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ABSTRACT
Objective  To assess the ability of a deep learning model 
to distinguish between diabetic retinopathy (DR), sickle 
cell retinopathy (SCR), retinal vein occlusions (RVOs) 
and healthy eyes using ultra-widefield colour fundus 
photography (UWF-CFP).
Methods and Analysis  In this retrospective study, 
UWF-CFP images of patients with retinal vascular 
disease (DR, RVO, and SCR) and healthy controls were 
included. The images were used to train a multilayer deep 
convolutional neural network to differentiate on UWF-CFP 
between different vascular diseases and healthy controls. 
A total of 224 UWF-CFP images were included, of which 
169 images were of retinal vascular diseases and 55 were 
healthy controls. A cross-validation technique was used to 
ensure that every image from the dataset was tested once. 
Established augmentation techniques were applied to 
enhance performances, along with an Adam optimiser for 
training. The visualisation method was integrated gradient 
visualisation.
Results  The best performance of the model was 
obtained using 10 epochs, with an overall accuracy of 
88.4%. For DR, the area under the receiver operating 
characteristics (ROC) curve (AUC) was 90.5% and the 
accuracy was 85.2%. For RVO, the AUC was 91.2% and 
the accuracy 88.4%. For SCR, the AUC was 96.7% and the 
accuracy 93.8%. For healthy controls, the ROC was 88.5% 
with an accuracy that reached 86.2%.
Conclusion  Deep learning algorithms can classify 
several retinal vascular diseases on UWF-CPF with 
good accuracy. This technology may be a useful tool for 
telemedicine and areas with a shortage of ophthalmic care.

INTRODUCTION
Diabetic retinopathy (DR), sickle cell retinop-
athy (SCR) and retinal vein occlusion (RVO) 
represent the most frequent retinal vascular 
diseases in ophthalmology.1–6 In 2006, Wong 
et al7 found a DR prevalence of 33.2% among 
patients with diabetes. Furthermore, prolifer-
ative DR was found in 1.4%–8.8% of patients 
treated by oral hypoglycaemic drugs.8 Sickle 
cell disease affects 5/10 000 persons, and 
the prevalence of SCR is about 10% in these 
patients.9 The prevalence of RVO, on the 
other hand, is estimated between 0.3% and 

1.6%,10 11 with population-based studies 
reporting a prevalence rate of 0.5%–2.0% 
for branch RVO and 0.1%–0.2% for central 
RVO.12

Retinal lesions associated with these diseases 
are a leading cause of blindness in patients 
younger than 60 years of age. In the USA, DR 
is responsible for about 12% of new cases of 
blindness.13 Of note, these retinal vascular 
diseases are associated, at a systemic level, 
with systemic risk factors, therefore being the 
cause of significant morbidity.

SCR, when proliferative, can cause blind-
ness in 3% of homozygous sickle cell disease 
(HbSS) patients and up to 33% of heterozy-
gous sickle cell disease (HbSC) patients.14 In 
central RVO cases, visual acuity at diagnosis is 
poor (<20/40) and it decreases further over 
time, which consequently strongly alters the 
quality of life.15 16 These vascular diseases can 
affect the posterior pole (macular oedema 
and/or macular ischaemia) but also the 
retinal periphery with ischaemic and neovas-
cular manifestations, which can further 
worsen the visual prognosis in affected 
patients.

Key messages

What is already known about this subject?
	► Ultra-wide field imaging has been previously used 
to distinguish retinal vascular diseases from controls 
using deep learning, but no study has aimed at dis-
tinguishing multiple retinal vascular diseases.

What are the new findings?
	► By using a deep learning classifier, multiple retinal 
vascular diseases may be distinguished, with an ac-
curacy of 88.4%.

How might these results change the focus of 
research or clinical practice?

