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Abstract

Background: Clinical evidence continues to expand and is increasingly difficult to overview. We aimed at
conceptualizing a visual assessment tool, i.e., a matrix for overviewing studies and their data in order to assess the
clinical evidence at a glance.

Methods: A four-step matrix was constructed using the three dimensions of systematic error, random error, and
design error. Matrix step I ranks the identified studies according to the dimensions of systematic errors and
random errors. Matrix step II orders the studies according to the design errors. Matrix step III assesses the three
dimensions of errors in studies. Matrix step IV assesses the size and direction of the intervention effect.

Results: The application of this four-step matrix is illustrated with two examples: peri-operative beta-blockade
initialized in relation to surgery versus placebo for major non-cardiac surgery, and antiarrhythmics for maintaining
sinus rhythm after cardioversion of atrial fibrillation. When clinical evidence is deemed both internally and
externally valid, the size of the intervention effect is to be assessed.

Conclusion: The error matrix provides an overview of the validity of the available evidence at a glance, and may
assist in deciding which interventions to use in clinical practice.

Background
Evidence-based medicine (EBM) was first introduced in
1992 [1], and its increased application is reflected among
others by the growth of The Cochrane Library databases
as well as implementation of evidence-based guidelines
into clinical practice [2]. EBM underpins that informa-
tion provided from randomized trials, and systematic
reviews of randomized trials represent the most reliable
evidence regarding intervention effects [3,4]. Thanks to
the sustained scientific process (Additional file 1: Table
S1), we now know that the reliability of what we observe
varies due to a whole array of different factors. There are
three dimensions that particularly influence the reliability
of our observations in clinical research and they are
empirically and theoretically well accepted: the risk of
systematic error (’bias’), the risk of random error (’play of
chance’), and the risk of design error (’wrong design to
answer the posed question’) [4,9].

EBM usually follows a four-phase process starting from
a clinical question proceeding to the implementation of
new evidence (Figure 1) [3]. Phase 1 is the formulation of
a research question and literature search strategy. Phase 2
is the subsequent systematic appraisal and synthesis of the
available evidence. Phase 3 covers the initiation of new
research. Alternatively, phase 4 is the implementation
of all available evidence when statistically and clinically
convincing evidence has been obtained.
In daily clinical practice, the question of whether suffi-

cient evidence is available to recommend the implementa-
tion of a specific intervention as a treatment arises
frequently [3]. Depending on the specific clinical question,
often an exhaustive list of references is retrieved when
using a sensitive search strategy in multiple databases [3].
After the selection of studies, their data must be inter-
preted [10-13].
Since results may be contradictory and studies may dif-

fer in more than one aspect, to draw a clear, practical con-
clusion from the publications may be problematic [14].* Correspondence: erickeus@hotmail.com
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Figure 1 Overview of the four phases in the process of evidence-based medicine from question to the initiation of new research or
implementation of new evidence. PICOT: patients, intervention, control, outcome measure, time.
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Objective
We aimed at conceptualizing a visual assessment tool,
i.e., a matrix for overviewing studies and their data in
order to assess the clinical evidence. The matrix is con-
structed from the three dimensions of errors: systematic
error (’bias’), random error (’play of chance’), and design
error (’wrong design to answer the question posed’ or
‘wrong context’). The application of this matrix will be
illustrated by two examples: peri-operative beta-blockade
initialized in relation to surgery versus placebo for major
non-cardiac surgery, and antiarrhythmics for maintain-
ing sinus rhythm after cardioversion of atrial fibrillation.

