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1 |  INTRODUCTION

Polycystic ovary syndrome (PCOS) is the most common 
endocrine pathology in women, affecting 5%- 10% of the 
population, often beginning in adolescence (Christakou & 
Diamanti- Kandarakis, 2008; Diamanti- Kandarakis, 2008; 
Escobar- Morreale & San Millán, 2007; Witchel, 2006). 
PCOS is characterized by hyperandrogenemia, modest 

increases in blood pressure (BP), insulin resistance, and in-
creased inflammation (Christakou & Diamanti- Kandarakis, 
2008; Diamanti- Kandarakis, 2008; Escobar- Morreale & 
San Millán, 2007; Witchel, 2006). The definitive crite-
ria necessary for diagnosis of PCOS were determined in 
2003, the Rotterdam Criteria (Azziz et al., 2006; Rotterdam 
ESHRE/ASRM- Sponsored PCOS Consensus Workshop 
Group, 2004), and require the presence of two out of three 
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Abstract
Polycystic ovary syndrome (PCOS) in women is characterized by hyperandrogen-
emia, obesity, and oligo-  or anovulation. In addition, women with PCOS are often 
obese, with insulin resistance, hyperlipidemia, and elevated blood pressure. The car-
diometabolic consequences for the male offspring of maternal hyperandrogenemia are 
unclear. The present studies tested the hypothesis that male offspring of a rat model 
of PCOS would develop cardiometabolic disease as adults. Female Sprague– Dawley 
rats (hyperandrogenemic females (HAF)) were implanted with dihydrotestosterone 
or placebo pellets (controls) at 4 weeks of age, and were mated at 10– 12 weeks and 
allowed to lactate their offspring after birth. Body weights in male HAF offspring 
were lower at birth than in controls until postnatal day 4, but body weights remained 
similar between male control and HAF offspring from 2 to 8 weeks of age. However, 
at 16 weeks of age, body weight was lower in HAF male offspring, but there were no 
differences in fat mass or lean mass factored for body weight in HAF males, compared 
to controls. Plasma total cholesterol and HDL and proteinuria were higher and nitrate/
nitrite excretion was lower in male HAF offspring than in controls. Baseline blood 
pressure was similar between HAF male offspring and controls, but HAF offspring 
had an exaggerated pressor response to angiotensin II infusion. These data suggest 
that adult sons of PCOS mothers may be at increased risk of cardiometabolic disease.
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characteristics, hyperandrogenemia, cystic ovaries, and oli-
go-  or anovulation, for diagnosis.

PCOS women may have difficulty becoming pregnant and 
have a higher incidence of requiring assisted reproduction, 
such as in vitro fertilization (He et al., 2019; Kjerulff et al., 
2011; Persson et al., 2019; Roos et al., 2011). For example, 
Persson et al., reported that Scandinavian PCOS women take 
longer to become pregnant and have fewer children than 
women without PCOS, but the probability of childbirth once 
pregnant was similar in PCOS women vs. controls (Persson 
et al., 2019). Other studies show that PCOS women may 
have a higher incidence of preeclampsia during pregnancy 
(Kjerulff et al., 2011; Roos et al., 2011). Children of PCOS 
women are often born small for gestational age, a condition 
called intrauterine growth restriction (IUGR) (Kjerulff et al., 
2011; Roos et al., 2011; Sir- Petermann et al., 2005).

