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Purpose: To perform and evaluate water–fat signal separation of whole‐body 
gradient echo scans using convolutional neural networks.
Methods: Whole‐body gradient echo scans of 240 subjects, each consisting of 5 bipolar 
echoes, were used. Reference fat fraction maps were created using a conventional 
method. Convolutional neural networks, more specifically 2D U‐nets, were trained 
using 5‐fold cross‐validation with 1 or several echoes as input, using the squared differ-
ence between the output and the reference fat fraction maps as the loss function. The 
outputs of the networks were assessed by the loss function, measured liver fat fractions, 
and visually. Training was performed using a graphics processing unit (GPU). Inference 
was performed using the GPU as well as a central processing unit (CPU).
Results: The loss curves indicated convergence, and the final loss of the validation 
data decreased when using more echoes as input. The liver fat fractions could be esti-
mated using only 1 echo, but results were improved by use of more echoes. Visual 
assessment found the quality of the outputs of the networks to be similar to the refer-
ence even when using only 1 echo, with slight improvements when using more echoes. 
Training a network took at most 28.6 h. Inference time of a whole‐body scan took at 
most 3.7 s using the GPU and 5.8 min using the CPU.
Conclusion: It is possible to perform water–fat signal separation of whole‐body 
gradient echo scans using convolutional neural networks. Separation was possible 
using only 1 echo, although using more echoes improved the results.
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1  |   INTRODUCTION

The vast majority of the signal in 1H MRI of humans without 
implants originate from either water or fat molecules. It is 
often of interest, both in clinical practice and in research stud-
ies, to separate the water and the fat signal from each other. 

For certain types of scans, this can be performed in post‐ 
processing by using the property of chemical shift, which was 
first proposed by Dixon in 1984.1

The methods used for water–fat signal separation have 
since been refined. The most important addition has been 
taking the amplitude of the static magnetic field (B0) 
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inhomogeneity into account, without which the signal sep-
aration will be incomplete.2 The inclusion of the effective 
transverse relaxation rate (R2

*) and a multi‐peak fat spectrum 
results in an even more complete signal separation.3

After signal separation, it is possible to calculate the per-
centage of the total signal originating from fat, the so‐called 
fat fraction, which is a useful quantitative measurement. As 
an example, the fat fraction of the liver can be used to evalu-
ate hepatic steatosis, thereby avoiding biopsies.4

To perform the signal separation, at least 2 echoes are 
needed or else the problem is underdetermined. However, 
a few methods have been developed to perform the signal 
separation using a single echo by making assumptions of 
the composition of the voxels.5,6 The assumptions can lead 
to severe errors where they are not valid, which is proba-
bly the main reason why these methods are not commonly 
used.

The signal separation can be performed using either gra-
dient or spin echoes. When using a normal Cartesian k‐space 
trajectory, the gradient echo sequences will produce echoes of 
2 different polarities. Using only echoes of 1 polarity avoids 
the problems associated with signal separation of bipolar 
echoes. Echoes of opposing polarities will have the water–fat 
signal shift in opposite directions, differences in the signal 
strength because of frequency dependent coil sensitivities, 
and spatial distortions in opposite directions caused by field 
inhomogeneities. Finally, and often most importantly, polar-
ity dependent phase errors induced by eddy currents have 
to be considered when 3 or more bipolar echoes are used.7 
However, even when taking the polarity dependent amplitude 
and phase errors into account, there may be a fat fraction de-
pendent bias when using bipolar errors that is greater than 
when using monopolar echoes.7

Recently, a class of machine learning algorithms called ar-
tificial neural networks, often shortened to neural networks or 
even just networks, have become extremely popular, especially 
within image processing. This is because of their often excellent 
performance compared to other machine learning algorithms. 
Today, virtually all neural networks contain multiple hidden lay-
ers and therefore fall under the category deep learning. Within 
image processing, so‐called convolutional neural networks are 
commonly used.8 Convolutional neural networks typically take 
an image as input (e.g., an image of a person), and the output 
is typically a class (e.g., the gender of the person), a number 
(e.g., the age of the person), a segmentation, or a translated 
image (e.g., colorizing a black and white image). One widely 
used type of convolutional neural networks are the so‐called 
U‐nets, which were originally designed for image segmenta-
tion.9 U‐nets have since been used for multiple different image 
segmentation tasks (e.g., automated segmentation of abdomi-
nal adipose tissue depots in water–fat separated MR images).10  
U‐net based architectures have also been used in image‐ 
to‐image translation tasks.11

