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Abstract: The relatively few dopaminergic neurons in the mammalian brain are mostly located in
the midbrain and regulate many important neural functions, including motor integration, cognition,
emotive behaviors and reward. Therefore, alteration of their function or degeneration leads to severe
neurological and neuropsychiatric diseases. Unraveling the mechanisms of midbrain dopaminergic
(mDA) phenotype induction and maturation and elucidating the role of the gene network involved in
the development and maintenance of these neurons is of pivotal importance to rescue or substitute these
cells in order to restore dopaminergic functions. Recently, in addition to morphogens and transcription
factors, microRNAs have been identified as critical players to confer mDA identity. The elucidation of
the gene network involved in mDA neuron development and function will be crucial to identify early
changes of mDA neurons that occur in pre-symptomatic pathological conditions, such as Parkinson’s
disease. In addition, it can help to identify targets for new therapies and for cell reprogramming
into mDA neurons. In this essay, we review the cascade of transcriptional and posttranscriptional
regulation that confers mDA identity and regulates their functions. Additionally, we highlight certain
mechanisms that offer important clues to unveil molecular pathogenesis of mDA neuron dysfunction
and potential pharmacological targets for the treatment of mDA neuron dysfunction.
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1. Overview of the Midbrain Dopaminergic System

In mammals, the dopaminergic neurons are predominantly located in the midbrain. They play
an important role in several neural functions including regulation of voluntary movement, attention,
motivational and cognitive processing, emotive behavior and reward and responses to unusual or
unpleasant experiences. mDA neurons also play a crucial role in decision-making and in reward
prediction error signaling. These higher cognitive functions guide complex learning mechanisms
subserved by basal ganglia and frontal cortex.

mDA neurons originate in the midbrain floor plate [1,2] and migrate in a tangential direction
towards their final location [3,4]. They give rise to the DA neurons in the substantia nigra (SN, A9),
which projects to the dorsal striatum via the nigrostriatal pathway, and controls voluntary movement.
The floor plate precursors also give rise to two other mDA neuron groups, in the ventral tegmental area
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(A10, VTA) and the retrorubral field (A8), involved in the regulation of emotion and reward through
the meso-cortico-limbic system, which innervates the ventral striatum (or nucleus accumbens) and the
prefrontal cortex [5].

The SN, besides including the DA cell bodies in the pars compacta (SNc), encompasses a second
half called pars reticulata where DA dendrites are laid out, interspersed among GABAergic neurons,
which exert an inhibitory activity on mDA neurons in SNc and, indirectly, on their target area (such as
thalamus and superior colliculus). The VTA also comprises a heterogeneous mixture of DA (about
65%), GABAergic (30%) and glutamatergic (5%) neurons.

Degeneration of the nigro-striatal mDA pathway is the cause of Parkinson’s disease (PD) [6],
while dysfunction of the meso-cortico-limbic pathway is associated with schizophrenia, drug addiction,
attention deficit hyperactive disorder (ADHD), depression and chronic pain [7–10], see Figure 1.
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Figure 1. Schematic representation of the midbrain dopaminergic pathways. The figure illustrates in a
schematic representation the two dopaminergic pathways originating from the midbrain (delimited by
a red rectangle). The ventral tegmental area (VTA) and the substantia nigra (SN) in the adult ventral
midbrain are visualized by anti-tyrosine hydroxylase antibodies. On the left: the nigrostriatal pathway
connects the SN pars compacta in the midbrain with the dorsal striatum (i.e., caudate nucleus and
putamen) in the forebrain. The main function of the nigrostriatal pathway is to control voluntary
movement through basal ganglia motor loops. Degeneration of SN dopaminergic neurons leads to
diminished concentrations of dopamine in the caudate-putamen. Degeneration of this pathway causes
Parkinson’s disease (see text). On the right: the meso-cortico-limbic system pathway connects the
VTA in the midbrain to the ventral striatum (i.e., nucleus accumbens) and to the prefrontal cortex.
It regulates motivation, emotions, reward and cognitive functions. Dysfunction of this pathway is
associated to schizophrenia, drug addiction, attention deficit hyperactive disorder (ADHD), depression
and chronic pain (see text).
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2. Features of Midbrain Dopaminergic Neurons