While there are studies on pregnancy outcomes and off-
spring birth weights in women with PCOS (He et al., 2019; 
Kjerulff et al., 2011; Persson et al., 2019; Roos et al., 2011; 
Sir- Petermann et al., 2005), there are no studies to our knowl-
edge on the cardiovascular and metabolic consequences of 
hyperandrogenemia during pregnancy on the health of the 
offspring as adults or with aging. For example, de Wilde 
and colleagues studied children of PCOS women who were 
2.5– 4 years and 6– 8 years of age (Wilde et al., 2018). Birth 
weights were not listed for these children nor were the data 
analyzed by sex, but the young PCOS offspring had signifi-
cantly lower diastolic blood pressure (not measured by am-
bulatory monitoring, unfortunately), higher pulse pressure, 
higher left ventricular internal diameter, lower breast and 
abdominal circumference, but higher carotid intima- media 
thickness (Wilde et al., 2018). In another study, Gunning 
et al. performed meta- analyses of data from 298 PCOS off-
spring or controls from the Netherlands, Chile, and the United 
States (Gunning et al., 2020), some as old as 17 years. The 
male offspring of PCOS women had lower 2- h fasting insu-
lin, higher LDL- cholesterol, and lower HDL- cholesterol than 
did female PCOS offspring. Blood pressure and other cardio-
vascular parameters were not mentioned, however (Gunning 
et al., 2020). Thus there is a need to study the consequences 
of hyperandrogenemia during pregnancy on PCOS offspring.

In order to study the consequences of maternal hyper-
androgenemia on body composition and cardiovascular 
complications later in life in male offspring, we use the hy-
perandrogenemic female (HAF) rat as a model (Dalmasso, 
Maranon, Patil, Bui, et al., 2016; Yanes et al., 2011). We 
showed previously that pregnancy occurs in approximately 
60% of HAF rats, and that their offspring are born small for 
gestational age (Shawky et al., 2020). Unlike studies in ani-
mal models of PCOS and pregnancy in which androgens are 
given only in late pregnancy, the HAF dams are implanted 
with dihydrotestosterone pellets at 4– 5 weeks of age such that 
the dams have elevated levels of androgens before, during 

and after their pregnancies, as PCOS women have (Falbo 
et al., 2010).

Thus in the present study using the HAF model, the hy-
pothesis was tested that male offspring of HAF rats will be at 
increased risk for cardiovascular and metabolic abnormalities 
as adults.

2 |  METHODS

2.1 | Hyperandrogenemic female (HAF) 
model and offspring generation

Female Sprague– Dawley (SD) rats were obtained at 3 weeks 
of age (Envigo), and maintained on standard chow (Teklad 
#8640) and tap water in a temperature- controlled environ-
ment with 12  h: 12  h light:dark cycle. Females were im-
planted with dihydrotestosterone pellets (7.5  mg/90  day, 
s.c.; Innovative Research) or placebo pellets at 4 weeks of 
age to generate HAF or control females, respectively. Pellets 
were replaced every 85 days throughout their lives, as pre-
viously described (Dalmasso, Maranon, Patil, Bui, et al., 
2016; Shawky et al., 2020; Yanes et al., 2011). All proto-
cols followed the ARRIVE Guidelines and were reviewed 
by the Institutional Animal Care and Use Committee of the 
University of Mississippi Medical Center, and complied with 
the Guidelines for the Care and Use of Laboratory Animals 
by the National Institutes of Health (National Research 
Council (US) Committee for the Update of the Guide for the 
Care and Use of Laboratory Animals, 2011).

At 10 weeks of age, HAF and control rats were paired with 
male SD rats to induce pregnancy. Pregnancy occurred typi-
cally between 10 and 14 weeks of age, thus pellets were re- 
implanted during pregnancy/lactation in all rats (16 weeks of 
age). Pups were weighed within 12 h of birth (Shawky et al., 
2020). The numbers of pups per litter were similar between 
control and HAF dams, and the offspring body weights were 
lower for both male and female HAF offspring compared to 
those in control offspring (Shawky et al., 2020). Both control 
and HAF offspring were culled at 48 h after birth to 8 pups/
litter (4 males and 4 females). Male and female HAF offspring 
and their respective controls were weaned at 21 days of age, 
and only male offspring were studied after that time. Only one 
male per litter for control and HAF offspring were used per 
parameter studied. Body weights were measured at postnatal 
days (PND) 1, 2, 4, 14 and 21, and then weekly after weaning 
until 8 weeks of age. Rats were studied at 16 weeks of age.