	► A deep learning classifier may be a useful tool in ar-
eas with a shortage of ophthalmic care.
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Technological advances in retinal imaging allow an 
unprecedented visualisation of the retinal periphery 
of approximately 200° using an ultra-widefield (UWF) 
imaging system without the need for pupillary dilatation. 
The Optos system (Optos, California, USA) has been 
widely used for both diagnosis and monitoring of retinal 
vascular diseases, with multiple studies showing improved 
detection, classification, and determination of areas of 
non-perfusion in DR,17 SCR,18–20 and RVO.21–23

Recently, deep learning (DL) models aiming to classify 
and segment retinal lesions have demonstrated excellent 
accuracies, sometimes surpassing human experts, for 
multiple pathologies and using different imaging tech-
niques for various retinal diseases.24 25 Furthermore, DL 
has shown interesting results when associated with UWF 
imaging especially in retinal vascular diseases.

While several DL models have shown high accuracy in 
detecting proliferative DR26 and branch/central RVOs 
on UWF colour fundus photography (CFP),27 28 no study 
has yet aimed at distinguishing multiple retinal vascular 
diseases, including DR, RVO and SCR. This study will 
assess the ability of a DL algorithm to distinguish between 
DR, SCR, RVO and healthy eyes using UWF-CFP.

METHODS
Datasets
Patients with retinal vascular disease (DR, RVO and SCR) 
presenting to the department of ophthalmology at the 
Creteil University Hospital between January 2018 and 
January 2021, and having undergone UWF-CFP were 
retrospectively included in this study. A group of healthy 
controls having undergone UWF-CFP was randomly 
selected. This study was conducted in accordance with 
the tenets of the Declaration of Helsinki. Written consent 
was waived because of the retrospective nature of the 
study. Patients or the public were not involved in the 
design, or conduct, or reporting, or dissemination plans 
of our research.

High-resolution (2133×1048 pixels), 200° field-of-view 
images were captured on the Optos California imaging 
system. All UWF-CFP images were deidentified then 
cropped to a size of 700×500 pixels with the macula at 
the centre and were labelled as either DR, RVO, SCR, 
or healthy by a retina specialist and a retina fellow (AM, 
EA). Online supplemental figure 1 illustrates the UWF-
CFP for each of the four classes used in this study.

A four-class classification system (DR, RVO, SCR, 
healthy control) was implemented with a dataset of 224 
images uniformly distributed among the classes: 65 DR 
(29.0%), 47 RVO (21.0%), 57 SCR (25.4%), and 55 
healthy controls (24.6%).

Development of a DL classifier
For this study, the DL framework TensorFlow 
(Google, Mountain View, USA) was used. We used the 
DenseNet12129 30 convolutional neural network (CNN) 
to perform the classification task.

Transfer learning from the ImageNet dataset (http://
www.image-net.org/) was used to provide base knowl-
edge to the CNN before fine-tuning it. To fit our task, we 
reduced the number of output neurons in the last fully 
connected layer to 4.

Data augmentation was used to increase the original 
dataset and to reduce the overfitting of the final model. 
This was achieved through a combination of image trans-
lation, cropping and rotation. Moreover, Gaussian noise 
augmentation was used to mimic low-quality noisy images. 
Gaussian noise, also called white noise, has a mean of 0 
and an SD of 1. The addition of Gaussian noise to the 
inputs of our CNN during training was meant to increase 
the robustness of our model, as due to the added noise 
the CNN was ultimately less able to memorise training 
samples. The images were normalised using the mean 
and SD of the ImageNet dataset to match the model 
initialisation. An integral fine-tuning was performed, 
meaning that all trainable weights were optimised using 
Adam Optimization Algorithm31 with a learning rate of 
0.001 and a batch size of 24. An early stopping proce-
dure has been applied to minimise overfitting. It consists 
in stopping training when there is no improvement 
after a certain number of epochs (30 in our case). For 
the same purpose, learning rate reduction was used as 
well, meaning that the learning rate was decreased by 
a factor of 10 when no improvement was observed for 
10 epochs. Performances were evaluated using five-
fold cross-validation. Therefore, the entire dataset was 
divided into five groups (20%). At each step, one group 
was selected as the test set, while the rest of the dataset, 
named train-val test (the 80% of observations not in 
the test set), was also randomly divided into two subsets 
called training set (90% of the train-val set) and valida-
tion set (10% of the train-val set). The DL model learnt 
on the training set and optimised its hyperparameters 
on the validation set. Then performances were assessed 
on the unused test set. This procedure of training–vali-
dation–testing was repeated five times since we used a 
fivefold cross-validation. Therefore, it allowed to test 
every image from the whole dataset once in an unbiased 
manner. This repeated training–validation–testing is a 
common machine learning procedure that maximises 
performances while minimising bias.32 Furthermore, 
data augmentation was separately done on both training 
and validation, but not on the final test set.