2.1. Molecular Characteristics of Dopaminergic Neurons

A dopaminergic neuron is a typical cell that releases the neurotransmitter dopamine (DA).
As mentioned above, DA is involved in important homeostatic responses and motor control in humans.
This wide range of adaptive behavioral responses is attained by a relatively small number of mDA
neurons (about 400,000–600,000 in human) [11], which develop a very extended axonal arborization,
sending their terminals for long-distance in many brain areas, with extensive branching and connections,
including en passant synapses. The mDA neurons show a remarkable diversity, recognized only
recently [12–14]. Molecularly, a dopaminergic neuron express: i) a set of genes common to all
neurons; ii) a set of genes necessary for DA synthesis and neurotransmission. The DA synthesis and
neurotransmission require genes encoding tyrosine hydroxylase (TH) and dopa decarboxylase (Ddc).
They are necessary for the production of DA from its precursor L-tyrosine. The vesicular monoamine
transporter 2 (VMAT2), also known as Slc18a2, is necessary for DA packaging into vesicles [15]. Since
these genes are expressed in other catecholaminergic neurons, such as noradrenergic neurons, which
requires dopamine ß-hydroxylase (Dbh) to synthesize noradrenaline from dopamine, the presence
of TH and absence of Dbh characterizes DA neurons. Besides the Central Nervous System (CNS)
noradrenergic neurons, the DA synthesis pathway is present also in peripheral blood lymphocytes,
in catecholaminergic neurons of the Enteric Nervous System (ENS) and in the gut microbiota [16].

DA released at the dopaminergic nerve terminals activates postsynaptic dopamine receptor
D1- or D2-type G-coupled receptors, and presynaptic autoreceptors of the D2-type. The latter are
involved in the regulation of DA synthesis, metabolism, and release. The dopamine transporter plasma
membrane glycoprotein (DAT), also known as Slc6a3, a member of the sodium/chloride-dependent
neurotransmitter transporter family, terminates DA neurotransmission by high-affinity uptake into the
presynaptic DA fibers [17]. DAT expression, together with TH, identifies bona fide DA neurons [18].

An additional feature of mDA neurons is the expression of developmental genes such as forkhead
box A 1/2 (Foxa1/2), LIM homeobox transcription factor 1 alpha/beta (Lmx1a/b) and Nurr1, also known
as Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2) [19,20]. These genes are not concertedly
expressed in DA neurons located in hypothalamus and olfactory bulbs, which do not originate in
the floor plate. A number of the above mentioned genes are also expressed in non-DA neurons
located in rostral linear nucleus, subthalamic nucleus and ventral premammilary nucleus; therefore,
they are not sufficient to identify an mDA phenotype [21,22]. Interestingly, mDA neurons exhibit a
pacemaker activity, characterized by spontaneous rhythmic spike activity at low-frequency [23], which
persists in vitro in brain slices and in dissociated cultures, representing a hallmark of dopaminergic
differentiation and maturation from embryonic or transdifferentiated fibroblasts [24,25].

2.2. The Metabolic Rate and Vulnerability of Dopaminergic Neurons

Oxidative stress is a key player in the loss of mDA neurons. mDA neurons have an intrinsic
vulnerability, mainly due to their high metabolic demands. In addition, the DA metabolism generates
intermediate metabolites that cause oxidative stress [26]; DA degradation generates reactive oxygen
species (ROS) and DA oxidation generates many o-quinones, including DA o-quinones, aminochrome
and 5,6-indolequinone. Therefore, DA metabolism is important for neuronal redox-homeostasis and
viability. Furthermore, the pacemaker activity of DA neurons is accompanied by large oscillations
in intracellular Ca2+ concentration. The Ca2+ in the cytoplasm is relatively free and high, while
the levels of Ca2+-buffering proteins, such as calbindin, are low. Thus, the Ca2+ overload results in
mitochondrial oxidant stress, which largely contributes to the degeneration of mDA neurons and the
pathogenesis of PD [27]. Recent data have demonstrated that dysfunction in Ca2+ signaling may cause
the increased nuclear translocation of the transcriptional repressor histone deacetylase 4 (HDAC4)
in PD iPSC-derived dopamine neurons and repression of genes that promote neuronal survival [28].
In addition, the misfolding of α-synuclein (α-syn, encoded by the SNCA gene) causes widespread
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aggregation of the α-syn protein in the form of Lewy bodies, leading to Lewy pathology, a hallmark
of PD [29,30]. α-syn oligomers are highly toxic and their extracellular release activate astrocytes and
microglia, generating local inflammation and neuroimmune reaction [31].