2.2 | Body composition

At 16  weeks of age, body weight and composition, in-
cluding fat and lean masses, were measured (during the 
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morning from 9 AM- 12 noon), in male HAF and con-
trol offspring by EchoMRI (4 in 1- 900  model Body 
Composition Analyzer, EchoMRI LLC), as previously 
described (Dalmasso, Maranon, Patil, Bui, et al., 2016; 
Shawky et al., 2020). Data are presented as body weight 
(grams), fat or lean mass (grams), and fat or lean mass 
factored for body weight.

2.3 | Urinary protein and nitrate/
nitrite excretion

At 16 weeks of age, male HAF offspring and controls were 
placed in metabolic cages with free access to water, but 
no food to prevent both protein and nitrates from food to 
enter the urine. Urine was collected for 24 h, and protein 
excretion was measured by Bradford assay, using a com-
mercially available reagent (Bio- Rad), as we previously 
described (Dalmasso, Maranon, Patil, Bui, et al., 2016; 
Yanes et al., 2011). Data are presented as mg protein ex-
creted per day. Urinary nitrate/nitrite excretion was also 
measured in the urine using Griess reagent and E.coli, as 
we previously described (Reckelhoff et al., 1998). Data 
are presented as μmol nitrate/nitrite excreted/d/kg body 
weight.

2.4 | Measurement of metabolic parameters

Blood samples were collected from the retro- orbital plex-
uses from HAF offspring and their respective controls after 
a 5 h fast (8 am– 1 pm). Blood was centrifuged and plasma 
was collected in EDTA tubes. Plasma insulin was measured 
by ELISA (Crystal Chem, Elk Grove Village, IL, #90060), 
according to the manufacturer's recommendations. Plasma 
lipid profiles (total cholesterol (TC), triglycerides (TG), low- 
density lipoprotein cholesterol (LDL- C), and high- density 
lipoprotein cholesterol (HDL- C)) were measured by VET 
AXCEL chemistry analyzer by the Analytical and Assay 
Core at UMMC.

2.5 | Telemetry implantation

Separate groups of HAF male offspring, 16  weeks of 
age, and their respective controls were implanted with 
radiotelemetry transmitters (HD- S10, Data Sciences 
International) in the abdominal aorta below the renal ar-
teries using aseptic technique, as previously described by 
us (Dalmasso, Maranon, Patil, Bui, et al., 2016; Sartori- 
Valinotti et al., 2008; Shawky et al., 2020; Yanes et al., 
2011). Rats were placed in cages above a receiver (RLA- 
3000) and allowed 2 weeks of recovery prior to baseline 

mean arterial blood pressure (MAP) measurements. MAP 
was measured continuously, 24 h per day, in freely mov-
ing, conscious animals, using Ponemah 6.12  software 
(Data Science International).

Following measurement of baseline MAP for 5  days, 
rats were given an angiotensin- converting enzyme inhibitor 
(enalapril, 25 mg/kg/day) in their drinking water to block en-
dogenous angiotensin II (Ang II) synthesis, as we previously 
described (Sartori- Valinotti et al., 2008). After 8  days of 
enalapril, HAF offspring and their controls were implanted 
with miniosmotic pumps (cat # 1002, Alzet) to deliver Ang 
II (50  ng/kg/min in saline), and MAP was recorded for 
20 days. Then minipumps were replaced to deliver a higher 
dose of Ang II (200 ng/kg/min in saline), and MAP was re-
corded for an additional 7 days. Water intake was measured 
daily throughout the experiment to maintain stable enalapril 
dosing.

2.6 | Statistical analyses

All data are expressed as means ±SEM. Comparisons 
between groups were analyzed by Student's t- test (for 
2  groups) or repeat measures ANOVA (for telemetry), 
as noted. Values of p  ≤  0.05 were considered statisti-
cally significant. Statistical analyses were performed 
using GraphPad Prism software (GraphPad Software Inc., 
V6.0c).

3 |  RESULTS

3.1 | Characteristics of offspring

As mentioned above, we have shown previously that the 
numbers of pups per litter were similar between control and 
HAF offspring, but the birth weights of male and female 
HAF offspring were lower than those for control offspring 
(Shawky et al., 2020). As shown in Figure 1A, body weights 
remained lower in HAF males until PND 4, when they be-
came similar to body weight in controls, and remained simi-
lar up to 8 weeks of age (Figure 1b,c).