Methods
The three major error dimensions
The risk of systematic error (’bias’)
When evaluating a clinical study, one should always try
to assess its risk of systematic error [3,4,9-16]. There is
increasing agreement on how trials and studies can be
placed in a hierarchy when assessing the risk of systema-
tic error [3,4,9-16], depending on the type of research
(therapeutic, diagnostic, etiologic, or prognostic)
[3,10,11,17]. The risk of systematic error influences the
reliability of observed intervention effects [3,10,11,18,19].
A significant association between inadequate or unclear
bias protection and overestimation of beneficial effects
and underreporting of adverse effects has been demon-
strated [16,19-23]. Differences in risk of bias are found
both between the different levels of evidence and within
each level of evidence [4,16,20].
For randomized trials, there is empirical evidence that at

least six components are associated with systematic error:
generation of the allocation sequence [24], allocation con-
cealment [25], blinding [26], incomplete outcome measure
reporting [4], selective outcome measure reporting [4],
and other bias mechanisms (e.g., baseline imbalance, early
stopping, vested interests, etc.) [4,16,20,27-29]. The impact
of early stopping of trials on bias is largely dependent on
how the stopping rules were defined and the level of statis-
tical significance of the interim analysis [30-32]. Trials
with one or more systematic error components assessed as
inadequate or unclear are considered to be of high risk of
bias, while trials with all quality components assessed as
adequate are considered to be of low risk of bias
[15,27,33]. Trials with a low risk of bias are more likely to
estimate the ‘true’ effect of the intervention [16,20,27,33].
The systematic error dimension can be measured by

an ordinal variable expressed in the levels of evidence
(Table 1).
The risk of random error (’play of chance’)
The risk of random error is the risk of drawing a false
conclusion based on sparse data. There are two types of
false conclusions: a false rejection of the null hypothesis
(type I error; alpha) or a false acceptance of the null

hypothesis (type II error; beta). When data are sparse,
then the so called ‘intervention effect’, whether beneficial
or harmful, may in fact be caused by randomly skewed
variation in prognostic factors between the intervention
groups due to sampling error.
The question, however, is how we quantify and com-

pare the risk of random error between different studies
with varying numbers of participants. A p-value reflects
the risk that the difference in outcome between two
interventions has arisen by chance, given the data and
the null hypothesis are true. Since random low (and ran-
dom high) p-values occur, especially during accumulation
of data and sequential testing, the p-value does not suffi-
ciently reflect the true risk of random error. Therefore,
the p-values of intervention effect estimates certainly are
not suitable for comparison of the risk of random error
between different studies [32,34-37]. We suggest using
the standard error (SE) for the evaluation of the risk of
random error. We used the statistical algorithms from
the statistical methods group of the Cochrane Collabora-
tion [38]. The SE in a study may be considered a measure
of uncertainty. The SE measures the amount of variability
in the sample mean; it indicates how closely the popula-
tion mean is likely to be estimated by the sample mean.
The size of the standard error depends both on how
much variation there is in the population and on the size
of the sample. When two independent proportions p1 =
a/n1 and p2 = c/n2 (with a and c being the numbers of
patients with events, b and d being the numbers of
patients with no events, and n1 and n2 being the total
numbers of patients in the intervention group and con-
trol group, respectively) are considered in an individual
study or a trial i, then the relative risk (RRi) is defined by:

RR
p

pi = 1

2

The SE of the log risk ratio for an individual study is
calculated by the following formula:

Table 1 Categorization of systematic error (bias) of
clinical intervention studies into levels of evidence

Category Studies

Level 1a Meta-analysis of randomized trials with low risk of bias

Level 1b Randomized trial with low risk of bias

Level 1c Meta-analysis of all randomized trials

Level 1d Randomized trial with high risk of bias

Level 2a Meta-analysis of cohort studies

Level 2b Cohort study

Level 3a Meta-analysis of case-control studies

Level 3b Case-control study

Level 4 Case-series

Level 5 Expert opinion
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In a meta-analysis results of studies or trials are meta-
analysed into one intervention effect estimate. For the
Mantel-Haenszel pooled risk ratio (RRMH) the natural
logarithm of the RRMH has the standard error given by:
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and Ni being the total number of patients in a trial.
For the pooled Peto OR (ORpeto) the natural logarithm

of the ORpeto has the standard error given by:
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SE depends on the numbers of events and the sample
size.
Due to spurious results, incorrect type I error infer-

ences may be drawn. Recent reports indicate that the
influence of the ‘play of chance’ may be much larger
than generally perceived [39]. In randomized trials, ran-
dom error may be one reason for the early stopping of
trials at interim analyses when benefit or harm appear
to be significant [32,40]. Increased random error may

