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Abstract

Background: Common cancer monitoring practice is seldom prospective and rather driven by public requests. This
study aims to assess the performance of a recently developed prospective cancer monitoring method and the
statistical tools used, in particular the sequential probability ratio test in regard to specificity, sensitivity, observation
time and heterogeneity of size of the geographical unit.

Methods: A simulation study based on a predefined selection of cancer types, geographical unit and time period
was set up. Based on the population structure of Lower Saxony the mean number of cases of three diagnoses were
randomly assigned to the geographical units during 2008–2012. A two-stage monitoring procedure was then
executed considering the standardized incidence ratio and sequential probability ratio test. Scenarios were constructed
differing by the simulation of clusters, significance level and test parameter indicating a risk to be elevated.

Results: Performance strongly depended on the choice of the test parameter. If the expected numbers of cases were
low, the significance level was not fully exhausted. Hence, the number of false positives was lower than the chosen
significance level suggested, leading to a high specificity. Sensitivity increased with the expected number of cases and
the amount of risk and decreased with the size of the geographical unit.

Conclusions: The procedure showed some desirable properties and is ready to use for a few settings but demands
adjustments for others. Future work might consider refinements of the geographical structure.
Inhomogeneous unit size could be addressed by a flexible choice of the test parameter related to the observation time.

Keywords: Cancer registry, Sequential test, Incidence, Cluster detection

Background
Cancer monitoring and cluster detection have been and
still are publicly debated at international level. The Center
for Disease Control and Prevention (CDC) defines a can-
cer cluster as a greater-than-expected number of cancer
cases that occurs within a group of people in a geographic
area over a period of time [1]. In Germany, population-
based cancer registries are responsible for further inves-
tigation in observed cancer clusters [2]. So far, active
cancer monitoring is not common practice in the coun-
try. Recent cancer cluster detection practice is seldom
prospective and rather initiated by requests by the public,
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physicians or health offices [3]. If a suspected elevated
risk is reported, the corresponding spatial area will be
explored. A common measurement is the standardized
incidence ratio (SIR) which relates the cancer-specific
cases in a region to the number of expected cases based
on the rate in an appropriate reference population. A sta-
tistically significant elevation will be followed by further
investigations to examine potential risk factor associa-
tions. However, this final step is known to be challenging
due to several reasons such as complex disease etiology,
long latency or human migration [3, 4].
The idea of an automatized search for spatially and tem-

porally elevated cancer incidence has been debated in the
past [5, 6]. While early detection is its main advantage pit-
falls have also been discussed such as the high number of
false positive results.
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Classical testing methods predefine a fixed sample
size in order to conclude on the parameter under con-
sideration. In situations where data collection is time-
consuming or costly, a more flexible approach which stops
sampling as soon as a conclusion can be made may be
more appropriate. Sequential tests provide this flexibility
as they do not rely on a fixed sample size and stop as soon
as a decision can be made which is checked after each
iteration [7].
In 1999, a prospective three-stage monitoring for clus-

ter detection was proposed [8]. During the first phase, the
search phase, regions are preselected based on the consis-
tency method (Konstanzmethode) [9]. For this approach,
the observation time is divided into several periods. Ranks
are assigned to the regions under study based on their
cancer risk (indicated by a standardized rate or ratio).
A final average rank is calculated for each region over
the whole study period which serves as an indicator for
areas under risk. In a next step, those areas are monitored
prospectively. In this observation phase, a post-alarm-test
is performed via the median- and mean-based technique
proposed by Chen et al. [10]. During the final stage poten-
tial association with known risk factors is examined [8].
Lower Saxony is one of 16 German states located in the