Unbiased “omic” approaches have unveiled intracellular and secreted molecular targets involved
in the survival, development and cell death of neurons including dopaminergic [32–35]. In particular,
mortalin, also known as Glucose Regulated Protein 75 (GRP75) or mitochondrial heat shock protein
70 (mtHsp70), a protein discovered by means of this methodological approach, has proven to play
an important role in the regulation of survival and death of dopaminergic neurons [36]. Mortalin
has a multifaceted role since it can interact with a variety of partners within a number of sub-cellular
compartments (i.e., mitochondria, cytosol, endoplasmic reticulum and vesicles); nevertheless, in DA
neurons, it can regulate their vulnerability. Indeed, mortalin has been found downregulated in the
midbrain of PD patients and in preclinical animal models its loss of function leads to mitochondrial
proteolytic stress and neuronal death. Interestingly, Parkin and PINK1, two proteins related to PD,
are able to rescue the deleterious effects of its loss [37].

Recent evidence has shown that in most PD patients, Lewy pathology is also present in ENS and
in the vagus nerve, which express high levels of α-syn. It has been suggested that the vagus nerve
could represent a route by which α-syn pathology can bidirectionally spread between the gut and the
CNS, thus constituting an important etiological factor in PD [38]. Interestingly, gut dysfunction and
gut microbiota modifications occur in most PD patients, supporting that the alteration of the complex
cross-talk between brain and gut might play a crucial role in this neurodegeneration [39,40].

2.3. ERK Signaling in the Pathophysiology of Dopaminergic Neurons

The aforementioned factors involved in the death of mDA neurons (i.e., ROS, 6-hydroxydopamine
(6-OHDA), Ca2+ and mitochondrial dysfunction) can regulate, or be regulated by, the extracellular
signal-regulated kinases 1/2 (ERK) also known as p42/p44 extracellular mitogen-activated protein
kinases (MAPK). ERK is part of a highly conserved signaling module including its direct upstream
activator, MEK1/2, a serine-threonine kinase, and RAF-1 or B-RAF, the MEK activators, the latter
being highly expressed in the brain. ERK is present within the cytoplasm and translocates into the
nucleus upon activation following a variety of stimuli such as growth factors, depolarizing signals
and neurotransmitters, including DA, and glutamate (Glu). ERK is also present in the mitochondria
of neurons as well as of non-neuronal cells. Alterations of ERK signaling has been involved in the
pathophysiology of several neurodegenerative diseases [41,42]. An increase of phosphorylated ERK is
found in the cytoplasm and mitochondria of mDA neurons of patients with PD and dementia with
Lewy bodies [43]. Moreover, chemical and genetic models of PD and/or neurotoxicity have shown
that ERK can exert an essential role in mediating the noxious effects of various pro-cell death stimuli,
including the well-known selective dopaminergic toxic compounds such as 6-OHDA, 1-metil 4-fenil
1,2,3,6-tetraidro-piridine (MPTP)/MPP+, rotenone and high doses of dopamine. In particular, the study
of 6-OHDA has shed light on the role of ERK in DA neurons cell death. Although widely used as an
exogenous neurotoxin to generate cellular and animal models of DA neurons cell death, 6-OHDA can
be produced in vivo from dopamine and it has been found in the urine of PD patients treated with
levodopa [44]. 6-OHDA is capable to generate ROS including H2O2 and superoxide that are highly
toxic in mDA neurons. Interestingly, experimental findings show that the mechanisms of cell death,
at least partly, are mediated by the activation of ERK induced by ROS; thus, ERK blockade using MEK
inhibitors is able to protect cells from death [45]. Surprisingly, ERK is also a pivotal mediator of many
pro-survival as well as differentiation factors such as neurotrophins and growth factors [46]. It has
been proposed that the reason underlying such a paradox may lie upon a different kinetic of ERK
activation. Indeed, in PC12 cells, as well as in neurons, transient or sustained ERK kinetics determine
its noxious or beneficial effects [41,47–50]. In turn, the different kinetics of activation is shown to
mediate, at least partly, the cellular compartmentalization of ERK. Sustained activation of ERK leads to
its consistent translocation into the nucleus and cell death, whereas a transient activation, localizing
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ERK mainly in the cytoplasm, has a protective effect [51]. Cell type and the nature of the stimulus
are likely to play an important role in determining the temporal and spatial pattern of ERK signaling.
Thus, in order to plan any pharmacological intervention, it appears to be of utmost importance to
unveil the cellular and molecular mechanisms underlying pro cell death or survival effects of ERK
signaling in mDA neurons. Besides being involved in the pathogenesis of neurodegeneration, ERK
signaling also plays an important role in the physiological processes of neurogenesis as well as the
maturation of mDA neural progenitors [52]. Neurogenic stem cell niches remain active in the adult
brain, giving rise to neurons in the hippocampus and the olfactory bulb, the latter being composed,
among the others, of dopaminergic neurons [53]. Notably, in the adult subventricular zone (SVZ),
one of the two neurogenic areas, IL-10 is essential to foster neurogenesis by regulating the activation
of ERK and STAT 3 in nestin+ neural progenitors. Indeed, ERK blockade inhibits neurogenesis in
SVZ [54]. Moreover, elegant experiments using D2R−/−mice clearly showed that in midbrain neuronal
cultures, Wnt5a controls the number of TH neurons as well as their morphogenic features such as
neurite length through ERK activation [52].