As shown in Table 1, at 16 weeks of age, body weight 
was significantly lower in male HAF offspring than con-
trol males, but fat mass and fat mass factored for body 
weight were not statistically significantly different between 
groups. Lean mass was significantly lower in male HAF 
offspring compared to controls, but was not statistically 
significantly different between the groups when factored 
for body weight. As also shown in Table 1, urinary protein 
excretion was higher and nitrate/nitrite excretion was lower 
in male HAF offspring compared to those in control male 
offspring.
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As shown in Table 2, total cholesterol and HDL- cholesterol 
were significantly higher in plasma from male HAF off-
spring compared to those in controls, but triglycerides, LDL- 
cholesterol, insulin, and fasting blood glucose were similar 
between the groups.

3.2 | Pressor responses to ANG II

As shown in Figure 2, baseline MAP was not statistically 
significantly different between HAF and control offspring. 
Enalapril reduced MAP to similar levels in both groups. 
Low dose Ang II (50  ng/mg/min) for 20  days had no sta-
tistically significant effect on MAP in control offspring, but 
significantly increased MAP in HAF offspring although not 
above baseline levels. Higher dose Ang II (200 ng/kg/min) 
increased MAP in both control and HAF male offspring, but 

F I G U R E  1  Body weights in male control (n = 13) and HAF 
offspring (n = 15) at postnatal day 1– 4 (a), 15 and 21 (b) and at 
4– 8 weeks (c) of age. Statistical analyses were by Student's t- test. Data 
are shown as standard deviation. *p < 0.05 compared with control 
male offspring
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T A B L E  1  Body weight and composition, protein and nitrate/nitrite 
excretion in male control and HAF offspring at 16 weeks of age

Control 
offspring

HAF 
offspring

Body weight (g) (n = 11– 17/
group)

445.1 ± 8.7 422.6 ± 7.9*

Fat mass (g) (n = 11– 17/
group)

37.8 ± 3.3 33.2 ± 1.4

Fat mass/body weight 
(n = 11– 17/group)

0.084 ± 0.006 0.078 ± 0.003

Lean mass (g) (n = 11– 17/
group)

385.4 ± 4.5 368.5 ± 6.9*

Lean mass/body weight 
(n = 11– 17/group)

0.866 ± 0.009 0.872 ± 0.004

Urinary protein excretion 
(mg/d) (n = 12– 19/group)

15.3 ± 1.3 25.5 ± 3.6*

Urinary nitrate/nitrite 
excretion (μmol/d/kg BW) 
(n = 14– 18/group)

4.3 ± 0.4 4.8 ± 0.3

Key: HAF, offspring of hyperandrogenemic female dam. Data are expressed as 
mean ± SEM. Differences between groups were determined by Student's t- test.
*p < 0.05, control vs. HAF.

T A B L E  2  Lipids, insulin, and glucose in male control and HAF 
offspring

Control 
offspring

HAF 
offspring

Total cholesterol (mg/dL) 
(n = 4– 8)

98 ± 13 121 ± 5*

HDL- cholesterol (mg/dL) 
(n = 4– 8)

30 ± 3 38 ± 2*

LDL- cholesterol (mg/dL) 
(n = 4– 8)

16 ± 3 18 ± 1

Triglycerides (ng/dL) (n = 4– 8) 110 ± 10 149 ± 2

Insulin (ng/ml) (n = 7– 14) 1.0 ± 0.13 0.97 ± 0.10

Fasting glucose (mg/dL) 
(n = 4– 7)

85 ± 2 85 ± 2

Key: HAF, offspring of hyperandrogenemic female dam. Data are expressed as 
mean ±SEM. Statistical analyses by Student's t- test.
*p < 0.05, compared to control offspring.
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to a higher level in HAF offspring that was above baseline 
levels.