Northwest of the country covering more than 7.9 million
of the German population (7,926,599 in 2015 [11]) and an
area of around 47,614km2 divided in 762 municipalities.
More than 47,800 cancer cases were reported in 2012
[12]. Initiated by an increased incidence of leukemia in
a municipality, the Epidemiological Cancer Registry of
Lower Saxony (EKN, Epidemiologisches Krebsregister
Niedersachsen) was commissioned by the federal gov-
ernment to develop an automatized monitoring method
which searches and identifies high cancer risk regions at
small scale. Consequently, the investigations of 1999 were
resumed by the EKN and the Governmental Institute
of Public Health of Lower Saxony (NLGA, Niedersäch-
sisches Landesgesundheitsamt), adjusted and further
developed by considering sequential tests during the
observation phase [13]. The adjusted approach starts
with a search phase during which the SIR with confi-
dence intervals for the last five years is calculated for all
regional monitoring areas [8, 13]. Conspicuous areas will
be incorporated into the second stage, the observation
phase, which performs the sequential probability ratio
test (SPRT). A yearly update of the test statistic will be
provided and the area remains under surveillance until
the SPRT reports a warning or all-clear signal [14].
In 2014, a pilot project was launched to validate the

developed monitoring system applied for the cancer types
acute myeloid leukemia (ICD-10 C92.0), renal cell car-
cinoma (ICD-10 C64) and mesothelioma (ICD-10 C45).
These diseases were suggested by the EKN and NLGA as
they are often discussed in relation with the environment

and less biased in regard to data ascertainment. Further-
more, these diseases differ in their frequency ranging
from a very rare (mesothelioma) to a relatively common
diagnosis (renal cell carcinoma).
In this study, the monitoring method proposed by the

EKN andNLGA, considering the SPRT as a statistical tool,
was validated. In particular, we assessed the performance
of the SPRT within a simulation study in regard to false-
positive and -negative results, power, the observation time
needed to receive a warning or all-clear signal by the SPRT
and the influence of the size of the geographical unit on
the reliability of the SPRT. Furthermore, we investigated
the choice of (quantified) increased risk that should be
identified by the test.

Methods
Monitoring method
The monitoring method is conducted in two stages, a
search and an observation phase. At the start, all geo-
graphical units are under observation. During the search
phase, the SIR and 95% confidence intervals are calcu-
lated for every geographical unit over a total time period
of five years. Units with a significantly increased SIR are
then selected for the observation phase while inconspic-
uous units get an all-clear signal and will no longer be
observed.
During the observation, all remaining units undergo the

SPRT introduced by Wald [15]. Its mathematical back-
ground was described in detail by Govindarajulu [16]. The
SPRT is based on the likelihood ratio test. The basic idea
is to evaluate the likelihood of an observation to be part of
a certain underlying population. In this setting, we have to
decide between two sets of hypotheses given an amount
of acceptable uncertainty α. In order to add the sequential
component, we do not only have to specify the signifi-
cance level α but also the power 1 − β of the test. Having
set α and β we evaluate after every observation or at cer-
tain time points if the collected information suffices to
draw a conclusion.
In the setting at hand, we choose α = β = 0.05 and

assume the number of cases of a geographical unit to
follow a Poisson distribution P(λ) where λ denotes the
expected number of cases. This leads to the following
opposing hypotheses:

H0: the number of cases follow P(λ) vs.
H1: the number of cases follow P(r ∗ λ),

where r is the increase in risk to be tested. The choice
of r is crucial for the procedure performance. Every year
the numbers of cases are evaluated with regard to the
question whether a decision can be made based on the
available information. If further information is needed, the
unit remains under observation, otherwise the status will
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change and either a warning or an all-clear signal will be
reported depending on the test result.

Simulation study
For the monitoring at municipality level, we adapt an
EKN-internal definition, the regional monitoring units
(RMUs). They provide a mean RMU size of about 20,000
inhabitants and a minimum size of 5,000. Age group-
and sex-specific numbers of cases for the three diagnoses
mesothelioma (C45), renal cell carcinoma (C64) and acute
myeloid leukemia (C92.0) and mean annual population
numbers were provided by the Epidemiological Cancer
Registry of Lower Saxony (see Table 1). Both datasets
covered the years 2008 to 2012 and were given at RMU-
level. Records withmissing values or ambiguous sex status
were excluded. The RMUs were classified regarding their
population size (see Table 2).