Neural networks have been used within MR image recon-
struction to transform data from k‐space to image‐space,12,13 
calculate parametric maps in MRI fingerprinting,14 and re-
cent conference abstracts show promise in water–fat signal 
separation.15-18 The authors of one of the abstracts16 have 
since published a manuscript on the same topic.19

In this article, a method using neural networks, specifi-
cally U‐nets, for separation of water–fat signal in whole‐body 
gradient echo images is presented and evaluated. This task 
is a type of image‐to‐image translation. The method builds 
on a previous conference abstract.15 Separation is performed 
using both a single echo as well as multiple echoes.

2  |   METHODS

2.1  |  Source data
Whole‐body imaging data from the POEM study,20 where 
all subjects are 50 years old, was used. In this article, a total 
of 240 scans, each of a different subject, were included after 
removal of scans of poor quality. Poor quality included ex-
cessive motion artifacts and errors in the scanning protocol, 
minor metal artifacts were accepted. Approval of the POEM 
study was obtained from the regional ethics committee, and 
each participant gave their written informed consent.

The images were all acquired on a 1.5T clinical scanner 
(Achieva, Philips Healthcare, Best, The Netherlands). A 3D 
spoiled gradient echo sequence was used. A total of 5 bi-
polar echoes were collected. The following parameters were 
used: voxel size = 2.07 × 2.07 × 8 mm3 (sagittal × coronal 
× axial), TE1 = 1.37 ms, ΔTE = 0.95 ms, TR in range: 6.65–
7.17 ms, and flip angle = 3°. The images were collected with 
continuously moving bed imaging,21 resulting in several sub-
volumes. The whole‐body images were of size 256 × 184 × 
252 voxels.

2.2  |  Reference method
The 3 odd‐numbered echoes were used to create reference 
signal separations using the previously described analytical 
graph‐cut method,22 producing water and fat images, as well 
as fat fraction, R2

*, and field maps. One subvolume was pro-
cessed at a time. Because of noise and model imperfections, 
the fat fraction maps could contain values lower than 0% or 
higher than 100%, these values were set to 0% and 100%, 
respectively.

2.3  |  Neural networks
Modified versions of the U‐net9 were used in this article. 
They were trained with axial slices of different sets of ech-
oes as input and the corresponding fat fraction maps as the 
desired output.
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The U‐net is described in detail in the original article,9 
but will be described in brief here. An input image will go 
through convolutions, producing multiple features, after 
which the features are downsampled to a lower resolution. 
This process is repeated a few times. After this, the result-
ing features undergo some more convolutions, and the 
resulting features are then upsampled, after which a concat-
enation with the previous features of the same resolution is 
performed using so‐called skip connections. This process is 
repeated until features are produced of the same resolution as 
the original input image. Finally, some more convolutions are 
performed to produce the output. A visual representation of 
a modified U‐net used in this article can be seen in Figure 1.

The networks used in this article were implemented in 
TensorFlow 1.8.023 and were based on an implementation by 
Akeret et al.24 Differences compared to the original imple-
mentation by Ronneberger et al9 will be described, but the 
implementations are otherwise identical.

As input to the networks 1 2D axial slice with 2 channels 
for each echo, 1 for the real and 1 for the imaginary compo-
nent, was used. The input was scaled to be within the range −1  
to 1, with 0 representing no signal and zero‐padded to be of 
size 256 × 256.

The networks were trained using different configurations 
of the available echoes as input. Networks were either trained 
with echoes of both polarities or only echoes of 1 polarity 
(i.e., only odd or only even numbered echoes). For the 3 dif-
ferent sets of echoes used, all possible configurations using 
the first available echo and different numbers of consecutive 
echoes were used. Using echoes of both polarities explores 

if and how much this might improve the resulting signal 
separation.