4 |  DISCUSSION

The present studies show that male HAF offspring have in-
creased dyslipidemia, proteinuria and sensitivity to Ang II 
infusion compared to control offspring groups. These studies 
suggest that HAF male offspring may be at an increased risk 
for cardiometabolic disease with further aging.

We have shown previously that at 12– 16  weeks of age, 
HAF rats (prior to pregnancy) have increased body weight 
and peri- renal fat mass along with elevated plasma insulin, 
glucose, and cholesterol compared with control females 
(Yanes et al., 2011), similar to PCOS women (Christakou 
& Diamanti- Kandarakis, 2008; Diamanti- Kandarakis, 2008; 
Escobar- Morreale & San Millán, 2007). HAF rats have el-
evated blood pressure prior to pregnancy (Yanes et al., 
2011), as has also be reported in PCOS women (Christakou 
& Diamanti- Kandarakis, 2008). We have also shown that 
the higher body weights prepregnancy in HAF rats remain 
so 48 h postpartum, but comparisons of percentage weight 
gains per body weight from pre to post- pregnancy are similar 
between the control and HAF dams (Shawky et al., 2020). 
The numbers of pups per litter were also similar between 
HAF and control pregnancies (Shawky et al., 2020). Thus 
the mechanism(s) by which the HAF male offspring in the 
present study are born small for gestational age are not clear, 
nor is it clear why they develop catch up growth within 4 days 
that is continued through 8 weeks of age, but were then found 
to have lower body weight at 16 weeks of age. A potential 

confounder for these studies is that the DHT or placebo 
pellets were re- implanted during pregnancy/lactation and 
this could have provided additional stress on the offspring. 
However, despite slightly lower body weights in HAF male 
offspring, neither fat mass nor lean mass per body weight ra-
tios were different between the offspring groups at 16 weeks 
of age. In contrast, in the present study we found that their 
adult male HAF offspring, aged 16 weeks, had lower body 
weight, no differences in lean or fat mass when factored for 
body weight, no differences in insulin or glucose. However, 
the male HAF offspring did have elevated total cholesterol 
compared to that in control male offspring, although the 
mechanism is not clear. The HAF male offspring also were 
not hypertensive at baseline, but had an exaggerated pressor 
response to Ang II. Importantly, despite the fact that the male 
HAF offspring were normotensive, they had significantly 
higher protein excretion, suggesting the presence of renal in-
jury that had not affected blood pressure as yet. In addition, 
since baseline blood pressures were not different, it is not 
likely that the level of proteinuria was indicative of deficits in 
renal hemodynamics either.

The mechanisms by which male HAF offspring may 
have an exaggerated response to Ang II, even at slow pressor 
doses (50 ng/kg/min), is not clear from the present studies. 
We have shown previously that the hypertension in virgin 
HAF rats stems from activation of the sympathetic nervous 
system (Palomba et al., 2015) and increased 20- HETE in the 
renal microvasculature (Maranon et al.,). The mechanisms 
responsible for the Ang II pressor responses in male HAF 
offspring are not likely to include activation of the sympa-
thetic nervous system since the male offspring are not obese 
as their mothers are (Falbo et al., 2010; Yanes et al., 2011). 

F I G U R E  2  Baseline mean arterial 
pressure (MAP), depressor response to 
enalapril, and pressor response to Ang II 
(50 ng/kg/min or 200 ng/kg/min) in male 
control (n = 3) and HAF offspring (n = 5). 
MAP was measured by radiotelemetry. 
Statistical analyses were done by repeated 
measures ANOVA. Data are shown as 
standard error of the mean. ap < 0.05, MAP 
in male HAF offspring compared with 
control offspring; bp < 0.05, HAF offspring 
compared to baseline; cp < 0.05, control 
offspring compared to baseline
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However, 20- HETE could play a role in mediating the Ang II 
pressor response in the HAF offspring since 20- HETE is up-
regulated in response to Ang II (Dalmasso, Maranon, Patil, 
Moulana, et al., 2016). It is also possible that some of the 
systems in place to offset an increase in blood pressure with 
Ang II are not present or are inactive in the male HAF off-
spring, such as the vasodilatory arm of the renin- angiotensin 
system (Santos et al., 2019). In addition, the lower nitrate/
nitrite excretion, an index of total body nitric oxide, in the 
HAF male offspring also suggests they may have increased 
oxidative stress that in the presence of Ang II could signifi-
cantly increase their blood pressure (Reckelhoff & Romero, 
2003). It is also possible that the HAF male offspring may 
have an abnormal upregulation of the endothelin system in 
response to Ang II that could play a role (Alexander et al., 
2001). Endothelin can also increase oxidative stress (Sedeek 
et al., 2003). Thus future studies will be necessary to deter-
mine the mechanisms for the exaggerated Ang II response in 
the male HAF offspring.