Scenarios
Three scenarios differing in the variation of the following
parameters were applied (see Table 3):

1 αSPRT = α and βSPRT = β of the SPRT and the
significance level αSIR of the SIR,

2 fixed risk parameter of the SPRT, r = 1.50 or r = 2,
or flexible r = SIRsearch,

3 the number of the RMU under risk (0 vs. 10) and the
amount of the simulated risk (SR) increase
(SR ∈ {1.50, 2.00, 4.00}).

Each scenario was simulated 1000 times. In every repeti-
tion, RMUunder risk was randomly chosen and assigned a
weight according to SR. Random allocation of cases to the
RMUwas done based on the RMU sizemultiplied with the
assigned weight. Scenarios differing with regard to the risk
parameter r were namedM1.5, M2 and Msir, respectively.
The analysis starts with the simulation of five years, cor-

responding to the length of the search phase. SIR plus
confidence interval are calculated and RMUs with signifi-
cantly increased SIR according to the respective prespec-
ified significance level will be selected for the observation
phase. Prior to every observation phase, an additional year
is simulated until SPRT terminated for all RMUs or, for
computational reasons, until 100 years are reached. After
each observation phase, the RMUs are assigned a status –

Table 1 Total numbers of cases in Lower Saxony and expected
numbers of cases at RMU level by diagnosis in the years 2008 to
2012

Diagnosis Overall cases Min Median Mean Max

C45 958 0.13 0.31 0.49 12.63

C64 7129 0.93 2.34 3.68 93.97

C92.0 1761 0.23 0.58 0.91 23.21

Table 2 Classification of RMUs

Category Number of Total population %
RMUs in category

5100 − 10, 000 101 818,900 10.30

10, 000 − 30, 000 236 3,692,100 46.60

30, 000 − 100, 000 43 1,873,900 23.60

100, 000 − 522, 600 8 1,545,600 19.50

5100 − 522, 600 388 7,930,400 100

red for warning, green for all-clear signal and yellow for
remaining under observation.
The simulation study was conducted using the statistical

software R version 2.15.1 [17].

Results
For inspection of the results, all scenarios listed in the
“Methods” section were considered. For reasons of clarity
and compactness, only the most expressive results were
selected for presentation in this paper. If an issue occurred

Table 3 Parameter setting of scenario 1 to 21 distinguished by
αSPRT , βSPRT , αSIR , the number of simulated RMUs under risk
(RMU), the simulated risk for these selected RMUs (Risk) and the
size of the simulated clusters (“Methods” section)

Scenario αSPRT βSPRT αSIR RMU Risk Method

1 0.05 0.10 0.05 – – –

2 0.05 0.05 0.05 – – –

3 0.05 0.01 0.05 – – –

4 0.01 0.10 0.05 – – –

5 0.01 0.05 0.05 – – –

6 0.01 0.01 0.05 – – –

7 0.05 0.10 0.01 – – –

8 0.05 0.05 0.01 – – –

9 0.05 0.01 0.01 – – –

10 0.01 0.10 0.01 – – –

11 0.01 0.05 0.01 – – –

12 0.01 0.01 0.01 – – –

13 0.05 0.05 0.05 10 1.50 20,000

14 0.05 0.05 0.05 10 2 20,000

15 0.05 0.05 0.05 10 4 20,000

16 0.05 0.05 0.05 10 1.50 40,000

17 0.05 0.05 0.05 10 2 40,000

18 0.05 0.05 0.05 10 4 40,000

19 0.01 0.05 0.05 10 2 20,000

20 0.05 0.10 0.05 10 2 20,000

21 0.05 0.05 0.01 10 2 20,000
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or results were similar among all scenarios or methods, we
decided to illustrate results by taking the example of the
pilot project scenario and method.

