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Abstract 

Objective: Liver cirrhosis, which is considered as the terminal stage of liver diseases, has become life-threatening 
among non-communicable diseases in the world. Viral hepatitis (hepatitis B and C) is the major risk factor for the 
development and progression of chronic liver cirrhosis. The asymptomatic stage of cirrhosis is considered as the 
compensated cirrhosis whereas the symptomatic stage is considered as decompensated cirrhosis. The latter stage 
is characterized by complex disorder affecting multiple systems of liver organ with frequent hospitalization. In this 
paper, we formulate system of fractional differential equations of chronic liver cirrhosis with frequent hospitalization 
to investigate the dynamics of the disease. The fundamental properties including the existence of positive solutions, 
positively invariant set, and biological feasibility are discussed. We used generalized mean value theorem to establish 
the existence of positive solutions. The Adams-type predictor-evaluate-corrector-evaluate approach is used to present 
the numerical scheme the fractional erder model.

Results: Using the numerical scheme, we simulate the solutions of the fractional order model. The numerical 
simulations are carried out using MATLAB software to illustrate the analytic findings. The analysis reveals that the 
number of decompensated cirrhosis individuals decreases when the progression rate and the disease’s past states are 
considered.

Keywords: Decompensated cirrhosis, Hepatitis B infection, Caputo fractional order, Stability analysis, Heavy alcohol 
consumption
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Introduction
Liver cirrhosis is a terminal stage of liver scarring (fibro-
sis) caused by many forms of liver diseases, predomi-
nantly viral hepatitis (hepatitis B and C) and chronic 
alcoholism. Moreover, any forms of liver diseases is 
considered as a source for liver cirrhosis. Cirrhosis is a 
significant health problem worldwide as it leads to 1.34 
million deaths every year [1]. In clinical terms, compen-
sated cirrhosis and decompensated cirrhosis are the two 
common stages of cirrhosis. The compensated cirrhosis 

and decompensated cirrhosis are considered as asympto-
matic and symptomatic stages, respectively. Decompen-
sated cirrhosis can regress to a compensated stage in case 
the etiology of the liver disease is resolved. The disease 
gradually develops from a compensated cirrhosis to a 
decompensated cirrhosis and the complications of which 
often result in hospitalization [2]. In the initial stage, cir-
rhosis is compensated and patients are asymptomatic at 
this stage. However, decompensation in patients with 
compensated cirrhosis is the first occurrence of ascites, 
oesophageal variceal bleeding, hepatic encephalopathy 
where frequent hospitalisation is a major point of con-
cern [3, 4].
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Many scholars have developed mathematical models 
and used optimal control strategies to control the spread 
of infectious diseases. For examples, Din et al. [5] studied 
the viral dynamics of HBV epidemic model using opti-
mal control theory to control the spread of disease. Khan 
et al. [6] presented the impact of migration, vaccination 
and hospitalization rates in the HBV model to investigate 
the dynamic behavior of the disease. In [7], the authors 
modeled the transmission dynamics of HBV infection 
and then extended the model to optimal control prob-
lems with vaccination and treatment control strategies. 
The authors in [8–11] developed mathematical models 
and applied optimal control theory to eliminate the HBV 
in the community.

All the above-formulated models were classical dif-
ferential equations used to present the dynamic behav-
ior of the infectious disease in which history, memory 
and hereditary properties of the disease are missed. 
Fractional order differential equations, used to describe 
realistic situations better than classical models, involve 
memory effects which occur in most biological models. 
Morever, fractional order models are powerful tools to 
address these properties. Recently, fractional differen-
tial equations (FDEs) are used to study dynamic behav-
ior of real world problems in ecology (see [12]), biology 
(see [13–15]), engineering (see [16, 17]) and other fields 
of applied sciences. Fractional order derivative is used 
for dealing with any order of derivative and is the pro-
motion of integer derivatives. More precisely, fractional 
order models are the generalization of the classical order 
models.

Fractional order models are gaining attentions by many 
scholars including mathematicians and researchers to 
study the dynamics of diseases with memory and heredi-
tary effects. For examples, Gul et  al. [18] considered a 
new mathematical model for HBV with asymptomatic 
carrier class to analyze the dynamics of the disease via 
Caputo fractional derivative. Simelane et  al. [19] devel-
oped a three compartmental fractional order HBV model 
with saturated incidence rate. The authors in [20] studied 
the global stability of a fractional order model for hepati-
tis B infection. Shah et al. [21] studied HBV model with 
treatment via Atangana-Baleanu operator. In [22, 23], 
the authors studied the dynamics of hepatitis B epidemic 
model using Caputo fractional and Atangana-Baleanu 
Caputo derivatives, respectively to present the dynamic 
behavior of HBV infection. Ullah et al. [24] developed a 
fractional order derivative for HBV epidemic model with 
hospitalization class. The authors in [25], suggested that 
the Caputo fractional operator permits the use of stand-
ard initial conditions in terms of derivatives of integer 
order.