also play a role in the repeated analyses of accumulating
data in both trials and meta-analyses [36,41-44].
A cumulative meta-analysis subjects accumulating data
to repeated testing of the data and is bound to even-
tually lead to a false rejection of the null hypothesis
(’false positive’ result) [45,46]. The random error phe-
nomenon or ‘multiplicity’ also plays a role in the evalua-
tion of secondary outcome measures [40]. For example,
when data on the primary research outcome, on which
the sample size calculation was based, may not show
statistical significance, while another outcome measure,
for which no separate sample size calculation was per-
formed, exhibits statistical significance [47,48].
Random error may be expressed in a continuous vari-

able using the standard error of for example the log of
Peto odds ratios or the log of relative risks.
The risk of design errors (external validity) - the
participants included, the outcomes measured, the
interventions, etc
When there is sufficient internal validity, i.e., low risks of
systematic errors and random errors, it becomes relevant
to consider the risks of design errors (external validity).
The design (or context) of any piece of research deter-
mines its external validity or generalisability (Table 2) [4].
The external validity becomes questionable when a
wrong design has been used to answer the question
posed. Among the many variables that should be consid-
ered, the relevance of different outcome measures are of
central importance to clinical research [13]. We, there-
fore, focus on them from a patient’s perspective.
Outcome measures can be divided into three cate-

gories according to the GRADE classifications (Figure 2)
[13]. Primary outcome measures are central in deciding
the use of one intervention over another. Large differ-
ences in the primary outcome measure between groups
in a clinical trial may lead to early termination of a trial
(following recommendations of a data safety and moni-
toring committee) [49]. Choice of the primary outcome
should concur with the GRADE category of outcomes,
‘critical for decision-making’ [13]. Secondary outcome

Table 2 Types of variables to consider when evaluating
the risk of design errors (’context errors’) and hence
external validity of evidence

1 Outcome measures

2 Participants

3 Experimental intervention

4 Control intervention

5 Clinical centres or settings including patients

6 Goal - explanatory or pragmatic

7 Trial structure - parallel group, crossover, etc

8 Objective - superiority, equivalence, non-inferiority

9 Unit of analysis
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measures are additional outcome measures. If they are
positively influenced by an intervention, the results may
speak for recommending the intervention only if they
support a beneficial effect on the primary outcome or if
no clinically and statistically significant effect exist on
the primary outcomes (e.g., a RR = 1.00 with 95% confi-
dence limits from 0.98 to 1.02). The secondary out-
comes should concur with the second and third GRADE
categories of ‘important, but not critical outcomes’
[10-13].
GRADE has schematically ordered outcomes accord-

ing to patients’ perspective on a categorical scale from 1
to 9, with the most critical outcome, mortality, being
graded 9 [13]. Depending on the outcomes, this scale
should sometimes be considered nominal and in other
situations be considered functional. Moreover, the sever-
ity of each outcome may differ as well. A stroke can be
minor, while a myocardial infarction may involve a sub-
stantial worsening of cardiac function. Grading of out-
come measures may also vary according to the clinical
question. Therefore, outcomes within a category (i.e.,
critical, important, or not important) may be inter-
changeable. However, one can hardly argue that out-
comes between categories (i.e., critical, important, or not

important) are interchangeable (e.g., mortality is always
more important than length of stay in hospital).
Eventually, the design error dimension can be expressed

by the priority of outcome measures as an ordinal variable
according to GRADE [13].

Conceptualization of the error matrix
A four-step matrix can be constructed, building upon
the three dimensions: systematic error, random error,
and design error. Matrix step I ranks the identified stu-
dies according to the dimensions of systematic errors
and random errors. Matrix step II orders the studies
according to the design errors. Matrix step III assesses
the three dimensions of errors in studies. Here, a ‘Man-
hattan-like’ error matrix is constructed where the best
evidence is represented by the largest skyscrapers
located on the ‘upper-west side’. Matrix step IV assesses
the size and direction of the intervention effect, e.g., by
calculating the number-needed-to-treat to obtain benefit
or to harm one patient.
The principle of the matrix approach can be used in dif-

ferent situations. The overall effort in research should be
to minimize all three risks of errors before the size and the
direction of the intervention effect can be assessed reliably.