Specificity
In the search phase, the error rate fell short of the given
significance level. For C45 (αSIR = 0.05: 0.023, αSIR =
0.01: 0.004) the lowest error rate was observed (C64:
0.036 and 0.007, C92.0: 0.026 and 0.004). In the obser-
vation phase, the given significance level was as well not
exhausted. Thus, the percentage of false positives in total
was by far below the expected percentage (e. g. with 35%
of the expected number of false positives for αSIR = α =
β = 0.05, r = 2 and no artificial clusters). This resulted in
a very high specificity (greater than 0.99) for all scenarios.
Small values of αSIR and α led to even greater values for
the specificity. The median number of false positives was
0 in every scenario.
For a significance level of αSIR = α = 0.05, the amount

of expected false positives was 0.05 · 0.05 = 0.0025 =
0.25% which lead to 0.0025 · 388 = 0.97 expected false
positive alarms per year, since there were 388 RMUs. For
C45 and without artificial clusters, 0.344 false alarms were
produced in the simulation (in case ofM2) which is 35% of
the expected 0.97 false alarms. This would mean one false
alarm every three years. In case of ten RMUs being under
a risk of 2, one false alert would be expected in four years
while a risk of 4 resulted in one expected false alarm in six
to seven years.
Considering ten RMUs under a risk of SR = 1.50, a

number of 0.26 false positives were obtained (0.23 for
SR = 2). These decreased to 0.09 for a 4-fold increased
risk, i. e. one wrong alarm within eleven years.
When simulating clusters, more RMUs were suspected

during the search phase and hence underwent the SPRT.
In the observation phase, the degree of exploitation
decreased with an increasing SR. The real error rate was
0.01 (instead of 0.05) when SR = 4. The number of
false positives declined with a rising size of the simulated
clusters leading to a higher specificity. This increase of
specificity originated in the decreasing degree of exploita-
tion of the designated significance level in the observation
phase. The specificity was positively correlated with the
choice of α.

Sensitivity
For SR ≤ 2 and diagnoses C45 and C92.0, sensitivity in
the search phase reached a maximum of 0.50 whereas in
the case of SR = 4 sensitivity was observed to be greater
than 0.83 (C45) and 0.94 (C92.0). For C64 a sensitivity of
0.61, 0.92 and greater than 0.99 was obtained for SR =
1.50, SR = 2 and SR = 4, respectively. In the observa-
tion phase, M1.5 showed highest sensitivity greater than
0.88 (for most parameter choices considerably greater).

In comparison with M1.5 and M2 results for Msir indi-
cated worst performance with regard to sensitivity for C45
and C92.0 with values of 0.39 and 0.55, respectively, and
SR = 1.50. On the other hand, for C64 Msir showed
higher sensitivity than M2.
Scenarios with assumed cluster size of 40,000 inhabi-

tants were more sensitive than scenarios with cluster size
of 20,000. Varying one parameter ceteris paribus in the
search phase only αSIR = 0.01 (vs. αSIR = 0.05) differed in
terms of sensitivity (smaller values). No major differences
were detected during the observation phase.

Observation time (years)
Overall, the individual as well as the maximum observa-
tion time decreased with increasing simulated risk. The
average observation time did not noticeably depend on
the simulated cluster size (20,000 vs. 40,000). Changing α

from 0.05 to 0.01 led to longer observation times of sin-
gle RMU while changing either β from 0.05 to 0.10 or
αSIR from 0.05 to 0.01 shortened observation time by a
comparable amount.
For scenario αSIR = α = β = 0.05 and SR = 2, results

indicated longer observation time for M1.5 compared to
M2 and Msir for all three diagnoses (see Table 4).
The maximum observation time was similar for all dis-

eases considering Msir (C45: 21.38, C64: 23.37 and C92.0
21.67). Results for M1.5 and M2 were rather ambiguous.
For M2 an observation time of 13.94 was reached for C64
while it took 66.06 years on average for all RMUs to termi-
nate among the C45 diagnosis. A median of 100 years was
estimated forM1.5 regarding C45 as well as C92.0 which is
even underestimated since the observation time was lim-
ited (right-sided) to 100 years. For C64 an average time of
40.42 years was obtained.