Moreover, the literature reveals that the two infectious 
stages of HBV have major effects on the transmission and 
control of the disease. Chronic hepatitis (hepatitis B and 
C) is one of the world’s leading causes of liver disease and 
is gradually progressive to cirrhosis. For the first time, the 
authors in [26] developed a mathematical model of liver 
fibrosis using a system of partial differential equations to 
explore the efficacy of potential drugs used to block the 
progression of liver fibrosis. Dano et  al. [27] developed 
a nonlinear deterministic model to investigate the com-
bined effect of hepatitis B infection and heavy alcohol 
consumption to discuss the progression dynamics of liver 
cirrhosis. Hence, we propose a Caputo-type fractional 
derivative for chronic liver cirrhosis with frequent hospi-
talization to investigate the rapid progression of the dis-
ease. To do this, we will improve and extend Khatun et al. 
[28] by incorporating the decompensated cirrhosis and 
hospitalization compartments using Caputo fractional 
derivative of arbitrary order.

Main text

Formulation of the fractional order model
Khatun et  al. [28] introduced the application of opti-
mal control theory to reduce the chronic liver cirrhosis 
incidence by preventing the HBV infection using vac-
cination and treatment strategies. According to [28], 
the whole population was divided into five classes such 
as susceptible, exposed, acute infection, liver cirrhotic 
and recovered individuals. Based on this, we developed 
a chronic liver cirrhosis model via Caputo derivative to 
investigate the memory effects and hereditary factors 
that influences the dynamics of liver cirrhosis progres-
sion. For this purpose, we subdivide the whole popula-
tion into six compartments. The compartments include 
susceptible population S(t), acute infection population 
A(t), compensated cirrhosis population C(t), decom-
pensated cirrhosis population D(t), hospitalization 
population H(t) and recovered population R(t). In addi-
tion, we assumed that the total population is given by 
T (t) = S(t)+ A(t)+ C(t)+ D(t)+H(t)+ R(t) . Addi-
tional file 1: Fig. S1 represents the flowchart diagram for 
the transfer between the compartments for chronic liver 
cirrhosis with frequent hospitalization model. For the 
sake of simplicity, let

Thus, the deterministic model for the dynamics of 
chronic liver cirrhosis with frequent hospitalization will 
take the form

(1)

k1 = d0 = k6, k2 = (d0 + η1 + η2 + σ),

k3 = (d0 + d1 + s1 + s2 + s3), k4 = (d0 + d2 + ϑ2 + µ),

k5 = (d0 + d3 + ϑ1 + δ)
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along the subsidiary conditions

Basically, the integer order model is the special case of 
fractional order models where solution of fractional sys-
tem converges to the solution of integer order system 
as the order of derivative tends to integer value. Hence, 
the above initial value problem can be generalized into a 
fractional order model in Caputo sense as

(2)



































d

dt
S(t) = b− β(A(t)+ γ1C(t)+ γ2D(t))S(t)− k1S(t),

d

dt
A(t) = β(A(t)+ γ1C(t)+ γ2D(t))S(t)− k2A(t),

d

dt
C(t) = η1A(t)− k3C(t),

d

dt
D(t) = s2C(t)+ ϑ1H(t)− k4D(t),

d

dt
H(t) = σA(t)+ s3C(t)+ ϑ2D(t)− k5H(t),

d

dt
R(t) = η2A(t)+ s1C(t)+ µD(t)+ δH(t)− k6R(t)

(3)

S(0) = S0 ≥ 0, A(0) = A0 ≥ 0, C(0) = C0 ≥ 0,

D(0) = D0 ≥ 0, H(0) = H0 ≥ 0 and R(0) = R0 ≥ 0

(4)


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






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





























CD
α
t S(t) = b− β(A(t)+ γ1C(t)+ γ2D(t))S(t)− k1S(t),

CD
α
t A(t) = β(A(t)+ γ1C(t)+ γ2D(t))S(t)− k2A(t),

CD
α
t C(t) = η1A(t)− k3C(t),

CD
α
t D(t) = s2C(t)+ ϑ1H(t)− k4D(t),

CD
α
t H(t) = σA(t)+ s3C(t)+ ϑ2D(t)− k5H(t),

CD
α
t R(t) = η2A(t)+ s1C(t)+ µD(t)+ δH(t)− k6R(t)

with nonnegative initial conditions (IC), where 
α ∈ (0, 1], (S,A,C ,D,H ,R) ∈ R

6
+,N = S + A+ C + D +H + R 

and if α = 1 , then the fractional order model (4) reduces 
to the classical order model (2)-(3). Table  1 summa-
rizes the biological description of model parameter and 
parameter’s value used in the model (4).