Figure 2 Hierarchy of outcomes according to importance to non-cardiac surgery patients undergoing preventive beta-blocker
intervention [13]. Some outcome measures may be correlated (e.g. cardiovascular mortality is included in all-cause mortality).
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The ‘algorithm’ of the matrix approach is generally applic-
able to all kinds of interventions, although details may dif-
fer according to the specific clinical question. Or, the
character of the three dimensions remains the same, while
according to the specific question details may differ, like:
the preferred hierarchy for levels of evidence, the chosen
formula for standard error (RR, ORpeto, or any other asso-
ciation metric), and the types of outcomes.

Results
The application of this four-step matrix is illustrated
with two examples: peri-operative beta-blockade initia-
lized in relation to surgery versus placebo for major
non-cardiac surgery, and antiarrhythmics for maintain-
ing sinus rhythm after cardioversion of atrial fibrillation.

Example 1: Initiating peri-operative beta-blockade for
major non-cardiac surgery
A clinical question in PICOT structure illustrates this
model. Is initiating peri-operative beta-blockade effective
in patients undergoing major non-cardiac surgery?
Patients: patients undergoing major non-cardiac sur-

gery; Intervention: initiating peri-operative beta block-
ade; Control: placebo; Outcome measure: mortality,
myocardial infarction, and stroke; Time: follow-up of at
least 30 days.
We searched in CENTRAL in The Cochrane Library,

PubMed, EMBASE, and personal files for all article
types up to October 2009, in all languages. Specific
searches using the terms ‘beta-blockade’, ‘peri-operative’,
‘placebo’, ‘mortality’, ‘randomised’, and ‘non-cardiac sur-
gery’ were undertaken. The search resulted in multiple
publications relevant to our question. References were
selected from journals on the basis of importance and
relevance [50-58]. We included the publications in our
matrix evaluation by extracting information on all-cause
mortality, cardiovascular mortality, non-fatal myocardial
infarction, and non-fatal stroke. However, the matrix
may easily be extended to other outcomes.
In step I, we assessed the systematic error and the

random error for the chosen outcomes of each study
(Figure 3, Table 3). In step II, we evaluated the design
error (Figure 4). In step III, we constructed the three-
dimensional matrix (Figure 5). We did not elaborate on
the matrix step IV in this example.
From Figure 5 it can be concluded at a glance that

peri-operative beta blockade does not reduce mortality
in patients undergoing major non-cardiac surgery. Peri-
operative beta-blockade in these patients seems to
increase all-cause mortality. However, peri-operative
beta-blockade does reduce non-fatal myocardial infarc-
tion on the expense of an increased cardiovascular mor-
tality and an increased rate of non-fatal stroke.

Example 2: Antiarrhythmics for maintaining sinus rhythm
after cardioversion of atrial fibrillation [59]
The conclusion of this Cochrane review focuses on the
significant increased mortality associated with use of
class 1a antiarrhythmics (odds ratio 2.39; 95% confi-
dence interval (CI) 1.03 to 5.59) [59]. The data of this
outcome in class 1a antiarrhythmics in this review [59]
as well as in the included randomised trials [60-67] were
analysed using the matrix error approach.
In step I, we assessed the risk of systematic error and

the risk of random error for the chosen outcome of
each study (Figure 6, Table 4). In step II, the design
error should be evaluated by assessing multiple outcome
measures. However, in this example we only consider
the outcome ‘all-cause mortality’, since other outcomes
were found to be not statistically significantly different
[59]. Therefore, no figure of step II is shown. In step III,
we constructed the three-dimensional matrix (Figure 7).
We did not elaborate on the matrix step IV in this
example, since the available studies are not internally
valid (high risks of both systematic and random error).
From Figure 7 it can be concluded at a glance that

there is both substantial risk of systematic and random
error involved in the evidence available so far consider-
ing mortality associated with class 1a antiarrhythmics.
The best available level of evidence 1c study shows sub-
stantial risk of random error (0.43) and the best avail-
able level of evidence 1b study shows high risk of
random error (0.78). So, the conclusion in the Cochrane
review of a significant increased mortality is based on
data with high risks for both systematic and random
errors, and should therefore be considered unreliable.

