strategy. The
aforementioned negligence of the y component obviously
leads to great segment length changes if a trial exhibits too
muchmovement in theA/Pplane, for example, throughbend-
ing of the knee, hip, and spine. Also not noticed stepping
resulted in segment length changes (primarily in the “Leg” seg-
ment), s.t. trials with exceeder of the studied behavior, which
were not identified by sight, could be identified in this step.

Trials exhibiting these “unwanted” motions are detected,
by using a cutoff error on segment length changes of rHAT
= 2 cm (3 5% of segment length) and rLeg = 2 5 cm (5% of
segment length).

Note that those values were chosen such that they
ignored inaccurate marker tracking/noise and are also in
accordance to the variety of initial segment length values
within the set of trials of a single participant (i.e., inaccurate
measurements, calibration, tracking are within the error
margin). Such that only trials with segment length changes
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due to change in strategy (stepping, extreme spine, hip, or
knee bending) are discarded.

A.3 Training and Test Sets. The training set contains the
following trials Str = [(3)10150lt, (3)14150rt, (3)10200rt,
(3)14150rt, (3)18150rt, (5)14150lt, (5)14200lt, (5)14200rt,
(5)18150rt, (5)18200rt].

The test set contains Ste = [(3)14200lt, (3)14200rt,
(3)18150lt, (3)18200lt, (3)1820rt, (5)10150lt, (5)10200lt,
(5)18150lt, (5)10150rt, (5)10200rt, (5)14150rt].

Trials in the set for participant (4) are S 4
te = [(4)10150lt,

(4)10200lt, (4)14150lt, (4)14200lt, (4)18150lt, (4)10150rt,
(4)10200rt, (4)14150rt, (4)18150rt].

A.4 Filter. The filter used is a PT2 element (low-pass state
variable filter[REF]) which was realized in Simulink accord-
ing to the following transfer function

Gf s =
ω2

s2 + 2 ⋅ ξ ⋅ ω ⋅ s + ω2 , A 1

with the symbols representing signal s, filter frequency f =
ω/2 ⋅ π, signal damping termD = 2 ⋅ ξ ⋅ ω, and filter coefficient
K = ω2.

Used values are filter frequency f = 6Hz and damping
coefficient ξ = 0 707. The filter also offers to setup an initial
condition, which is x0 = 0m in our work.

This filter provided a good method to get corresponding
(filtered) derivatives to a filtered signal, without having a time
delay between the signal and its derivatives. This did also
provide the SimMechanics actuator with the needed pertur-
bation signal p, p, p and the controller with the derivative
of y.

However, there exists a delay between the “input” (i.e.,
the signal to be filtered, e.g., “perturbation position” p, θexpa ,
θexph ) and the filtered “value” (i.e., the filtered signal), such
that, signals that have to be compared have to be filtered
and thus delayed by the same magnitude (the delay on all sig-
nals, for ((5)14200lt), is 38ms at 6Hz).

A.5 Optimization.We use aMATLAB built-in unconstrained
nonlinear optimization algorithm (fminsearch, based on
Nelder-Mead simplex). However, the absolute value of the
delays is used in the controller to hinder negative delay
(impossible), which is done by an “abs()” block in Simulink,
and thus not influencing optimization. Since nonlinear opti-
mization can get stuck in local minima, choosing a good set
of initial parameters X0 is a bit tricky, and various solutions
may exist.

B. Building the Model

B.1 Segment Mass, COM, and Inertia Properties. The model
masses and COM locations are calculated according to
Winter [38], and they are as follows.

HAT segment: considering the masses of head, neck,
arms, and trunk has a weight of 0.678 in relation to total body
mass (segment mass/total body mass). The length of the
upper segment was considered as the length of the trunk only.
The neck and head were not considered in themodel segment

lengths and therefore also not in COM positioning of the
model so that the COM of the upper segment of the model
is located at a distance of 0.5 times HAT length from the hip.

Leg segment: considering masses of both feet, shanks,
and thighs has a mass ratio of 0.161 per leg, which is 0.322
times total body mass, for the lower segment of the model.
The distance of the Leg segments COM from the hip is
0.447 times leg length.

B.2 Mechanical Model Generation from Marker Positions.
The following depicts the creation of the model from the
experimental data, and please also refer to Figure 1.

As a first step, the discrete raw marker positions are
exported from APAS via Excel to MATLAB, the time step
is 0 017 s (i.e., camcorder frame rate), and a usual trial is
1.5± 0.5 s long. Ignoring the A/P movement in this step, by
neglecting the whole y component, results in 2D data of the
motion within the M/L plane, to which the DIP is restricted.
A marker position is thus composed of x, y ≡ 0, z , where x
is the (lateral) horizontal deviation from the origin and z is
the vertical deviation from the origin. All positions are given
in meters.

As can be seen in Figure 1, the three centers Ca, Ch, and
Cs between the corresponding markers al/r, hl/r, and sl/r are
simply calculated by

Ci =
ir + il
2

, i ∈ a, h, s B 1

Then, segment lengths (lLeg, lHAT) are calculated as the
vertical distance between the three centers (Ca, Ch, and Cs),
and the model constructed such that the initial position (in
the global CS) of the ankle joint is at (0, 0, 0.02)[m], the hip
is at (0, 0, 0.02 + lLeg)[m], and the shoulder is at (0, 0, 0.02
+ lLeg + lHAT)[m] (i.e., by offset correction of preperturbation
positions). Note that these, together with COM positions,
inertia, and masses, are the inputs needed for defining the
rigid bodies in SimMechanics. Additionally, Ca defines the
position of the ankle joint, and Ch defines the position of
the hip joint, which both are rotational DOFs around
the y-axis. Note that the motion of the spine (i.e., bending
of the lumbar spine: L1 to L5) is also lumped into the “hip”
DOF, a procedure which is only accepted as segment lengths
which do not change “significantly.”