Preliminaries
This preliminary part presents the basic definitions com-
monly used in Caputo-type fractional order models.

Definition 1 The fractional integral of order α > 0 for a 
function x ∈ L1

(

[0, b],R+
)

 is defined in the sense of Rie-
mann-Liouville as

where [0, b] ⊆ R
+ and the Euler’s Gamma function, 

denoted by Ŵ(·) , is defined by

for all time t > 0.

Definition 2 The Caputo fractional derivative 
of order α > 0 for function x : Cn[a, b] → R and 
n− 1 < α < n, n ∈ Z

+ is defined by

which is absolutely continuous function. Basic properties 
of Caputo derivatives include

 (i) CDα
t l

αx(t) = x(t)

 (ii) lαCDα
t x(t) = x(t)−

n−1
∑

j=0

x(j)(a)

j!
(t − a)j , t > a

In particular, the Caputo derivative of order α ∈ (0, 1) for 
a function x : C[a, b] → R is given by

Definition 3 Suppose that a constant x∗ represents the 
fixed point of system (4). Then the solution of the Caputo 
fractional model is given by

if and only if f (t, x∗(t)) = 0.

(5)lαx(t) =
1

Ŵ(α)

∫ t

0

(t − s)α−1x(s)ds,

Ŵ(α) =

∫ ∞

0

tα−1e−tdt

(6)CDα
t x(t) =

1

Ŵ(n− α)

∫ t

0

(t − s)n−α−1x(n)(s)ds

CDα
t x(t) =

1

Ŵ(1− α)

∫ t

0

(t − s)−αx′(s)ds

(7)CDα
t x(t) = f (t, x(t)), 0 < α ≤ 1

Table 1 Parameters and parameter values used in the proposed 
fractional order model

Parameter Description Value

b Birth rate 0.0400

d0 Natural death rate 0.0100

d1 Compensated cirrhotic-related death rate 0.0020

σ Hospitalization rate of acute infection 0.0100

β Transmission rate 0.0420

d2 Decompensated cirrhotic related death rate 0.0020

γ1 Reduction rate of compensated cirrhosis 0.0020

ϑ1 Decompensation rate of hospitalized population 0.1000

ϑ2 Hospitalization rate of decompensated cirrhosis 0.0100

γ2 Reduction rate of decompensated cirrhosis 0.0020

µ Recover rate of decompensated cirrhosis 0.0010

δ Recover rate of hospitalization individuals 0.0200

d3 Hospitalized-related death rate 0.0010

s1 Recover rate of compensated cirrhosis 0.1000

s2 Decompensation rate 0.2000

s3 Hospitalization rate of compensated cirrhosis 0.0200

η1 Rrogression rate of compensated cirrhosis 0.0200

η2 Spontaneous recovery rate 0.1500
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Lemma 1 Suppose that x∗ ∈ D ⊆ R
+ is an equilibrium 

point of system (4). Let f : [0,∞] → R be continuously 
differentiable function with

and

where Kix(t) represents the positive definite functions for 
all i = 1, 2, 3 which is continuous on � . Thus, the fixed 
point x∗ is known to be uniformly asymptotically stable 
equilibrium of system (4) for all α ∈ (0, 1] and x ∈ �.

Lemma 2 Suppose that x(t) ∈ C[a, b] and let 
C
0 D

α
t x(t) ∈ C[a, b] and α ∈ (0, 1] . We have

where 0 < η ≤ 1 for a ≤ t ≤ b.

Remark 1
Let CDα

t x(t) ∈ C[a, b] be the Caputo derivative of x 
for 0 < α ≤ 1 . If CDα

t x(t) ≥ 0 , then x(t) ∈ C[a, b] is 
non-decreasing for a < t < b and if CDα

t x(t) ≤ 0 , then 
x(t) ∈ C[a, b] is non-increasing for a < t < b

Positivity of solutions
To determine the future behavior of the chronic liver cir-
rhosis, we determine the positivity and existence of solu-
tions of the fractional order model. Consider a closed set

Theorem 1 Given a non-negative initial data x(0) > 0 
of system (4). Then the solution x(t) in � is always non-
negative for all t > 0 . Furthermore, assume that

Proof Let ψ(t) = β(A(t)+ γ1C(t)+ γ2D(t)) . From the 
first equation of system (4) we have

Substitution of ψ(t) in Eq. (9), we obtain

K1x(t) ≤ f (t, x(t)) ≤ K2x(t)

CDα
t f (t, x(t)) ≤ −K3x(t)

x(t) = x(a)+
1

Ŵ(α)