The original implementation of the U‐net would return an 
output that was smaller than the input (i.e., the result would 
be cropped) because of the convolutions. This was not desir-
able for the current problem and was rectified by performing 
reflective paddings inside the networks after the convolu-
tions, which made the output the same size as the input.

The implemented networks had 1 feature map as output. 
As loss function, the voxelwise squared difference between 
the reference fat fraction, scaled to the range 0 to 1, and the 
output was used. This implies that the networks were trained 
to calculate fat fraction maps. Background voxels were 
excluded when calculating the loss function because they 
contain only noise and could potentially interfere with the 
training of the networks. Background was defined slicewise 
using Otsu’s threshold25 on the sum of the reference water 
and fat images. Slices containing only background were 
semi‐automatically identified and excluded.

The networks were trained using a 5‐fold cross‐validation, 
split at the subject level (i.e., 80% of all subjects were used 
for training and 20% for validation), and this was repeated 5 
times so that all data was used in the validation. The split was 
randomized. All slices of the training sets were used to per-
form training 1 at a time in a random order. One pass over all 
these slices is known as 1 epoch. The Adam optimizer26 was 
used to train the networks. The following parameters were 
used: initial learning rate: 0.001, β1 = 0.9, β2 = 0.999, ε = 
1e−8. The learning rate was decayed by a factor 0.8727 after 
each epoch.

F I G U R E  1   A visual representation of 1 of the networks used in this manuscript, with an axial slice containing the real and the imaginary 
parts of the first echo as input and the corresponding fat fraction map as output. The cyan boxes represent feature maps. The white boxes represent 
feature maps that have been transferred by the skip connections. The horizontal numbers represent the number of features in a layer and the vertical 
numbers represent the number of elements per feature of the layer
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The networks were trained for 16 epochs. After each 
epoch, every second slice that was used for validation and 
every eighth slice that was used for training were run through 
the network to calculate loss curves.

2.4  |  Water–fat signal images
Water–fat signal images can be created from the resultant fat 
fraction maps of the trained networks. The signal of the echoes 
of bipolar spoiled gradient echo sequences can be described as

where Sn is the signal at echo time tn, W and F are the mag-
nitudes of the water and the fat signals, respectively, ω0 
describe the initial phase of the signal, ω the off‐resonance 
shift, R2

* is the effective transverse relaxation rate, and θ is 
a complex value describing the polarity‐dependent amplitude 
and phase of the signal. an is

where αm are the relative magnitudes of the M different fat 
peaks and δm are their corresponding chemical shifts relative 
to water. Values were adapted from Hamilton et al.27 B0 is 
the amplitude of the static magnetic field and γ the gyromag-
netic ratio of 1H.

If the fat fraction (FF) is defined as F/(W + F), and R2
* 

and the real part of θ assumed to be zero, it is possible to 
calculate W and F as

and

In case multiple echoes are used, W and F can be calculated 
as the average for the different echoes to improve the SNR.

2.5  |  Hardware
All networks were trained using a graphics processing unit 
(GPU) of type GeForce GTX 1080 Ti. Furthermore, infer-
ence was performed using both the GPU as well as a central 
processing unit (CPU) of type Intel Xeon W‐2102.

2.6  |  Evaluation
The final values of the loss function for the subjects used for 
validation is a measure of how well the networks performed. 

In addition to this, the quality of the outputs of the networks 
were assessed by measured liver fat fractions and visual 
inspection.

To perform the measures of the liver fat fraction, the livers 
were manually segmented. The fat fractions of the livers were 
calculated as the median of all voxels that were segmented. 
The performances of the different networks were evaluated 
by calculating the mean absolute error. Furthermore, it was 
evaluated how well the networks classified the fat fractions of 
the livers as normal or abnormal/fatty, using the commonly 
used cut‐off value of 5.56%.4

Visual evaluation consisted of searching for errors in the 
images inferred by the networks, as well as finding qualita-
tive differences compared to the reference images.

The time taken to train the networks with different number 
of echoes were measured, including the time taken to produce 
the loss curves. Inference time was also measured.

3  |   RESULTS

All results will refer to the output of the fully trained neu-
ral networks with validation data as input unless otherwise 
stated.