3. Pathways Involved in the Priming Process of the Ventral Midbrain and mDA Precursor
Neurogenesis

Given the role of mDA neurons in PD and neuropsychiatric diseases, intense research activity in the
last decades has been directed to unravel the mechanisms of DA phenotype induction and maturation
and to elucidate the role of factors involved in the specification, development and maintenance of these
neurons and their functions [55]. This remarkable research activity is also based on the assumption
that the identification of molecules and cellular interactions involved in the development of the
mDA circuits may be the key to generate mDA neurons in vitro for use in regenerative medicine for
PD patients.

The development of mDA neurons is a highly coordinated process, which requires the activity
of numerous morphogens and transcription factors. The genes encoding this complex network are
characterized by time- and cell-specific gene expression patterns that regulate their complex interaction.
This articulated differentiation process begins with the establishment of the midbrain-hindbrain
boundary by the mutually repressive activities of orthodenticle homeobox 2 (Otx2) in the midbrain
and gastrulation brain homeobox 2 (Gbx2) in the hindbrain. In addition, Otx2 suppresses the
expression of the transcription factor NK2 Homeobox 2 (Nkx2.2), thus preventing the formation
of serotonergic neurons [56]. Therefore, this transcriptional complex is also necessary to suppress
non-dopaminergic neural fates. Otx2 also regulates the expression of “proneural” genes (that is, they
promote neural differentiation) in the proliferating mDA progenitors, such as Mash1, also known as
Ascl1 (Achaete-Scute Family BHLH Transcription Factor 1) and Neurogenin 2 (Ngn2). Transcription
factor Foxa2 (also known as HNF3β) is amongst the first expressed in the ventral midbrain. Gain-
and loss-of-function experiments indicate that Foxa2 is necessary to produce mDA neurons during
development, as well as from embryonic stem cells and fibroblasts in vitro, and to maintain Nurr1
expression in engineered pluripotent stem cells [57]. Foxa2 is also expressed in adult DA neurons and
seems to regulate their survival. Mice with one copy of this gene display loss of mDA neurons [58].