C
0 D

α
t x(η)(t − a)α ,

(8)
� = {x(t) ∈ R

6
+ : x(t) ≥ 0 and x(t)

= {S(t),A(t),C(t),D(t),H(t),R(t)}}

lim
t→∞

supT (t) =
b

d0

(9)
C
D
α
t S(t) = b− β(A(t)+ γ1C(t)+ γ2D(t))S(t)− d0S(t)

Eq. (10) can be rearranged as

Upon simplification of Eq. (11) yields

�

Similarly, it can be shown that x(t) > 0 for all time 
t > 0 . Recall, the total population is the sum of all non-
negative states of system (4) which is given by

Without loss of generality Eq. (13) becomes

Further, it follows that

Hence, the fractional order model for chronic liver cir-
rhosis is meaningful in the biological feasible region 
whenever

Therefore, the closed set

is biological invariant region of the fractional order 
model (4).

Disease free‑equilibrium (E0)

To calculate the expression for the disease free-equilib-
rium (DFE) point of the fractional order model (4), we set 
CD

α
t S(t) =

CD
α
t A(t) =

CD
α
t C(t) =

CD
α
t D(t) =

CD
α
t H(t)

=
CD

α
t R(t) = 0 and solve the result simultaneously when 

S0 > 0 and A0 = C0 = D0 = H0 = R0 > 0 . Here, we 
denote DFE E0 = (S0,A0,C0,D0,H0,R0) where

(10)CDα
t S(t) = b− (ψ(t)+ d0)S(t)

(11)CDα
t

[

S(t)e{d0t+
∫ t
0 ψ(τ)dτ }

]

= b
[

e{d0t+
∫ t
0 ψ(τ)dτ }

]

(12)

S(t) = e
−{d0t+

∫

0
tψ(τ)dτ }

[

S0 +

∫

t

0

(

be
{d0x+

∫

x

0
ψ(s)ds}

)

dt

]

(13)
C
D
α
t T (t) = b− d0T (t)− (d1C(t)+ d2D(t)+ d3H(t))

(14)
b− d0T (t)− (d1C(t)+ d2D(t)+ d3H(t))

≤ C
D
α
t T (t) ≤ b− d0T (t)

(15)

d0

(d0 + d1 + d2 + d3)
≤ lim

t→∞
inf T (t) ≤ lim

t→∞
supT (t) ≤

b

d0

(16)lim
t→∞

supT (t) ≤
b

d0

� =

{

(S,A,C ,D,H ,R) ∈ R
6
+ : S,A,

C ,D,H ,R ≥ 0 and T (t) ≤
b

d0

}
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The expression for the basic reproduction number (R0) is 
obtained by using the next-generation matrix method 

[29]. Let 
dx

dt
= F(x)− V (x) where x = (A,C ,D,H) , 

F and V  denote the jacobian matrices of the new appear-
ance of transmission rate and the transition rate between 
compartments evaluated at DFE of system (3) is given by

Thus, ρ(FV−1) is the spectral radius which produces the 
dominant eigenvalue and it represents the basic repro-
duction number such that

This quantity is used to measure the transmission 
potential of chronic liver cirrhosis and is defined as 
the expected number of secondary infectious primar-
ily caused by a single infective in an entirely susceptible 
population.

Endemic equilibrium (E ∗)

An endemic equilibrium (EE) point plays an important 
role in the study of an epidemiological model. It indi-
cates a constant persistence of disease in the population 
if it exists and it becomes endemic if at least one infected 
compartments (i.e., A(t), C(t), D(t)) of system (4) becomes 
non-zero. For the evaluation of the EE, we substitute 
CD

α
t S(t) =

CD
α
t A(t) =

CD
α
t C(t) =

CD
α
t D(t) =

CD
α
t H(t)

=
CD

α
t R(t) = 0 in the right hand side of system (4). Let 

us denote E ∗ = (S∗,A∗,C∗,D∗,H∗,R∗) to be any arbi-
trary EE. Thus, solving system (4) at steady states yields

(17)E0 =

(

b

d0
, 0, 0, 0, 0, 0

)

F =







βS0 γ1βS0 γ2βS0 0
0 0 0 0
0 0 0 0
0 0 0 0







and V =







k2 0 0 0
−η1 k3 0 0
0 − s2 k4 − ϑ1
−σ − s3 − ϑ2 k5







(18)

R0 =
bβ((k3 + η1γ1)(k4k5 − ϑ1ϑ2)+ γ2(k5η1s2 + ϑ1(k3σ + η1s3))

k1k2k3(k4k5 − ϑ1ϑ2)

(19)

S
∗ =

b

k1R0

,

A
∗ =

bk1k3(k4k5 − ϑ1ϑ2))(R0 − 1)