3.1  |  Loss function
In Figure 2, the loss curves for the networks using ech-
oes of both polarities are shown. It can be seen that after 
a few epochs the curves for the validation data flatten out 
even though the curves for the training data continue to 
decrease. This indicates that no overfitting has taken place, 
and the output of the networks converged for the validation 
data.
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F I G U R E  2   Curves showing loss per foreground voxel for the 
networks using echoes of both polarities. Dashed lines are used for 
training data, solid lines for validation data
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In Table 1, the final losses per foreground voxel of the 
validation data for all the different configurations of echoes 
used are shown.

3.2  |  Liver fat content
When evaluating the networks’ ability to calculate the liver 
fat fractions, it was noticed that the scans of 2 subject were 
faulty, probably because of errors in the scanning protocol, 
and they are not included in the results regarding the livers, 
leaving 238 subjects. In Figure 3, the liver fat fractions esti-
mated by the neural networks using echoes of both polarities 
are plotted against the reference fat fraction. It can be seen 
that even when using only 1 echo, it is possible to estimate 
the liver fat fractions. The estimates improve with more ech-
oes and are almost identical to the reference when using all 
5 echoes.

According to the reference fat fraction, the liver fat 
fraction was normal for 214 of the subjects and abnormal 
for the remaining 24. Table 2 shows the mean absolute 
errors of the liver fat fraction calculated using the neural 

networks, and Table 3 shows the number of misclassified 
livers. Both tables make it clear that by using more echoes 
the results improved.

According to Reeder et al.,28 the accuracy (bias) and pre-
cision (SD) of a quantitative fat content biomarker must be far 
smaller than 5–6% to provide reliable diagnosis. In Table 2,  
it can be seen that for all networks the accuracy (bias) of the 
estimated liver fat fraction, compared to the reference, filled 
this criteria. It was not possible to evaluate whether the preci-
sion (SD) of the estimated liver fat fractions filled the criteria 
because each individual was only scanned once, and it was 
therefore not possible to calculate the precision (SD).

3.3  |  Visual inspection
In Figure 4, axial fat fraction maps of the abdomen (includ-
ing the liver) of a subject with a fatty liver is shown. Both the 
fat fraction maps inferred by the networks using echoes of 
both polarities as input and the reference fat fraction map are 
shown. Two improvements are noticeable when increasing 
the number of echoes used. First, the images get crisper, and 

T A B L E  1   Final losses per foreground voxel of the validation data

Up to echo no. 1 2 3 4 5

All echoes 0.0187 0.0126 0.0066 0.0054 0.0022

Odd echoes 0.0187 – 0.0069 – 0.0022

Even echoes – 0.0165 – 0.0113 –

F I G U R E  3   Liver fat fractions estimated by the neural networks using echoes of both polarities plotted against the reference fat fraction. A, 
All data points shown. In case a normal liver was misclassified as fatty or vice versa, the corresponding data point is found in the red shaded area. 
B, Zoom‐in on the area with the cases were the liver fat fractions were correctly classified as normal, where most cases can be found

(A) (B)
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second, the fat fraction of the liver gets closer to the refer-
ence. When using all 5 echoes, the inferred image is almost 
identical to the reference. The images are representative, with 
the exception of the high liver fat content.

In the supplementary materials there are additional 
figures. In Supporting Information Figure S1, difference 
images between the fat fraction maps estimated by the net-
works in Figure 4 and the reference fat fraction map are 
shown. In Supporting Information Figure S2, a profile 
line plot of the slice in Figure 4 is shown. In Supporting 
Information Figures S3 and S4, water and fat images corre-
sponding to the fat fraction maps inferred by the networks 
in Figure 4 calculated using Equation 3 and Equation 4, 
respectively, are shown together with the corresponding 
reference images. Figures analogous to Figure 4 of differ-
ent anatomies are also shown. In Supporting Information 
Figure S5, the upper legs of a subject are shown, in 
Supporting Information Figure S6, the upper thorax of a 
subject is shown, and in Supporting Information Figure S7, 
the knees of a subject with a metal implant in the right knee 
are shown.