Smoothed saliency map33 was used to better capture 
model attention. GradCAM++34 was also applied to the 
last convolutional layer before the output. We preferred 
to use both methods as they each have their advantages 
and downsides. While the saliency map techniques offer 
a more global insight about the image’s important areas 
in the prediction (yet can suffer from noise generated 
by first layers, which might or might not have a signif-
icant impact on the final decision), GradCAM++ is less 
global since it focuses only on the last convolutional 
layer, as this latter is considered to be crucial in the deci-
sion, especially in dense networks, where it has access to 
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information from past blocks. By using saliency maps, 
attribution maps were generated, allowing to assess the 
impact of each region in the classification and showing 
on which areas the model relies on to perform the clas-
sification.

The performance was evaluated through a comparison 
of the CNN output with the ground truth, set by clinical 
diagnosis by expert readers (AM, EA). Cases of disagree-
ment were adjudicated by a third reader (EHS). The 
metrics used for this purpose were accuracy, sensitivity, 
specificity, precision and F1 score. Confusion matrices, 
area under receiver operating characteristics curve 
(AUC-ROC) and precision-recall curves were generated.

RESULTS
The data used to train and test the algorithm were 
composed of 55 UWF images from healthy patients, and 
169 images from participants with retinal vascular diseases 
distributed as follows: 65 UWF images of DR including 
48 non-proliferative DRs (24 mild, 17 moderate, 7 
severe) and 17 proliferative DRs, 47 UWF images of RVO 
including 28 central RVOs and 19 branch RVOs, 57 UWF 
images of SCR, including 47 non-proliferative SCRs and 
10 proliferative SCRs. The degree of agreement between 
the two expert readers to classify the images was 96.87%. 
Of these, 179 UWF images were used for training and 
validation and the remaining 45 UWF images were used 
for testing.

The overall accuracy for the classification was 88.4%. 
These results are summarised in tables  1 and 2 and 
figure  1. Figures  2 and 3 illustrate saliency maps and 
GradCAM++ visualisation for correct and incorrect attri-
butions, respectively.

A total of 21 of 65 DR images were mistakenly assigned 
to the non-DR category, 13 in the RVO category, 6 in the 
healthy control category and 2 in the SCR category. In the 
same way, 12 non-DR images were erroneously assigned 
to the DR category, including 10 from the healthy control 
category and 2 from the RVO category.

A total of 10 of 47 images from the RVO category were 
misclassified (4 in the healthy control, 4 in the SCR and 
2 in the DR one). In contrast, 16 non-RVO images were 
classified as an RVO (13 DR and 3 healthy controls).

A total of 3 of 57 SCR images were classified errone-
ously into the healthy control category by the DL model.

In contrast, a total of 11 non-SCRs were assigned to the 
SCR category including 5 images of healthy patients, 2 
images of DR and 4 images of RVO.

In the healthy control class, 18 of 55 images were mistak-
enly classified (5 images classified as SCR, 10 as DR and 
3 as RVO). Thirteen images of retinal vascular diseases 
were erroneously assigned to the healthy controls (three 
SCR, six DR, four RVO).

To assess model uncertainty, Kernel density estimation 
graphs were used, showing the highest estimated proba-
bility for each of the four classes (online supplemental 
figures 2 and 3).