β((k3 + η1γ1)(k4k5 − ϑ1ϑ2)+ γ2(k5η1s2 + ϑ1(k3σ + η1s3)))

C
∗ =

bk1η1(k4k5 − ϑ1ϑ2))(R0 − 1)

β((k3 + η1γ1)(k4k5 − ϑ1ϑ2)+ γ2(k5η1s2 + ϑ1(k3σ + η1s3)))

D
∗ =

bk1(k5η1s2 + ϑ1(k3σ + η1s3)(R0 − 1)

β((k3 + η1γ1)(k4k5 − ϑ1ϑ2)+ γ2(k5η1s2 + ϑ1(k3σ + η1s3)))

H
∗ =

bk1(k4(k3σ + η1s2)+ η1ϑ2s2)(R0 − 1)

β((k3 + η1γ1)(k4k5 − ϑ1ϑ2)+ γ2(k5η1s2 + ϑ1(k3σ + η1s3)))

From Eq. (19), we notice that the existence of EE of sys-
tem (4) depends on R0 . This implies that a unique EE 
exists if R0 > 1 . Therefore, a positive unique EE exists if 
and only if k4k5 > ϑ1ϑ2 and R0 > 1.

Lemma 3 The proposed fractional order model has a 
positive endemic equilibrium if R0 > 1.

Stability analysis
In this section, we present the local asymptotically sta-
bility of disease free-equilibrium point of the model (4). 
Consider the linearization matrix of system (4) evaluated 
at E0

Theorem  2 The DFE of system (4) is locally asymp-
totically stable (LAS) if and only if R0 < 1 and unstable 
otherwise.

Proof To discuss the LAS of E0 of system (4), it is suffice 
to show all eigenvalues �i (i = 1, . . . , 6) of Eq. (20) satis-
fies the condition

The characteristic equation associated to Eq. (20) 
becomes

where ai (i = 1, . . . , 4) will take the following value

(20)

J (E0) =



























−d0 − βS0 − γ1βS0 − γ2βS0 0 0

0 βS0 − k2 γ1βS0 γ2βS0 0 0

0 η1 − k3 0 0 0

0 0 s2 − k4 ϑ1 0

0 σ s3 ϑ2 − k5 0

0 η2 s1 µ δ − d0



























(21)|arg(�i)| >
απ

2

(22)
(�+ d0)(�+ k6)(�

4 + a1�
3 + a2�

2 + a3�+ a4) = 0,
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The real parts of the first two eigenvalues �1 = −d0 = �6 
are negative. We see that |arg(�1)| = π > απ

2  and 
|arg(�6)| = π > απ

2  for α ∈ (0, 1] . Clearly, ai > 0 if and 
only if k4k5 > ϑ1ϑ2 and R0 > 1 . Hence, the condi-
tion a1a2 > a3 and a1a2a3 > a23 + a21a4 hold. Using the 
Routh-Hurwitz criteria for fractional order models, all 
the eigenvalues have negative real parts and satisfy equa-
tion (22), provided that the resultant of the fourth order 
polynomial in Eq. (20) is positive. �

Theorem 3 Given α ∈ (0.1] and R0 < 1 . Thus, the DFE 
of system (4) is globally asymptotically stable (GAS) in � 
and unstable if R0 > 1

Proof Consider a suitable Lyapunov function of the 
form

where bi (i = 1, . . . , 4) are to be chosen later and by 
applying the Caputo derivative on Eq. (23), we obtain

Exploiting Eqs. (4) and (24) gives

After rearrangement of the above equation, we obtain

Choose

a1 = k2 + k3 + k4 + k5 − βS0,

a2 = k2k3 + k2k4 + k3k5 + k2k5 + k3k4

+ (k4k5 − ϑ1ϑ2)− (k3 + k4 + k5 + η1γ1)βS0,

a3 = (k4 + k5)(k2k3 − (k3 + η1γ1)βS0)

+ (k2 + k3 − βS0)(k4k5 − ϑ1ϑ2)

− γ2(η1s2 + ϑ1σ)βS0

a4 = k2k3(k4k5 − ϑ1ϑ2)(1−R0)

(23)L(t) = b1A(t)+ b2C(t)+ b3D(t)+ b4H(t),

(24)
C
D
α
t L(t) = b1

C
D
α
t A(t)+ b2

C
D
α
t C(t)+ b3

C
D
α
t D(t)+ b4

C
D
α
t H(t),

C
D
α
t L(t) = b1(β(A(t)+ γ1C(t)+ γ2D(t))S(t)− k2A(t))

+ b2(η1A(t)− k3C(t))

+ b3(s2C(t)+ ϑ1H(t)− k4D(t))

+ b4(σA(t)+ s3C(t)+ ϑ2D(t)− k5H(t))