In Figure 5, coronal water signal images of a subject 
are shown. The image to the left was created using a neural 
network with the first echo as input, and the image to the 
right is the reference. The image created using the neural 

T A B L E  2   Mean absolute errors of the liver fat fraction 
calculated using the neural networks

Up to echo no. 1 2 3 4 5

All echoes (%) 1.71 1.18 0.69 0.39 0.03

Odd echoes (%) 1.71 – 0.93 – 0.04

Even echoes (%) – 1.52 – 1.22 –

T A B L E  3   Numbers of livers misclassified as normal/fatty

Up to echo no. 1 2 3 4 5

All echoes 6/2 1/0 1/0 0/0 0/0

Odd echoes 6/2 – 5/1 – 0/0

Even echoes – 5/1 – 0/0 –

According to the reference fat fraction, 214 were normal and 24 were fatty.

F I G U R E  4   Axial fat fraction maps of 
the abdomen of a subject with a fatty liver 
(reference fat fraction 12.28%). Background 
has been removed from all images for 
clarity. The images are in grayscale with 
range 0% FF to 100% FF. (A–E) Results 
using neural networks. A, Using the 1st 
echo, B, using the 1st and the 2nd echoes, 
C, using the 1st through the 3rd echoes, D, 
using the 1st through the 4th echoes, and E, 
using all 5 echoes. F, Reference
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network is very similar to the reference, using more echoes 
improves the results slightly (not shown because the dif-
ferences are very slight). However, there are some minor 
differences between the 2 images, mainly visible in the in-
testines and at the interface between the subvolumes, which 
can be identified by the horizontal strikes. Selected images 
are representative.

In general, visual inspection found that the quality of the 
inferred images was close to that of the references. As exem-
plified in Figure 4, using only a few echoes often lead to a 
visibly erroneous liver fat fraction in subjects with an abnor-
mally high liver fat fraction. Other than this, errors were rare. 
Small but noticeable errors not present in the reference were 
found in the subcutaneous adipose tissue of 2 subjects with 
an abnormal amount of subcutaneous adipose tissue. These 
errors did not completely disappear with more echoes but be-
came less pronounced. Errors near some metal implants were 

more noticeable compared to the reference when using few 
echoes, although this discrepancy disappeared when using 
more echoes. Finally, water–fat swaps were relatively com-
mon in the arms in the reference images, probably because of 
them being in an inhomogeneous area of the main magnetic 
field, and also present in the anterior subcutaneous adipose 
tissue of the abdomen in a few subjects, possibly because of 
motion. These 2 problems were less pronounced in the im-
ages inferred by the neural networks, even when using only 
1 echo as input.

3.4  |  Run time
The time taken to train a network was 15.4 h for 1 echo, 17.2 
h for 2 echoes, 20.2 h for 3 echoes, 24.8 h for 4 echoes, and 
28.6 h for 5 echoes. Using the GPU, inference per slice took 
12 ms when using 1 echo, rising to 15 ms when using 5 ech-
oes, corresponding to 3.0 s and 3.7 s per whole‐body scan, 
respectively. When using the CPU, inference per slice took 
1.4 s, corresponding to 5.8 min per whole‐body scan, regard-
less of the number of echoes used.

4  |   DISCUSSION

In this study, it has been shown that separation of water–fat 
signal in whole‐body gradient echo images is possible using 
convolutional neural networks. Separation was possible 
using only a single echo, even though this is an underdeter-
mined problem, although the results, especially the quantita-
tive measurements, improved when using more echoes, with 
near identical results to a reference method when provided 
the same input. The possibility to perform signal separation 
using only a single echo allows for quicker scanning, which 
could be useful in situations where a fast scan time is critical.

Only the fat fraction maps were directly inferred using the 
neural networks, and the water and the fat signals were cal-
culated using these. Tests (not shown) appear to indicate that 
part of the difference between the calculated water and fat 
images and the reference is because of this extra calculation 
step. If the networks had been trained to directly infer the 
water and the fat signals, the differences with the reference 
method would likely be reduced.

The networks could have been trained to produce R2
* and 

field maps. In the case of R2
*, this was not attempted because 

the reference R2
* maps were of very poor quality, presumably 

because the MRI protocol used was not optimized for this. 
Field maps were not produced because they very seldom are 
of interest, but this could be a subject of future study.