Discussion
The aim of our matrix is to facilitate the overview of evi-
dence in clinical intervention research. The matrix can
serve as a tool to provide visual assessment of reliability
of observations with respect to systematic error, random
error (internal validity), and design error (external
validity).
The matrix should not replace the thorough process of

systematically reviewing evidence and profound evalua-
tions of data, but could be integrated within these
research activities as a tool for overviewing the results.
Also, this matrix is not an absolute measure of the risks
of errors. The position of studies in relation to each other
is relative rather than absolute.
There is a lack of awareness of the importance of the

‘play of chance’ for the reliability of study findings. Order-
ing the standard errors of the studies might be a tool for
ranking studies according to the level of random error.
We have used natural logarithm (ln) transformations for
calculating standard errors, although the logarithm with
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the base 10 may be used without producing different
conclusions.
As an alternative, the Bayes factor can be considered

[37,68]. The Bayes factor is a likelihood ratio comparing
one hypothesis versus another, and, therefore, varies

with the definition of the possible alternative hypoth-
eses. The Bayes factor is a summary measure that pro-
vides an alternative to the p-value for the ranking or the
flagging of associations as ‘significant’ [69]. The Bayes
factor:

Figure 3 Matrix step I, ordering of evidence according to systematic error (in levels of evidence) and random error (measured by standard
error) considering all-cause mortality in peri-operative beta-blockade versus placebo for major non-cardiac surgery (example 1).

Table 3 Ordering of evidence according to levels of evidence (systematic error), standard error (random error), and
outcome measures (design error) in peri-operative beta-blockade versus placebo for major non-cardiac surgery
(example 1)

Level of evidence Standard error

All-cause mortality Cardiovascular mortality Non-fatal myocardial infarction Non-fatal stroke

Bangalore [50] 1a 0.12 0.16 0.10 0.28

Poise [51] 1b 0.13 0.17 0.10 0.33

MaVS [52] 1b 1.07 Z N 0.66

Dipom [53] 1b 0.34 0.48 0.91 Z

Mangano [54] 1b 0.85 1.22 1.22 1.11

Bangalore [50] 1c 0.11 0.15 0.09 0.28

Wetterslev [55] 1c 0.24 N 0.23 N

Poldermans [56] 1d 0.76 0.76 Z N

Lindenauer [57] 2b 0.02 N N N

AHA Guidelines [58] 5 N N N N

Z: outcome with zero-events in one or both treatment arms which makes SE incalculable; N: no data.

Some outcome measures may be correlated (e.g. cardiovascular mortality is included in all-cause mortality).