C
D
α
t L(t) ≤ (b1(βS0 − k2)+ b2η1 + b4σ)A(t)

+ (b1γ1βS0 − b2k3 + b3s2 + b4s3)C(t)

+ (b1γ2βS0 − b3k4 + b4ϑ2)D(t)

+ (b3ϑ1 − b4k5)H(t)

bi =
(k4k5 − ϑ1ϑ2)

γ2βS0
,

b2 =
γ1(k4k5 − ϑ1ϑ2)+ k5γ2s2 + ϑ1γ2s3

k3γ2
,

b3 = k5, b4 = ϑ1

Hence, the Lyapunov function L(t) is contiunous and 
positive definite for all A(t),C(t),D(t),H(t) > 0 . Fur-
thermore, it follows that

Hence, CDα
0L(t) ≤ 0 if k4k5 > ϑ1ϑ2 and R0 < 1 and 

CDα
0L(t) = 0 if and only if A(t) = C(t) = D(t) = H(t) = 0 . 

Thus, the largest compact invariant set 
{(S,A,C ,D,H ,R) ∈ R

6 : CDα
0L(t) = 0} contains the sin-

gleton, E0 . Using the LaSalle’s invariant principle [30], 
we conclude that the DFE of system (4) is GAS in � if 
R0 < 1 . �

In the epidemiological models, the sensitivity analy-
sis plays a significant role to provide an in-depth study 
of state variables that makes predictions and the mod-
els more reliable. To do so, we must identify the relative 
contribution of each model parameter. Some parameters 
have positive influence on the basic reproduction num-
ber while the other parameters are inversely related to 
the reproductive number (see, Additional file 2: Fig. S2). 
A slight decrease in the values of d0 and d2 will increase 
the basic reproduction number as depicted inAdditional 
file 2: Fig. S2  (a). On the other hand, an increase in the 
values of b and β will increase the basic reproduction 
number as seen inAdditional file 2: Fig. S2  (c). Generally, 
d0 and d2 are inversely related to the basic reproduction 
number while b and β are directly related which implies 
that they have relatively significant influence on the con-
trol of the disease.

Numerical simulation
Finding the exact solution of nonlinear fractional differ-
ential equations is a difficulty task manually and hence 
we rely on numerical methods to approximate solutions. 
We use Adam–Bashforth–Moulton method of the pre-
dictor-evaluate-corrector-evaluate (PECE) approach to 
solve numerically chronic liver cirrhosis model (4) as out-
lined in [31]. To this end, consider the fractional initial 
value problem

where 0 ≤ t ≤ T and f  represents the Caputo fractional 
derivative. The solution x(t) of Eq. (25) is equivalent to 
the Volterra integral equation

CDα
0L(t) = (k1k2k3(k4k5 − ϑ1ϑ2))

(

R0 − 1
)

A(t)

(25)
CDα

t x(t) = f (t, x(t)),

x(k)(0) = xk0 , k = 0, 1, . . . , [α] − 1,

(26)

x(t) =

[α]−1
∑

k=0

xk0
k!

tk +
1

Ŵ(α)

∫ t

0

f (τ , x(τ ))(t − τ )α−1dτ
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Utilizing the Adams-type predictor-corrector approach, 
we approximate the solution of system (4) and integrate 
Eq. (26) by taking the step-size h = T

N , t = tn = nh and 
n = 0, 1, . . . ,N ∈ Z

+ where t ∈ [0,T ] [32], the iteration 
formula for Eq. (26) becomes

where

(27)

xh(tn+1) =

n−1
∑

k=0

xk
0

k!
tkn+1 +

hα

Ŵ(α + 2)

n
∑

j=0

aj,n+1f (tj , xh(tj))

+
hα

Ŵ(α + 2)
f (tn+1, x

p
h(tn+1)),

(28)

aj,n+1 =















nα+1 − (n− α)(n+ 1)α , if j = 0,

(n− j + 2)α+1 − 2(n− j + 1)α+1

+ (n− j)α+1, if 0 < j ≤ n,
1, if j = n+ 1

and the formula for the predictor value xp(tn+1) is given 
by

where

For p = min{2,α + 1} , we have an error estimate of the 
scheme as xh(tp) is an approximation of x(tn) which is 
given by

The above numerical scheme is applied to approximate 
the solution of the nonlinear fractional differential equa-
tions in (4) with unit of time per year. For convenience, 
let x

p
h(tn+1) = (S

p
h(tn+1),A

p
h(tn+1),C

p
h (tn+1),D

p
h(tn+1),

H
p
h (tn+1),R

p
h(tn+1)) and xh(tj) = (Sh(tj),Ah(tj),Ch(tj),

Dh(tj),Hh(tj),Rh(tj)) . Thus,

(29)

x
p
h(tn+1) =

[α]−1
∑

k=0

xk0
k!