Finally, the angles, which are defined to be zero at the
upright position, are calculated by the centers z components

(C z
i ), according to

Θa = sin−1
C z
h − C z

a

lLeg
,

Θh = γ −Θa, with γ = sin−1
C z
s − C z

h

lHAT

B 2

B.3 MATLAB : Simulink : SimMechanics. In the SimMecha-
nics model, the two rotational DOFs (ΘA,H) are represented
by frictionless, unconstrained revolute joints. The third
DOF of the model, on which the perturbation is acting
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(which is depicted by x in 1), is realized by a frictionless,
unconstrained prismatic joint between the global CS posi-
tion: (0 0 0.02)[m] (the initial position of the feet) and Ca.
The perturbation signal is created by using the vertical
translation of the ankle, thus ignoring the transfer of the
original perturbation through the feet. For the initializa-
tion of the model in SimMechanics, the influence of the
noise, generated by the experimental setup and by the
marker tracking, is reduced by using the mean of eight
time steps, prior to the perturbation. The data is corrected
for its global offset, such that the DIP is uprightly aligned
above the global CS origin. The SimMechanics model then
automatically adapts to the physique (see Figure 2W) of
each participant (and trial).

C. Solution of the Differential Equation for a
Mechanical Eigenmovement in Alexandrov
et al. [37]

The second order in time t, ordinary differential equations
(2) in Alexandrov et al. [37]

−λi ⋅ ξi t + ξi t = ηi t , C 1

represent the mechanical dynamics of an open, nonramified
kinematic chain exposed to gravity after linearization (see
(2) in [37]) of the nonlinear, mechanical equations of motion
((1) in [37]) around the unstable equilibrium of all N-links
being in upright position and after the expansion of the
solution ((4) in [37]) of the linearized system of equations
((2) in [37]) into its eigenvectors wi ((3, 10) in [37]). Here,
ξi t are the amplitudes of the (angular) eigenvectors wi
and i = 1,… ,N is the index of the angular degrees of free-
dom of this N-link-inverted pendulum. The solution for
(C.1) ((5) in [37]) is a superposition of the solution for
(C.1) in its homogeneous case (right hand side is zero: ηi
t = 0) and the solution in its inhomogeneous case, that is,
with the actual torque amplitudes ηi t (see (5, 6) in [37])
acting along the eigenvectors wi

ξi t = c1,i ⋅ e
t/ λi + c2,i ⋅ e

−t/ λi + e−t/ λi ⋅
t

1

ex/ λi ⋅ ηi x
2 λi

dx

+ et/ λi ⋅
t

1
−
e−x/ λi ⋅ ηi x

2 λi
dx

C 2

The movement of the N-link-inverted pendulum nearby
its unstable upright position is thus always a linear superpo-
sition of exponentially leaving or approaching this unstable
equilibrium along specifically weighted combinations of joint
angles (eigenvectors wi), with a characteristic time constant
(eigenvalue λi) for each eigenmovement (or: eigenmode)
along the corresponding eigenvector. For “leaving” to occur,
for example, when exposed to just gravity and with no initial
velocities, the initial position must be adjacent to but not
exactly at the ideal upright position. This is reflected by the
time-inverted dynamics, which are also solutions, namely,
when the kinetic energy in any mode is the same but the

velocities inversely directed: an exponential movement is
always just an asymptotic convergence to a final position.
Therefore, if the initial kinetic energy is exactly tailored to
overcome gravitational potential energy up to the unstable
equilibrium, approaching the latter will occur asymptotically,
taking infinitely long time.

D. Phases in Balance Loss and Recovery

Alternate to Figure 4, the following text describes the whole
lateral motion studied, that is, prior to the perturbation, the
participant is standing in upright, hip-wide stance on the
BaMPer system (a), as it was defined in the Method. At (a),
for the participant unknown time, the perturbation is trig-
gered by a shift of the platform to the left (or right). The
resulting force is tilting the Leg segment (negative Θa), leav-
ing the upper body unaltered at first (positive Θh); thus, the
angles move “antiphase” (b). After a response time, in which
the perturbation is acting unhindered (i.e., participant in free
fall), the hip angle is returned to 0[°] (probably as a result
from stiffening of the whole body, but especially the hip
joint), which is the first visible active reaction of the partici-
pant to the perturbation (b to c), and here, a brief moment
exists where both angles move in phase, primarily as a result
of the active control and the still acting motion of the pertur-
bation. The lateral translation of the lower segments (by the
still moving platform) and the participants’ reaction results
in the CoP (whole-body COM projection to the BoS), mov-
ing to the edge of the BoS (and sometimes leaving it). The
reaction (c), at first glance, seems to further enhance the loss
of balance. However, on second glance, the legs are tilted
back to upright stance. The hip angle, which is mostly mov-
ing antiphase to the ankle angle, aside from the brief moment
mentioned above and for a longer period at the end of recov-
ery, further shifts to the negative as a result of a “rapid hip
movement” with the direction of perturbation. This second,
distinctly stronger reaction straightens the legs completely
and thus brings the ankle angle back to 0[°] (d). The hip angle
which is still tilted is brought back to the upright initial posi-
tion (e, f). Note that if the perturbation is to the opposite side,
the angular trajectories are reversed as well.

Data Availability. All research material is available to the
public for noncommercial use and can be provided if asked
for. This contains experiment data (e.g., videos, marker posi-
tions in Excel) and simulation data (code).
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