3.1. The Role of Morphogens and Their Effectors

The commitment of neuroblasts to the mDA phenotype is promoted by the secretion by the floor
plate of sonic hedgehog (SHH) [59] and its synergy with fibroblast growth factor 8 (FGF8), secreted
in vivo by the isthmus [60]. These two morphogens establish an epigenetic cartesian grid that defines
positional information necessary for mDA induction [61]. SHH activates two transmembrane receptors,
Patched (PTC) and Smoothened, which elicit an intracellular response with the activation of the
zinc-finger transcription factor Gli1 (glioma-associated oncogene 1). The latter therefore represents
an early marker of the mDA precursors. Both the floor plate and the isthmus express the basic
helix–loop–helix (bHLH) transcription factor Hes1, which suppresses proneural gene expression
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and induces cell cycle exit, at about day 9 during mouse embryogenesis (E9) [62]. The loss of Hes1
modifies the inductive and repulsive activities of the isthmic organizer. Hes1 regulates the localization
and density of mDA neurons [63]. Several genes are required for the correct positioning of the
isthmus and the secretion of FGF8. These include the paired box gene 2 (Pax2), Lmx1b, Wingless-type
MMTV integration site family member 1 (Wnt1) and Engrailed-1 (En1) (for review, see [64]). It is now
established that mDA precursors are floor plate radial glial-like cells [65]. In these precursor neuroblasts,
SHH regulates the expression of the Lmx1a, which is necessary to commit midbrain neuroblasts as well
as human embryonic stem cells to mDA fate [66,67]. Lmx1a, in turn, activates the expression of Msh
homeobox 1 (Msx1), which induces the bHLH proneural gene Ngn2 expression. Lmx1a and Ngn2 gene
ablation or silencing result in absence or reduction in the number of mDA neurons. Direct involvement
of the morphogen SHH in mDA differentiation has been recently questioned [68]. This conclusion
is drawn from the lack of PTC or Gli1 receptors in more mature mDA developing neurons. It has
been suggested that other receptors (such as Cdon, Boc and Gas1), in addition to PTC, could modulate
SHH signaling activity [69], or that SHH is only indirectly involved in mDA development through
early patterning of the midbrain. However, a plethora of in vitro experiments point to a direct role of
SHH in mDA differentiation. Thus, in the recent view, SHH is necessary for midbrain progenitors
to acquire a dopaminergic cell fate in vitro and in vivo. Furthermore, a direct role of SHH in mDA
development is indicated by its induction of the Lmx1a and its downstream gene Msx expression.
While Lmx1a expression is maintained in post-mitotic mDA neurons in mice, Msx1 expression is
restricted to the mDA neuroblasts [70]. The important role of Msx1 in mDA neurogenesis is revealed
by its induction of Ngn2 expression. The latter is also indirectly controlled by Otx2, through the
regulation of Lmx1a expression. A well-established role in mDA differentiation in early (mouse E8-9)
and more mature (mouse E13) developing mDA neurons has been attributed to the canonical Wnt
signaling pathway [71,72]. Indeed, Wnt1 induces the proliferation of mDA precursors by expanding
their pool, while Wnt family member 5A (Wnt5a) increases mDA differentiation. These two proteins
work by activating the G protein-coupled receptor frizzled, which in turn activates the cytosolic
Dishevelled phosphoprotein; the latter inhibits glucose synthetase kinase 3 and blocks phosphorylation
of β-catenin and its degradation. β-catenin can thus enter the nucleus, activating a transcriptional
response, or causing an increase in intracellular Ca2+ through the frizzled receptors and the activation
of intracellular protein Dishevelled. β-catenin is a subunit of the cadherin protein complex and the
major intracellular signal transducer in the Wnt signaling pathway [73]. Finally, together with Foxa1
and Foxa2, the transcription factors En1 and 2 are also implicated in the determination, differentiation
and maintenance of mature mDA neurons and prevent their death from apoptosis [74,75]. Wnt1
and En1 are expressed in graded fashion along the rostrocaudal axis and are more expressed near
the mid-hindbrain boundary [76]. Lmx1A, Foxa2 and Otx2 are commonly used to identify mDA
progenitors during development [77] and in stem cell cultures [78–80]. However, a recent study has
revealed that these potential ventral midbrain markers, as well as several other mDA genes, are not
sufficient to predict yield or functionality of these cells in vivo since they are also co-expressed in the
subthalamic nucleus [22]. Interestingly, current data show that markers expressed by midbrain cells
close to the midbrain-hindbrain boundary (i.e., En1, ETS Variant Transcription Factor 5, Canopy FGF
Signaling Regulator 1, PAX8 and Sprouty RTK Signaling Antagonist 1) correlate with a successful graft
outcome [81].

3.2. Genes Involved in the Acquisition and Stabilization of the Functional mDA Phenotype

A number of transcription factors necessary for the development of mDA neurons and their
occurrence during development have been described and extensively investigated [82].

Up to E13.5 of mouse embryogenesis, SN and VTA mDA precursors appear indistinguishable,
although these two subpopulations of mDA neurons have different markers already at the neural
progenitor cell stage. These are the transcription factor Sox6 (or SRY-box 2, sex-determining region Y
box 6), known to be involved in establishing pluripotency in stem cells, which is expressed mainly in the
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SNc neurons, and both Otx2 and the zinc-finger transcription factor Nolz1, which are expressed in VTA
precursors [83]. It is worth mentioning that mDA neurons co-express and often co-release GABA/or Glu
neurotransmitters. VGLUT2 is more broadly expressed in mDA neurons during development [84–86],
but its expression pattern is restricted to smaller subsets in adult mouse, in particular in the medial
regions of VTA [87–91]. Recent evidence indicates that VGLUT2 co-expression in SNc DA neurons
re-emerges in adult mice after DA neuron insult. Interestingly, conditional deletion of VGLUT2 makes
DA neurons more vulnerable to neurotoxins, suggesting that the physiological balance of VGLUT2
expression is crucial to DA neuron survival [92].

As previously described, a sequential gene-cohort activation is required to promote the expression
of genes, including other transcription factors, that are essential to complete the dopaminergic
program in already determined mDA precursors. These genes include Nurr1, which is an “orphan”
nuclear receptor belonging to the steroid-thyroid receptor family, the homeogene Pitx3 (Paired-like
homeodomain 3), En1 and 2 and Lmx1b. It must be noted that none of these transcription factors alone
is sufficient to mature all aspects of the mDA phenotype, indicating that they must act in a coordinated
and combinatorial fashion.