tkn+1 +
1

Ŵ(α)

n
∑

j=0

bj,n+1f (tj , x(tj)),

bj,n+1 =
hα

α
[(n− j + 1)α − (n− j)α]

max
j=1,2,...,n

∣

∣x(tn)− xh(tp)
∣

∣ = O(hp)

(30)

Sh(tn+1) = S0 +
hα

Ŵ(α + 2)
f1(tn+1, x

p
h(tn+1))+

hα

Ŵ(α + 2)

n
∑

j=0

aj,n+1f1(tj , xh(tj)),

Ah(tn+1) = A0 +
hα

Ŵ(α + 2)
f2(tn+1, x

p
h(tn+1))+

hα

Ŵ(α + 2)

n
∑

j=0

aj,n+1f2(tj , xh(tj)),

Ch(tn+1) = C0 +
hα

Ŵ(α + 2)
f3(tn+1, x

p
h(tn+1))+

hα

Ŵ(α + 2)

n
∑

j=0

aj,n+1f3(tj , xh(tj)),

Dh(tn+1) = D0 +
hα

Ŵ(α + 2)
f4(tn+1, x

p
h(tn+1))+

hα

Ŵ(α + 2)

n
∑

j=0

aj,n+1f4(tj , xh(tj)),

Hh(tn+1) = H0 +
hα

Ŵ(α + 2)
f5(tn+1, x

p
h(tn+1))+

hα

Ŵ(α + 2)

n
∑

j=0

aj,n+1f5(tj , xh(tj)),

Rh(tn+1) = R0 +
hα

Ŵ(α + 2)
f6(tn+1, x

p
h(tn+1))+

hα

Ŵ(α + 2)

n
∑

j=0

aj,n+1f6(tj , xh(tj)).
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and the predictor values are given by

where

Similarly, the functions fi(tj , x(tj)) for i = 1, . . . , 6 will 
take the form

Now, for the numerical simulation of the chronic liver 
cirrhosis we use the parameter values listed in Table  1. 
The value of some parameters are assumed in the biologi-
cal feasible region and the value of the rest parameters are 
taken from published papers. For instances, the value of 
d0, d1, δ, σ , η1 and η2 are taken from [5, 28]. In addition, 
we assumed the set of initial value for state variables of 
system (4) are (50, 30, 20, 10, 5, 0) for S(t), A(t), C(t), D(t),  
H(t), R(t) respectively.

(31)

S
p
h(tn+1) = S0 +

1

Ŵ(α)

n
∑

j=0

bj,n+1f1(tj , xh(tj)),

A
p
h(tn+1) = A0 +

1

Ŵ(α)

n
∑

j=0

bj,n+1f2(tj , xh(tj)),

C
p
h (tn+1) = C0 +

1

Ŵ(α)

n
∑

j=0

bj,n+1f3(tj , xh(tj)),

D
p
h(tn+1) = D0 +

1

Ŵ(α)

n
∑

j=0

bj,n+1f4(tj , xh(tj)),

H
p
h (tn+1) = H0 +

1

Ŵ(α)

n
∑

j=0

bj,n+1f5(tj , xh(tj)),

R
p
h(tn+1) = R0 +

1

Ŵ(α)

n
∑

j=0

bj,n+1f6(tj , xh(tj))

f1(tn+1, x
p
n+1) = b− β(Ap(tn+1)+ γ1C

p(tn+1)+ γ2D
p(tn+1))S

p(tn+1)− k1S
p(tn+1),

f2(tn+1, x
p
n+1) = β(Ap(tn+1)+ γ1C

p(tn+1)+ γ2D
p(tn+1))S

p(tn+1)− k2A
p(tn+1),

f3(tn+1, x
p
n+1) = η1A

p(tn+1)− k3C
p(tn+1),

f4(tn+1, x
p
n+1) = s2A

p(tn+1)+ ϑ1H
p(tn+1)− k4D

p(tn+1),

f5(tn+1, x
p
n+1) = s1C

p(tn+1)+ ϑ2D
p(tn+1)− k5H

p(tn+1),

f6(tn+1, x
p
n+1) = η1A

p(tn+1)+ s1C
p(tn+1)+ µDp(tn+1)+ δHp(tn+1)− k6R

p(tn+1)

f1(tj , x(tj)) = b− β(A(tj)+ γ1C(tj)+ γ2D(tj))S(tj)− k1S(tj),

f2(tj , x(tj)) = β(A(tj)+ γ1C(tj)+ γ2(tj))S(tj)− k2A(tj),

f3(tj , x(tj)) = η1A(tj)− k3C(tj),

f4(tj , x(tj)) = s2A(tj)+ ϑ1H(tj)− k4D(tj),

f5(tj , x(tj)) = σA(tj)+ s3C(tj)+ ϑ2D(tj)− k5H(tj),

f6(tj , x(tj)) = η2A(tj)+ s1C(tj)+ µD(tj)+ δH(tj)− k6R(tj)