DISCUSSION
In this study, we showed the feasibility of an automated 
DL classification for the detection of several retinal 
vascular diseases using UWF-CFP, with an overall accu-
racy of 88.4%. The cross-validation technique used in 
our study allowed taking into account the whole dataset 
since we were able to make a prediction for every image 
within the dataset and minimising bias. In our study, SCR 

Table 1  Confusion matrix of the deep learning classifier based on a total of 224 ultra-widefield colour fundus photographs of 
retinal vascular diseases in the dataset

Predicted category

 �  Diabetic retinopathy Retinal vein occlusion Sickle cell retinopathy Healthy controls

Ground truth Diabetic retinopathy 44 13 2 6

Retinal vein occlusion 2 37 4 4

Sickle cell retinopathy 0 0 54 3

Healthy controls 10 3 5 37

Table 2  Performance metrics of the deep learning classifier for retinal vascular diseases on ultra-widefield colour fundus 
photographs

Accuracy AUC-ROC Sensitivity Specificity Precision F1 score

Diabetic
retinopathy

85.2 90.5 67.6 92.4 83.1 75.4

Retinal vein occlusion 88.4 91.2 78.7 91.0 77.2 83.3

Sickle cell retinopathy 93.8 96.7 94.7 93.4 91.2 94.2

Healthy controls 86.2 88.5 67.2 92.3 77.8 72.3

Metrics are expressed as percentage (%).
AUC-PR, area under the precision-recall curve; AUC-ROC, area under receiver operating characteristics curve.
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was the best-identified category on UWF-CFP with an 
accuracy of 93.8%, and RVO is the second-best detected 
class, with an accuracy of 88.4%. The reliability of our 
model was confirmed by the high AUC-ROC obtained. 
Consequently, the SCR category had the highest AUC-
ROC with 96.7% followed by the RVO class with 91.2%. 
Other classes had an AUC-ROC of about 90%. Moreover, 
our model obtained a specificity of more than 90% for all 
four classes and high sensitivity for the SCR class (94.7%). 
Thus, this DL four-class model presents an important 
interest and a high accuracy in the detection of different 
retinal vascular diseases.

Several DL models have already shown high accuracy in 
detecting proliferative DR,26 RVO27 28 or SCR35 on UWF-
CFP. However, none of the previous studies focused on 
classifying different retinal vascular diseases (ie, DR, RVO 
and SCR), with potentially similar features, using UWF-
CFP. In detail, Nagasawa et al26 used 378 UWF-CFP images 
acquired with the Optos system to train and test their DL 
model to detect only proliferative DR from normal eyes. 
The authors obtained a sensitivity of 94.7%, a specificity 
of 97.2% and an AUC-ROC of 97% in distinguishing 
proliferative DR from healthy controls by using VGG-16 
and Grad-CAM as a visualisation method.26 Nagasato et 
al28 used a dataset of 125 central RVOs and 238 healthy 
controls to train and test both a DL model and support 
vector machine (SVM) model. The authors obtained a 
higher sensitivity and specificity for the DL model (sensi-
tivity: 98.4%, specificity: 97.9%, AUC-ROC of 98%) than 
for the SVM model (sensitivity: 84%, specificity: 87.5%, 
AUC-ROC of 89.5%) for this binary classification.28 Cai et 
al gathered 1182 UWF-CFP images from 190 patients with 
SCR to build their DL model (Inception V4 architecture), 
aiming to automatically detect sea fan neovascularisa-
tion. The authors used two visualisation methods, both 

Grad-CAM and SmoothGrad. The model obtained a 
sensitivity of 97.4%, a specificity of 97% and an AUC-
ROC of 98.8% for detecting sea fan neovascularisation.35 
Nevertheless, these studies used binary classifications 
(healthy vs retinal disease), while our model used a four-
class classification system. Despite the high accuracy 
obtained by our model, a high sensitivity was obtained for 
SCR (94.7%) and RVO (78.7%). Conversely, the sensitiv-
ities for DR and healthy controls were not high enough 
for an efficient screening tool. Interestingly, as DR and 
RVO generate somewhat similar vascular changes at the 
posterior pole (ie, haemorrhages) and in the periphery 
(ie, non-perfusion), 13 DR images were erroneously clas-
sified as RVO.

Consistent with recent literature, we used two visuali-
sation methods (saliency maps and GradCAM++) for the 
model’s output, which allowed us to evaluate the areas 
the model relied on when making a prediction. Indeed, 
our model relied on the haemorrhagic areas and the hard 
exudates to predict the class for UWF-CFP DR images 
(figure 2). In the case of RVO, the model detected well 
the diffuse haemorrhages in RVOs (figure 2). Concerning 
SCR, the model took into account the foveal reflex and 
nerve fibre layer to predict SCR (figure 2). Due to the 
foveal reflex that is more apparent in the younger popu-
lation of patients with SCR (as opposed to the older 
patients with DR or RVO), eyes with SCR were more 
readily identified by the DL classifier. In other SCR cases, 
however, predictions seem to rely as well in this particular 
category on vascular peripheral signs such as sea fans or 
peripheral non-perfusion, as seen in figure 2.