Nurr1 (NR4A2) exerts a fundamental role [93]; its expression is under a complex regulation, which
includes the activity of a battery of genes as well as depolarization [94]. Nurr1 null mice show loss of mDA
neurons, which initially express the dopaminergic transcription factor Pitx3 (see below), but subsequently
degenerate and die [95]. Thus, Nurr1 is necessary for the development as well as for the maintenance of
mDA neurons. Indeed, Nurr1 regulates the expression of various genes governing DA function, including
TH, the rate-limiting enzyme in the biosynthesis of catecholamines, which synthesizes L-DOPA from
tyrosine; the aromatic L-amino acid decarboxylase (AADC), which transforms L-DOPA in DA (although
its dependence from Nurr1 is not ascertained, as shown in Smits et al. [96]. In addition, Nurr1 regulates the
expression of the VMAT2 [97], which concentrates the catecholamines from the cytoplasm into the synaptic
vesicles; the cytoplasmic dopamine transporter DAT [98]; the cyclin kinase inhibitor p57/Kip2 [99], which
is a negative regulator of cell proliferation; neuropilin-1, a receptor protein of the Vascular Endothelial
Growth Factor (VEGF) cytokine family, involved in axon guidance and angiogenesis [97]. Moreover,
Nurr1 also regulates the response to neurotrophic factors such as glial derived neurotrophic factor (GDNF)
by controlling the expression of its receptors Ret and GDNF Family Receptor alpha (GFRα) [100,101].
Nurr1 also controls the expression of the brain derived neurotrophic factor (BDNF), which in this case
could act as an autocrine signal, being involved in a neuroprotective loop for mDA neurons [102]. Nurr1
and Foxa2 act synergistically in microglia decreasing the production and release of proinflammatory
cytokines and enhancing the synthesis and secretion of many trophic/pleiotropic molecules (GDNF, BDNF,
Neurotrophin 3, SHH, erythropoietin, thioredoxin, transforming growth factor family β and Insulin like
Growth Factor 1) [103].

Although olfactory bulb DA neurons express Nurr1, no change in TH in these neurons is observed
in Nurr1 null mutant mice, whereas in these mutants there is the loss of mDA. Apparently, Nurr1
plays a role in retina DA neurons differentiation, but has no role in hypothalamic DA neurons [104].
Nevertheless olfactory dysfunction is present in PD patients, and often smell alterations represent a
first symptom of the disease [105].

Nurr1 binds to DNA as a monomer, homodimer or heterodimer with retinoid X receptor (RXR) α
or RXRγ. In midbrain DA neurons, Nurr1 heterodimerizes with RXRα, and heterodimer activation in
mouse and cellular models of PD has a protective effect on mDA neurons, increases TH and other DA
functional proteins, augments DA in the striatum and ameliorates and improves symptoms in genetic
PD animal models [106]. Nurr1 also has a role in the induction of Pitx3 expression, unveiling a strict
relationship between these two transcription factors [107]. Although Pitx3 is expressed in both SN and
VTA neurons, the Pitx3-deficient aphakia mouse mutant shows a selective loss of DA neurons only in
the SN [108]. Indeed, DA cell physiology does differ between SN and VTA mDA neurons, although
these midbrain areas are subject to many common regulatory pathways.
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The maturation and survival of mDA neurons in vitro and in vivo is regulated by several families
of transcription factors, including BDNF [109,110] and GDNF [111,112]. It has been demonstrated
that conditional deletion of GDNF in adult mice causes mDA neuronal loss [113] indicating that
GDNF is necessary for mDA neuron survival. Similarly, silencing of gene encoding BDNF in mice
results in loss of DA neurons. Moreover, GDNF has been suggested to regulate BDNF expression
via a GDNF-Pitx3-BDNF trophic loop [114]. BDNF treatment in animal models before the induction
of PD prevented the loss of SN DA neurons and their projections to the striatum. BDNF delivery
after induction of PD did not alter the number of DA neurons; however, it elevated the DA level
in striatum, increased synaptic plasticity and induced DA axon regrowth [115]. It remains unclear
whether the delivery of neurotrophic factors by gene therapy in humans reduces the progression of
PD, and the results of the initial trials have been disappointing [115,116]. To date, the delivery of
neurotrophic factors to the dorsal striatum of animal models by gene therapy has proved very effective
for neurorestoration of dopaminergic neurons [117,118].