Results and discussion
For numerical approximation of chronic liver cirrhosis 
model solution, we utilize the generalized Adams–Bash-
forth–Moulton technique and implement with MATLAB 
r2018a software. Using the parameter values and initial 
value for state variables with varying order of deriva-
tive agrees with the theoretical discussions made, We 
illustrate the numerical results graphically which veri-
fies the asymptotic stability of DFE and EE points when 
R0 = 0.0291 < 1 and R0 = 15.2981 > 1.

Additional file  3: Fig. S3 represents the numerical 
solution trajectories of the nonlinear fractional differ-
ential equations falling toward zero. Additional file  3: 
Fig. S3   (d) shows the number of decompensated cir-
rhotic individuals increases when the order of deriva-
tive α increases, which implies that the past influence 
of the disease including viral infections (hepatitis B and 
C), chronic alcoholism and other unknown etiologies 
would not be considered sufficiently. As clearly seen in 
Additional file  3: Fig. S3e, the number of hospitalized 

individuals decreases if we decrease the past influence of 
the disease. The collective idea of Additional file  3: Fig. 
S3 is that it is possible to numerically solve nonlinear 
fractional order for chronic liver cirrhosis model and all 
solution trajectories converging to disease free-equilib-
rium point, E0 =

(

4, 0, 0, 0, 0, 0
)

 . Biologically, this mean 
that the disease wipe out of the population but take long 
period of time even when R0 = 0.0291 < 1 without using 
any control measure.

The endemic equilibrium point of the pro-
posed fractional order model is obtained to be 
E

∗ = (1.3073, 72.2519, 30.7455, 29.4655, 37.4599, 216.9896) 
which indicates that there is a constant positive solution 
in the passage of time. Additional file 4: Fig. S4 indicates 
that the solution trajectories are moving toward a posi-
tive endemic equilibrium when R0 = 15.2981 > 1 with 
different values of order of derivative α . In Additional 
file 4: Fig. S4  (d), the number of decompensated cirrhosis 
individuals increases to the maximum positive EE point. 
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Similarly, when past influences of chronic liver cirrho-
sis are almost ignored (i.e., α = 0.99 ) or short memory 
effects of the disease is considered, the number of hospi-
talized individuals increases even if we decrease the hos-
pitalization rate of decompensated cirrhosis as observed 
from Additional file 5: Fig. S5  (a). On the contrary, from 
Additional file 5: Fig. S5   (b) we observe that when past 
influence of chronic liver cirrhosis is considered (i.e., 
α = 0.10 ) or long memory effects of the disease is taken 
into account, an increase in ϑ2 will decrease the number 
of hospitalized decompensated cirrhosis individuals.

Conclusion
In this paper, a system of fractional differential equations 
is formulated in the context of liver cirrhosis development 
and progression. A six compartmental fractional order 
model of chronic liver cirrhosis is proposed and analyzed. 
Mathematical analysis of the model including existence 
of positive solutions, positive invariant set, biological fea-
sibility and stability analysis of the fractional order model 
are presented. Local stability analysis of multiple equi-
librium points of the model are checked using fractional 
Routh–Hurwitz criteria. Accordingly, both DFE and EE 
are locally asymptotically stable in the biological feasible 
region if R0 < 1 andR0 > 1 , respectively. We employed 
the generalized Adams–Bashforth–Moulton method 
to present the numerical scheme. Using the numerical 
scheme, we performed a large scale of numerical simula-
tions varying the value of the parameter α (order of deriv-
ative) to observe the effects that the parameter has on the 
dynamics of the proposed fractional-order model. The 
results of the analysis shows that the two stages of cirrho-
sis (compensated and decompensated cirrhosis) are sig-
nificant classes of the model should be given emphasize. 
Furthermore, cirrhosis is a rapidly progressive among the 
non-communicable disease. The number of decompen-
sated cirrhosis individuals decreases and the number of 
hospitalized individuals increases when the value of the 
hospitalization rate increases for various value order of 
derivatives.

Indeed, the analysis of this paper is far from complete, 
therefore, any interested researcher can make an exten-
sion of the optimal control theory to block the progres-
sion of chronic liver cirrhosis.

Limitation of the paper
This model was designed to present the development 
and progression of chronic liver cirrhosis. We considered 
hepatitis B infection as a major contributor of liver dis-
eases. However, any kinds of liver diseases can be consid-
ered as a source for cirrhosis.
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