In this example the formulas for SE of lnRRi for individual studies and SE of lnRRMH for meta-analysis were used.
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Figure 4 Matrix step II, ordering of evidence on peri-operative beta-blockade versus placebo for major non-cardiac surgery according
to importance of outcome measures (design error) and levels of evidence (systematic error) (example 1). The outcome measures have
been adapted to the beta-blockade question.
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Figure 5 Manhattan-like three-dimensional matrix building upon the risks of systematic error, random error, and design error. The
evidence with the lowest systematic, random, and design error is represented by the tallest skyscrapers, located on ‘the upper west
side’. a. Outcomes with benefit of peri-operative beta-blockade versus placebo. b. Outcomes with harm of peri-operative beta-blockade versus
placebo. A ‘quick guide’ to the perception of the figure: If you want to know what the evidence is for peri-operative beta-blockade to influence
myocardial infarction: go to the yellow bars and read 1) Level of evidence (the risk of systematic error) and 2) standard error (the risk of random
error). Data with risk of systematic error >level 2b and random error SE >1.0 were omitted from the figure. The guidelines, which advocate the
use of peri-operative beta-blockade, were not included in this figure since the systematic error is level 5 and the random error cannot be
calculated (not based on data) [58]. The SE of outcomes with zero events cannot be calculated either. From these ‘benefit’ and ‘harm’ Manhattan
figures, one can see at a glance that beta-blockers may provide benefit to patients in terms of nonfatal myocardial infarction (yellow bars).
However, one can also see that beta-blockers may cause harm to patients in terms of all-cause mortality (red bars), cardiovascular mortality (blue
bars), and nonfatal stroke (green bars). Reading the dimension of systematic error it is immediately clear that there is level 1a evidence available
for all these four outcome measures. Reading the dimension of random error on this systematic error level of evidence shows that there is a
small risk of random error considering all-cause mortality (0,12), cardiovascular mortality (0,16), and nonfatal myocardial infarction (0,10), and a
moderate risk of random error considering nonfatal stroke (0,28). It is clear at a glance that the best available evidence does not support peri-
operative beta-blockade for major non-cardiac surgery. SE = 0 to 0,10 = ignorable risk of random error. SE = 0,10 to 0,20 = small risk of random
error. SE = 0,20 to 0,30 = moderate risk of random error. SE = 0,30 to 0,50 = substantial risk of random error. SE = >0,50 = high risk of random
error. A clean version for creating a Manhattan figure can be obtained at the Copenhagen Trial Unit’s homepage (http://ctu.rh.dk).
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or simple approximations can be very difficult or even
impossible to implement for the clinician, since a search
for the maximum of the multidimensional posterior may
be required for each association [69]. This also includes
the asymptotic Bayes factor introduced by Wakefield
[69]. In contrast to the Bayes factor, it is possible to cal-
culate the standard error and when available it provides
a tool for comparison of the risk of random error
between studies of the same intervention.
The aim of minimising error risks according to the

three dimensions actually combines the methodological
efforts of falsifying any alternative hypothesis in the eva-
luation of an intervention. Thereby, the matrix concept
visualises how far the scientific process has evolved to
fulfil Poppers falsification criterion stating that research-
ers should primarily engage trying to falsify any relevant
alternative hypothesis and not only the null hypothesis
[5]. The minimisation of systematic errors and random
errors, by providing ample room for the null hypothesis,

Figure 6 Matrix step I, ordering of evidence according to systematic error (in levels of evidence) and random error (measured by
standard error) considering all-cause mortality in antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation
(example 2). Compare this figure with Figure 3: the studies in this figure are located on the right side of the figure (all SE >0.40), in contrast
with Figure 3 where the studies are concentrated on the upper left side of the figure (six studies with SE < 0.40).

Table 4 Ordering of evidence according to levels of
evidence (systematic error), standard error (random
error), and outcome measures (design error) in
antiarrhythmics for maintaining sinus rhythm after
cardioversion of atrial fibrillation (example 2)

Level of evidence Standard error

All-cause mortality

Byrne-Quinn [60] 1d 2.02

Hillestad [61] 1d 2.00

Karlson [62] 1d 1.42

Lloyd [63] 1d 1.55

PAFAC [64] 1b 0.78

Sodermark [65] 1d 0.73

SOPAT [66] 1b 1.51

Steinbeck [67] 1d Z

Lafuente-Lafuente [59] 1c 0.43

Z: outcome with zero-events in both treatment arms which makes SE
incalculable.

In this example the formulas for SE of lnORpeto,i for individual studies and SE of
lnORpeto for meta-analysis were used.
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Figure 7 Manhattan-like three-dimensional matrix building upon the risks of systematic error, random error, and design error. The
evidence with the lowest systematic, random, and design error is represented by the tallest skyscrapers, located on ‘the upper west
side’. a. Outcomes with benefit of antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation. b. Outcomes with harm
of antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation. A ‘quick guide’ to the perception of the figure: If you want
to know what the evidence is for antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation to influence all-cause
mortality: go to the red bars and read 1) Level of evidence (the risk of systematic error) and 2) standard error (the risk of random error). Only the
Cochrane review and the trials included in this systematic review were considered in this example. Data with risk of random error SE > 1.0 were
omitted from the figure. The SE of outcomes with zero events cannot be calculated. From these ‘benefit’ and ‘harm’ Manhattan figures, one can
see at a glance that there is no benefit at all and that ‘the upper west side’ is empty. Class 1a antiarrhythmics might increase mortality; however,
since high risks for both systematic error and random error are present there is insufficient evidence for reliable conclusions.
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as well as measuring important outcomes is the most
audacious attack on any realistic alternative hypothesis.
If an array of progressively qualified attacks fails to sup-
port the null hypothesis then we can reliably trust the
intervention to be either beneficial or harmful.
The conclusion based on an assessment of the evi-

dence using the matrix approach may be implemented
into clinical practice or serve as an incentive for new
research. The matrix facilitates the identification of lacu-
nae in our knowledge and is likely to benefit the process
of developing evidence-based guidelines.