Thus, multiple lines of evidence indicate that the network formed by morphogens, transcriptional
factors and neurotrophic factors promotes mDA differentiation and survival. In summary, the large
number of genes involved in mDA neuron development allows the distinction of five sequential stages
schematized in Figure 2.
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Figure 2. Genetic networks controlling midbrain dopaminergic neuron development in the mouse brain.
The diagram summarizes the sequential stages and the molecules involved in mouse midbrain DA
neuron embryonic development. The expression of transcription factors (TF) and secreted molecules
involved in midbrain regional specification, induction, floor plate specification, differentiation and
maturation of the mDA phenotype are indicated, at various embryonic (E) ages. Lines depict possible
interactions among these molecules. Arrows indicate stimulatory effects, while perpendicular lines
denote inhibitory effects. The orange area, delimited by a dotted line, clusters the TFs and molecules
involved in anteroposterior patterning (see text). The light blue area, delimited by a dotted line, clusters
the TFs involved in ventral patterning (see text). The green area, delimited by a dotted line, groups the
TFs involved in midbrain floor plate specification (see text). The violet area, delimited by a dotted line,
collects the TFs involved in mDA identity (see text).

Recent advances in the field of single-cell transcriptomics and in bioinformatics studies have
enabled detection of coordinated gene expression profiles within individual cells [119]. In the last years
at least six independent groups have identified molecularly distinct populations of mDA neurons, but
their location and molecular signature are only partially overlapping (reviewed by Poulin et al. [14]).
For instance, La Manno et al. [120], identified three types of embryonic DA neurons during E11.5



Int. J. Mol. Sci. 2020, 21, 3995 9 of 19

-E18.5 mouse development: i) immature cells expressing TH and other makers of DA neurons, ii)
mature neurons expressing TH and DAT and iii) mature neurons expressing—in addition to TH and
DAT—also Aldehyde Dehydrogenase 1 family member A1 (Aldh1a1) and LIM Domain Only 3 (Lmo3).
Conversely, Hook et al. [121], identified only two embryonic populations at E15 mouse development:
a neuroblast population and more mature neurons expressing high levels of TH and DAT. Finally,
Tiklova et al. [122] demonstrated that different subgroups of mDA neurons begin to diversify as early
as E13 and this process continues during development. These results strongly suggest that after DA
neuron maturation and integration into defined neuronal circuits, neurons continue to refine their
molecular signature. Additional studies conducted during postnatal development demonstrated that
combinatorial expression of Gastrin releasing peptide (Grp) and Neuronal differentiation 6 (Neurod6)
defines a dopaminergic subpopulation that resides in the ventromedial VTA and sends projections to
the medial shell of the nucleus accumbens [123]. In summary, single-cell gene expression profiling
studies, although partially discrepant, highlight the great molecular heterogeneity of the midbrain DA
system, challenging the traditional anatomically-based classifications.

How and when DA neuron diversity is generated during development remains unknown, and at
the moment, it is not possible to control this subtype diversity during stem cell differentiation.
An accurate and molecular definition of mDA subtypes will be crucial for understanding molecular
cascades underlying the selective vulnerability in PD, and for enabling an accurate differentiation of
iPSC in different DA subtypes.

4. Interplay between miRNAs, Dopaminergic Neurons Differentiation, Maintenance and
Dysfunction

In recent years, posttranscriptional regulation of gene expression has emerged as an additional
important regulatory mechanism in neuronal differentiation, in addition to well defined transcriptional
programs. microRNAs (miRNAs) appear crucial in regulating neuronal differentiation and neural
circuit development. miRNAs are a class of evolutionary conserved small non-coding single-strand
RNA molecules, 18–25 nucleotide long. They are transcribed as long pre-miRNAs, which are processed
by subsequent RNAse III activities (Drosha in the nucleus and Dicer in the cytoplasm) forming a
duplex, one strand of which is then load in a silencing complex. miRNAs regulate gene expression by
binding to mRNAs containing a miRNA recognition sequence [124]. miRNAs are expressed abundantly
within the nervous system in a tissue-specific manner [125] and are crucial players in several biological
processes including neurogenesis, neuronal maturation, synapses formation, axon guidance, neurite
outgrowth and neuronal plasticity [126–128]. Alterations in miRNAs contribute to the pathogenic
mechanisms in neurodegenerative diseases, including PD [129]. The essential role of miRNAs in
neurodegenerative disorders has been highlighted using Dicer knock-out mice [130,131]. Dicer is
the cytoplasmatic ribonuclease III and is essential to generate mature miRNA [132]. Several studies
have demonstrated that cell type-specific deletion of miRNAs expressed in mDA neurons causes
progressive loss of these cells [133], suggesting a pivotal role for miRNAs in mDA neuron formation,
survival and function. The relationship between miRNAs and mDA neuron differentiation, as well
as miRNAs dysregulation and mDA system dysfunction, such as PD, has been intensively studied
in recent years [133,134]. Thus, the detection of miRNAs expressed in mDA neurons could bring
about promising information for the early diagnosis and prognosis of PD and offer new potential
pharmacological tools.