The role that intrauterine growth restriction or low 
birth weight may play in mediating the cardiometabolic 
phenotype in male HAF rats is also not clear. Barker and 
colleagues reported that low birth weight, as a result of pla-
cental insufficiency, was associated with early mortality 
from cardiovascular disease (Barker et al., 1989). In support 
of this contention, in a model of reduced uterine perfusion 
pressure (RUPP) in rats, Alexander reported that low birth 
weight was associated with increased blood pressure in male 
offspring (Alexander, 2003), unlike in our male HAF off-
spring that had similar MAP as control offspring. Also, in 
contrast to our present studies, the body weights in the male 
RUPP offspring did not catch up to controls up to 12 weeks 
of age (Alexander, 2003). While the body weights in our 
HAF male offspring became similar to body weights in 
male control offspring by postnatal day 4, the body weights 
at 16 weeks were significantly lower in HAF offspring than 
in controls. Alexander did not measure metabolic parame-
ters or urinary protein excretion, but she did find no differ-
ence in glomerular filtration rate between the control male 
offspring and the RUPP male offspring (Alexander, 2003). 
Future studies will be necessary to determine the conse-
quences of hyperandrogenemic pregnancy on renal function 
in HAF male offspring as adults since they are proteinuric, 
and it will also be necessary to determine changes in meta-
bolic and cardiovascular function in male HAF offspring as 
they age as we may see differences in MAP with aging and 
further metabolic changes.

Currently, there are no studies on the cardiovascular 
health of adult male offspring of PCOS women. One reason 
for this is that the Rotterdam Criteria for diagnosis of PCOS 
has been in place for less than 20 years (Azziz et al., 2006; 
Rotterdam ESHRE/ASRM- Sponsored PCOS Consensus 
Workshop Group, 2004), so there is no population of adult 

male children of PCOS women to study as yet (Azziz 
et al., 2006; Rotterdam ESHRE/ASRM- Sponsored PCOS 
Consensus Workshop Group, 2004). As noted above, stud-
ies in younger children of PCOS women show they have 
greater carotid intima- media thickness and differences 
in fasting insulin and lipid levels (Gunning et al., 2020; 
Wilde et al., 2018). Thus based on the current studies, it 
is possible that male children of PCOS women may have 
an increased risk of developing cardiovascular and meta-
bolic disease as adults or with aging. Unfortunately, men 
may not know their mothers had PCOS. Thus future stud-
ies into the cardiovascular health of men whose mothers 
had PCOS are important to determine if, in fact, they have 
increased risk of cardiovascular disease, especially with 
advancing age.

Finally, there are also no studies on the cardiovascular- 
metabolic consequences of maternal PCOS in adult female 
offspring. There are studies into whether PCOS female 
offspring develop a PCOS phenotype themselves (elevated 
androgens, cystic ovaries, obesity), but the data are contro-
versial with some studies showing they do and others show-
ing they do not (Legro et al., 2017; Torchen et al., 2019). 
Because these studies were focused only on reproductive 
issues, neither blood pressure nor other metabolic parame-
ters were measured. Thus future studies will be necessary to 
determine the cardiovascular and metabolic consequences, 
not just the reproductive consequences, of maternal PCOS in 
female offspring.
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