This DL algorithm can be an impactful tool in areas 
with a lack of ophthalmological care. Maa et al36 reported 
that telemedicine in ophthalmology could reduce cost 
and improve access to care. In areas with a shortage of 

Figure 1  (A) Receiver operating characteristics (ROC) and (B) precision-recall (PRC) area under the curve (AUC) for the four 
classes: diabetic retinopathy (DR), retinal vein occlusion RVO), sickle cell retinopathy (SCR) and healthy controls. For DR, the 
AUC-ROC was 0.905. The AUC-PR (B) was 0.831. For RVO, the AUC-ROC (A) was 0.912. The AUC-PR (B) was 0.772. For 
SCR, the AUC-ROC (A) was 0.968. The AUC-PR (B) was 0.912. For healthy controls, the AUC-ROC (A) was 0.885. The AUC-PR 
(B) was 0.778. Note that both AUC-ROC and AUC-PR confirm that SCR is the best-predicted class, followed by the RVO class.
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ophthalmological care, the availability of a non-invasive, 
fast, non-mydriatic UWF-CFP system allows performing 
an accurate diagnosis of the most prevalent retinal 
vascular diseases for referral to a specialist for confirma-
tion and management. Moreover, sickle cell disease is an 
inherited disorder. Most of the cases are concentrated 
in referral centres for patients in Europe and the USA. 
As ophthalmology clinics are not always available in all 
of these referral centres, an automated artificial intelli-
gence (AI) detection could be of great interest for the 
diagnosis of retinal involvement.

Our study has several limitations. First, our dataset was 
rather small, given that 224 images were available for model 
construction and testing across four classes. In comparison, 
Nagasawa et al26 or Nagasato et al28 used comparable datasets 
for binary classifications. Second, another limitation of our 
study may be the use of the Optos pseudocolour UWF-CFP. 

Using the Optos system, pseudocolour images are obtained 
using red and green scanning lasers, and different magnifi-
cation between the central and peripheral retina.37 This may 
artefactually enhance certain features while diminishing 
others. In our dataset, the pseudocolour UWF images of the 
retina were not individually balanced for the green and red 
laser images by a grader before export. Moreover, UWF-CFP 
images can have some artefacts limiting the discriminating 
power for models, such as eye contour elements like eyelid 
or eyelash. Third, no objective quality assessment metrics 
have been used. Last but not least, the lack of an external 
test dataset counts among the limitations of this study.

The analysis of the prediction distribution showed 
that there was a difference in the model’s confidence 
when making a correct or incorrect prediction (online 
supplemental figure 2). Nevertheless, this difference 
in confidence might not be enough to clearly identify 

Figure 2  Examples of correct predictions with corresponding saliency maps (centre column) and GradCAM++ (right column) 
visualisation for each class. For diabetic retinopathy (DR) attribution (A–C), the model focused on the haemorrhagic areas and 
hard exudates. For the retinal vein occlusion (RVO) (D–F), the model detects well the diffuse haemorrhages. For the images 
of sickle cell retinopathy (SCR) (G–I), heatmaps of correct attribution show that the model detects peripheral lesions, but also 
takes into account the healthy area of the posterior pole. (J–L) A case of healthy control and corresponding heatmaps.
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a correct prediction without prior knowledge of the 
ground truth. This is a widely known problem of neural 
networks (also called calibration problem), and may be 
due, in our study, to the fact that some of our classes share 
visual information (such as for RVO and DR images).

In conclusion, UWF-CFP combined with DL may be a 
useful way to detect and screen for retinal vascular diseases. 
This technology may be a useful tool for telemedicine and in 
remote areas with limited access to ophthalmic care.
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Figure 3  Examples of incorrect predictions with corresponding saliency maps (centre column) and GradCAM++ (right 
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(J–L) The model classified an image from a healthy control as DR.
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