RMU size
Threshold values of the SIR, which is the level from
which a RMU is considered suspicious and selected for
the observation phase, were calculated. The threshold
decreased with increasing RMU size and varied within
each diagnosis ranging from 1.33–4.93, 1.08–2.08 and
1.16–3.62 for C45 (see Fig. 1a), C64 (see Fig. 1b) and C92.0
(see Fig. 1c), respectively.
The ranges of the corresponding critical number of

cases, i. e. the number of cases needed for a RMU to be
reported conspicuous, were 3–72 (mean = 6.05), 10–474

Table 4 Average observation time (years) for a RMU, scenario 14

M1.5 M2 Msir

C45 51.82 23.56 9.41

C64 8.72 3.85 5.90

C92.0 32.65 13.38 8.34



Reinders et al. BMC Cancer  (2018) 18:384 Page 5 of 7

a b c

Fig. 1 Boxplots of threshold values of the SIR by RMU size, α = 0.05. a C45, b C64, c C92.0

(mean = 26.06) and 4–135 (mean = 8.96) for C45, C64
and C92.0, respectively.
For fixed r the average observation time for a single

RMU strongly depended on the RMU size. Results for the
group of the smallest RMU provided observation times
tenfold longer than the group of the largest RMU. For
a flexible choice of r, only very small variation could be
detected with average observation times between 8.80 and
10 years.
We found major differences in the detection of clus-

ters regarding the RMU size. Large RMUs under risk are
hardly detected. For example, 86% of clusters among C64
were detected, but only 0.01% in the group of RMUs with
more than 100,000 inhabitants, while those with less than
10,000 inhabitants showed a detection rate of 0.97.
It is of major interest if an RMU under risk that

becomes conspicuous due to its very large SIR can be
confirmed in the observation phase. For Msir and C45,
there were 837 cases with a maximum SIR of 9.9 of not
confirmed RMUs having been conspicuous in the search
phase. ForM1.5 andM2, the corresponding numbers were
42 and 142, respectively. For Msir and C64, the maxi-
mum SIR was 6 (416 unconfirmed cases). M1.5 and M2
showed 122 and 589 unconfirmed cases. For C92.0 the
corresponding values were between those of the other
two diagnoses.

Discussion
The aim of this study was to validate the performance
of a recently developed and launched prospective moni-
toring method within a simulation study and to critically
examine the performance of the SPRT. Based on the actual
Lower Saxon population structure average numbers of
cases of three cancer types were randomly assigned to the
spatial units during 2008–2012. Scenarios which differed
in regard to parameter choice of the increased risk (fixed
vs. flexible) as well as the construction of artificial clusters
were compared. Results suggest very high specificity for

all methods and cancer types. Overall, diagnoses with a
small number of cases resulted in considerably less false-
positive reports. The results regarding sensitivity were
rather ambiguous. Rare diseases produced much more
false negatives than more frequent ones. Furthermore,
results showed that heterogeneity of RMU size restricts
reliability of the procedure regarding observation time
(exclusive Msir) and sensitivity.
It was not the goal of this study to achieve significance

but to test the monitoring procedure aiming to find a
setup reliably providing alarm signals when an actual risk
increase is present but simultaneously not producing false
signals where no risk increase is given. This monitoring
procedure is a case of massive multiple testing. Hence, it is
very important to know its limitations and be accurate and
cautious when it comes to interpretation of the results.
The simulation showed a very high specificity. However,
the number of false positives will increase by consider-
ing more diagnoses. Thus, an alarm should never be more
than a starting signal for further investigation.
A high specificity is essential for prospective monitor-

ing. Every false positive notification results in costs of both
financial and non-financial nature, e. g. public attention.
Secondly, future routine application of the method would
consider numerous diagnoses under surveillance leading
to an increasing risk of a randomly chosen RMU to be
false positive. Hence, the high specificity is a benefit of
themethod. For any false positive notification, themethod
should ensure an adequate sensitivity. Therefore, a trade-
off between specificity and sensitivity is needed. Low
sensitivity was observed for low expected number of cases
or slightly increased risk. A low sensitivity is not generally
unacceptable. Lack of sensitivity can to a certain degree be
absorbed by repeated search phases. Furthermore, even a
method with a sensitivity of 0.99 could oversee existing
clusters due to a low risk increase, time-limited clusters or
clusters that cover only a small part of the population. On
the other hand, a method with a sensitivity of 0.50 could
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be considered suitable if the number of false positives was
low and the user was aware of its limitations.
In this study, the cancer cases were assumed to follow a