It was found that using echoes of both polarities improved 
the results somewhat, compared to discarding echoes of either 
polarity. The difference was noteworthy for at least 1 of the 
measures in Tables 1-3 when using echoes up to number 4. 

F I G U R E  5   Coronal water signal images of a representative 
subject. A, Image created using a neural network with the first echo as 
input. B, Reference
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The difference between using all echoes of both polarities or 
only all odd echoes was negligible. This is probably because 
the reference fat fraction maps were calculated using only the 
odd echoes. Using the 2 first odd echoes resulted in a smaller 
loss and mean absolute error of the liver fat fraction than 
using the 2 even echoes. This, despite the even echoes having 
far more advantageous echo times than the first 2 odd echoes, 
as can be calculated using Cramér‐Rao bounds. Again, this 
might be because of the odd echoes having been used for cal-
culating the reference fat fraction maps. However, using the 
2 first odd echoes resulted in less misclassified livers than 
using the 2 even echoes, this might, however, have been a 
coincidence. In contrast, using only the second echo provided 
better results than using only the first echo.

In this study, versions of the 2D U‐net were used. The 
downsampling steps of the networks allow them to get a 
greater receptive field, whereas the skip connections allow 
them to preserve fine details. The receptive field is necessary 
to prevent water–fat swaps and especially crucial when using 
only 1 echo as input because otherwise, it would be impos-
sible to find a good solution. Using a 3D architecture would 
extend the receptive field into an additional dimension, and 
could potentially improve the results. However, this could 
lead to an increase in the time needed to perform training.

A GPU is needed to train the networks in a reasonable time, 
because the training of a single network would likely have taken 
upward to a month or more using the CPU. Once trained, how-
ever, the inference time is reasonable even when using a CPU.

One general drawback of neural networks is that there is no 
guarantee that they will generalize to other data sets. One hard 
limitation for the networks used in this study is that the input 
to any given network is fixed to a certain number of echoes, 
because this value is hardcoded into the network architecture. 
Furthermore, input containing data differing too much from 
that used during training could cause problems (e.g., data col-
lected using a different protocol or type of scanner, subjects 
belonging to a different age group, or subjects with pathology 
not seen during training). In this study, errors in the inferred 
fat fraction maps were observed in the subcutaneous adipose 
tissue of 2 subjects with an abnormal amount of subcutane-
ous adipose tissue. This could potentially be because of a lack 
of this phenotype in the training data. The training data could 
potentially be expanded by augmentation in an attempt to cir-
cumvent this problem. If this was to be attempted, it could be 
important to make sure that the augmentations are realistic, 
otherwise the networks might just take longer time to train, 
without any improvement in performance. Alternatively, a net-
work could be trained with input from multiple studies or use 
synthetic data to attempt to overcome this problem.

In the current study, the networks were trained with 
input data from the same scans that were used to create 
the reference fat fraction maps. A few artifacts were less 

common in the fat fraction maps inferred by the trained 
networks than in the reference fat fraction maps. However, 
any bias present in the reference fat fraction maps will most 
likely also be presented in the fat fraction maps calculated 
by the networks. This means that the performance of the 
networks are limited by the already existing method used 
to create the reference fat fraction maps and therefore not 
be very useful. This could be resolved by performing both 
shorter and longer scans of the same subjects. The echoes 
from longer scans could then be used to create high qual-
ity reference fat fraction maps. A network could then use 
the echo(es) from the short scans as input and be trained 
with the high quality reference fat fraction maps as desired 
output. The inferred fat fraction maps of the network could 
then be compared to fat fraction maps calculated using a 
traditional reference method, with the echo(es) of the short 
scans as input. The results in this study, especially when 
only using 1 echo, as well as previous studies of similar 
problems,12-14,19 suggest that the a network may outper-
form traditional methods. This would need to be tested 
in a future study, for which several new scans would be 
required.