Preference for the highest evidence
One has to be aware of the multiple forms of bias,
potentially present in evidence below level 1 (Table 1).
Several examples illustrate that large, apparently benefi-
cial intervention effects from lower level evidence, even
from randomized trials [54,56,70], may eventually be
reversed to harmful effects when new high-quality evi-
dence appears [50,71]. This is where the three dimen-
sions of error are of central importance in providing a
tool for reliability assessment.

Limitations
Apart from the three error dimensions influencing the
reliability of data, other factors play a role in incompar-
ability and uncertainty of inferences. Many reports of stu-
dies appear incomplete, and the lack of details raises
questions. Incomplete reporting limits interpretation, but
more importantly, this reporting factor should be distin-
guished from the methodological quality of the trial [72].
Statements like CONSORT [73], PRISMA [74], and

MOOSE [75] aim to improve and to maximize the
amount and correctness of information to be retrieved
from publications. These guidelines also create awareness
among researchers about the most important issues to
report so that the quality of future research may increase.
By following reporting guidelines the yield of the research
question is likely to be increased (phase 1 in Figure 1).
Standard error does not consider testing of multiple

outcomes and multiple testing on accumulating data,
which may also induce risks of random error due to
multiplicity as well as correlations.
The division of all outcomes into ‘primary’ and ‘second-

ary’ outcome measures can be helpful as this division sets
the standards for the evaluation of interventions. However,
this division is artificial, and outcome measures, situated
on the border of primary and secondary outcomes, exist.
For example, one can argue that quality of life is a primary
outcome rather than a secondary outcome. Further, there
is also a quantitative aspect in the artificial division into
primary and secondary outcomes. Small significant differ-
ences in primary outcome measures (e.g., bile duct injuries
in patients undergoing cholecystectomy) may be found

favouring one intervention, while large differences in sec-
ondary outcome measures (e.g., costs) may favour the
comparator. Eventually, one may prefer the larger advan-
tages in secondary outcomes to the smaller disadvantages
in a primary outcome measure.
Another limitation in the outcome measure dimension

is that often outcome measures are correlated and mostly
this correlation is ignored. For example when mortality is
an outcome measure and complications is another,
which again counts deaths as complications, then there is
a correlation between the two outcome measures.
Authors usually carry out multiple univariate analyses
ignoring correlations between outcome measures.
Step IV of the matrix includes the assessment of the size

of the intervention effect, e.g., expressed in numbers-
needed-to-treat to obtain benefit or to harm one patient
with the intervention. This step is the last one since it is
irrelevant to consider effect sizes and their directions if a
study does not appear to be internally and externally valid.
Another aspect to consider is heterogeneity [76,77]. Sta-

tistical heterogeneity reflects the between trial variance of
meta-analytic intervention effect estimates rather than the
play of chance [76]. Clinical heterogeneity, however, repre-
sents differences in populations, procedures, or interven-
tions in daily practice. All these factors of clinical
heterogeneity, together with concordance of in- and exclu-
sion criteria should be considered whenever we want to
implement results of available evidence. Assessment and
consideration of heterogeneity or diversity, therefore,
forms the final step before new evidence is implemented.
Assessment of heterogeneity is not included in our matrix.

Conclusions
Assessment of risks of systematic error, random error,
and design error are essential factors in evaluating evi-
dence and drawing conclusions. We used the standard
error in our matrix to rank studies according to their
risk of random error. The risks of these error types
were incorporated into a three dimensional matrix to
create a schematic overview of the internal and external
validity of the evidence, seen at a glance.
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