Poisson distribution which is a common choice for count
data. However, the assumption of the variance being the
same as the mean might be violated in some scenarios,
e. g. low number of cases. In this situation, other distribu-
tions such as the negative binomial or the zero-inflated
equivalent may be more appropriate. The latter explicitly
accounts for an excessive number of zero counts which
might especially occur for diagnoses with low numbers of
cases.
The inhomogeneity of the spatial units can to a cer-

tain extent be compensated by a flexible choice of the test
parameter. The division of larger spatial units would be a
potential solution for this problem. At the same time, join-
ing the smallest units with their neighbors might improve
observation times with a simultaneous expectable loss in
sensitivity. Furthermore, a longer observation phase could
lead to higher sensitivity and specificity.
Another option is the introduction of a “snooze” sta-

tus. If there was no decision made for a specific RMU
during the observation phase (in e. g. the first 3 observa-
tion periods), this RMU would “snooze” until it was again
selected in one of the following search phases. The obser-
vation phase would then continue resulting in a longer
time period for observation and a decision. An RMU
could multiply receive a “snooze” status.
The choice of the test parameter is crucial for the per-

formance of the monitoring procedure. Fixed and flexible
choices were compared but there are alternatives to test in
future work. The test parameter could be defined depend-
ing on the expected number of cases of the respective
RMU, e. g. as the minimum SIR with which the RMU
would get conspicuous during the search phase. Such an
approach would require either a lower limit for the test
parameter to avoid testing on non-relevant risk increases
or the division of large RMUs to avoid such small critical
values.
Numerous cluster detection approaches exist such as

the spatial scan statistic [18], Moran’s I [19] or Cuzick-
Edwards’ k-nearest neighbors [20]. Common practice
in cancer cluster detection is rather retrospective and
reactive responding to inquiries from the public [21]. In
1990, Rothman criticized this approach [6]. He raised
several concerns about cluster studies. Among others,
he mentioned the bias introduced by the already (by
knowledge) influenced population prior to the cluster
investigation and migration. A prospective monitoring
design overcomes this drawback. We do not step into
the trap of the Texan Sharpshooter’s Fallacy as the spatial
units are defined beforehand. The study is based on con-
firmed cancer registry cases. Remaining concerns are that
clusters may often be too small to allow for a controlled

epidemiological study and that definitions of disease may
be too vague.
Cancer usually has a long latency, meaning the time

between exposure and disease manifestation. This may
lead to incorrect residential assignments as the person
might have moved during that period. Furthermore, can-
cer registry data include case-related information but lack
information about environment-related risks.
This simulation study is based on the population struc-

ture in Lower Saxony of 2008 through 2012 and does not
consider demographic change which may result in long
observation periods.

Conclusions
A final appraisal of the monitoring method is challeng-
ing and can’t be achieved. However, it can be concluded
that its performance is mainly driven by the expected
number of cases, meaning the larger the number of cases
the higher the sensitivity and the shorter the obser-
vation time. Also, lower risk increase can be detected
more easily which can be seen as another advantageous
consequence.
A specificity above 0.99, sensitivity above 0.80, observa-

tion time below 10 years and the ability to detect RMUs
with twofold increased risk would represent reasonable
demands of the monitoring procedure. This would be
feasible for diseases with similar or higher numbers of
cases than renal cell carcinoma (C64). Diseases such as
mesothelioma (C45) and acute myeloid leukemia (C92.0)
would not fulfill these demands. This does not mean that
the procedure is not applicable for C45 and C92.0 in
general. Again, it is a matter of the demands.
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