It is unclear how the networks with only 1 echo as input 
manage to calculate the fat fraction. A human observer can 
often determine the tissue type from magnitude images, and 
in this way, give a rouge estimate of the fat fraction for each 
voxel. Furthermore, it is possible to take into account that 
there are correlations between obesity and fat fraction values. 
It is possible that the networks use similar approaches. Tests 
(not presented) showed that it was possible to calculate fat 
fraction estimates using only the magnitude images as input, 
although results were less accurate than when using complex 
images. This indicates that the networks were able to take 
the phase into account. This could be done, for example, by 
estimating the contribution to the phase from imperfections 
in the hardware and then taking the magnetic susceptibility 
of the different tissues and/or air into account and, in this 
manner, model the fat fraction.

5  |   CONCLUSIONS

It has been shown that it is possible to separate the water and 
the fat signals of whole‐body gradient echo scans using neural 
networks. Interestingly, separation was possible using only 1 
echo, although using more echoes improved the results.
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the Supporting Information section at the end of the article.

FIGURE S1 Images of the abdomen of a subject with a fatty 
liver (same subject and slice as in Figure 4). Background has 
been removed from all images for clarity. (A–E) Fat frac-
tion maps inferred using neural networks minus the reference 
fat fraction map. These images are in grayscale with range 
−10% FF to 10% FF. A, Using the 1st echo, B, using the 1st 
and the 2nd echoes, C, using the 1st through the 3rd echoes, 
D, using the 1st through the 4th echoes, E, using all 5 echoes. 
F, Reference fat fraction map. This images is in grayscale 
with range 0% FF to 100% FF
FIGURE S2 Reference fat fraction map of the abdomen of a 
subject with a fatty liver (same subject and slice as in Figure 
4). This images is in grayscale with range 0% FF to 100% 
FF, and the background has been removed for clarity. The 
plot shows the fat fractions estimated by the networks using 
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echoes of both polarities and the reference fat fraction along 
the green profile line
FIGURE S3 Axial water images of the abdomen of a 
subject with a fatty liver (same subject and slice as in 
Figure 4). Note that the images in (A)–(E) have been 
calculated from the inferred fat fraction maps using 
Equation 3. It is likely that the quality would have been 
better if the networks had been trained to perform direct 
inference of water images. (A–E) Results using neural 
networks. A, Using the 1st echo, B, using the 1st and 
the 2nd echoes, C, using the 1st through the 3rd echoes, 
D, using the 1st through the 4th echoes, E, using all 5 
echoes. F, Reference
FIGURE S4 Axial fat images of the abdomen of a subject 
with a fatty liver (same subject and slice as in Figure 4). 
Note that the images in (A)–(E) have been calculated from 
the inferred fat fraction maps using Equation 4. It is likely 
that the quality would have been better if the networks had 
been trained to perform direct inference of fat images. (A–E) 
Results using neural networks. A, Using the 1st echo, B, 
using the 1st and the 2nd echoes, C, using the 1st through the 
3rd echoes, D, using the 1st through the 4th echoes, E, using 
all 5 echoes. F, Reference
FIGURE S5 Axial fat fraction maps of the upper legs of a 
subject. Background has been removed from all images for 
clarity. The images are in grayscale with range 0% FF to 
100% FF. (A–E) Results using neural networks. A, Using the 
1st echo, B, using the 1st and the 2nd echoes, C, using the 

1st through the 3rd echoes, D, using the 1st through the 4th 
echoes, E, using all 5 echoes. F, Reference
FIGURE S6 Axial fat fraction maps of the upper thorax of 
a subject. Background has been removed from all images 
for clarity. The images are in grayscale with range 0% FF to 
100% FF. (A–E) Results using neural networks. A, Using the 
1st echo, B, using the 1st and the 2nd echoes, C, using the 
1st through the 3rd echoes, D, using the 1st through the 4th 
echoes, E, using all 5 echoes. F, Reference
FIGURE S7 Axial fat fraction maps of the knees of a subject 
with a metal implant in the right knee. This slice was spe-
cifically chosen to show the artifact near the metal implant 
that is visible when reconstructing the FF maps using a few 
echoes, the artifact is not seen in all slices near the implant. 
Background has been removed from all images for clarity. 
The images are in grayscale with range 0% FF to 100% FF. 
(A–E) Results using neural networks. A, Using the 1st echo, 
B, using the 1st and the 2nd echoes, C, using the 1st through 
the 3rd echoes, D, using the 1st through the 4th echoes, E, 
using all 5 echoes. F, Reference
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