Overexpression of miRNAs has emerged as a potential additional strategy to improve DA survival
in the attempt to counteract the progressive neuron loss in PD and related disorders. In addition,
this approach represents an attractive alternative to increase in vitro dopaminergic differentiation
starting from undifferentiated ES cells or through the reprogramming of human fibroblasts. In this
context, two microRNAs, miR-34b/c and miR-218, have been very promising, since once expressed
in combination with specific DA-related transcription factors are able to increase the overall yield of
functional DA neurons. The overexpression of miR-34b/c together with the transcription factors Ascl1
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and Nurr1 reduces Wnt1 expression and promotes maturation into functional DA neurons that show
the typical electrophysiological properties of DA neurons, consisting in a burst of action potential
firing pattern [24].

In the same way, miR-218 combined with Neurod1, Ascl1 and Lmx1a is able to promote in vivo
the transdifferentiation of astrocytes into fully functional DA neurons and rescues, at least partially,
the progressive loss of DA neurons [67]. In both cases, miRNAs, rather than promoting by themselves
the differentiation of DA neurons, act to potentiate the effect of specific transcription factors. These
results make miRNAs particularly interesting, from a pharmacological point of view, and highlight
their potential for therapeutic purposes.

Interestingly, miR-34b/c expression is significantly downregulated in brain areas of PD patients
with different degrees of disease, suggesting their role in the early and late phases of the pathology.
Here, the miR-34b/c cluster exerts a protective role by regulating Parkin and DJ-1, two proteins
associated with familial forms of PD whose expression is affected in PD brain [135]. Similarly,
the downregulation of miR-34b/c in differentiated SH-SY5Y neuroblastoma causes cell vitality reduction,
affecting mitochondrial function and oxidative stress [135,136].

Among the various miRNAs expressed abundantly in the brain, miR-7a seem to be important to
control the site-specific generation of DA neurons in the mouse forebrain [137]. miR-7a inhibits the
expression of Pax6, a key transcription factor that controls DA neuron differentiation, along the entire
ventricle wall except for the most dorsal part. There, the absence of miR-7a expression allows Pax6
expression, and hence, the occurrence of DA neuron differentiation [137].

In addition, miR-132 has been shown able to regulate the differentiation of DA neurons by directly
targeting Nurr1 [134], suggesting its importance for DA neuronal maturation and maintenance. It is
now well established that miR-132-3p targets important pathways involved in neuronal plasticity
such as long term potentiation, DNA methylation and neuronal cAMP response element-binding
protein, N-methyl-D-aspartate receptor and BDNF signaling [138]. On the other hand, the role of
miR-132 in PD is not yet totally established. Contrasting evidence has been reported, showing
downregulation of miR-132 in the brain of an α-syn transgenic mouse [139], or upregulation of
miR-132 in a rat mouse model of PD [140]. In addition, the expression of miR-132-3p was three
times higher in the peripheral blood lymphocytes of treated PD patients compared to untreated PD
patients [141]. miRNAs also act as protectors of neurons through inhibition of neuroinflammation,
apoptosis or autophagy [142]. miR-132 regulates the inflammatory response, while miR-124 plays
a protective role in cellular models MPTP-intoxicated SH-SY5Y through the involvement of cell
apoptosis and autophagy [143]. At the same time, in MPTP-induced mouse models of PD, miR-124
overexpression promotes DA receptor expression and neuronal proliferation and suppresses neuronal
apoptosis by downregulating endothelin 2 through activation of the SHH signaling pathway [144].
Similarly, miR-410 exerts neuroprotective effects in a 6-OHDA cellular model of PD by inhibiting the
PTEN/AKT/mTOR signaling pathway [145].

Basically, it can be said that miRNAs play an important role in neurogenesis and survival, by
conferring identity and specificity to subtypes of neural cells and modulating the spatial and temporal
expression profiles of some fundamental genes. In this context, they represent an important class of
molecules useful to better understand PD pathology that could be used as biomarkers in diagnosis
and prognosis of this neurodegenerative disorder, as well as new promising pharmacological tools.
Knowledge of miRNA-based regulation of the chosen neural phenotype could help develop new
strategies for obtaining different types of animal and human neuronal cells to replace damaged
mDA neurons.

5. Conclusions

The elucidation of the gene network involved in mDA neuron development and function
could open new avenues and will be crucial to identify early changes of DA neurons that occur in
the pre-symptomatic stages of PD. It can help identify targets for effective new therapies and for
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regenerative medicine through lineage reprogramming of other cell types (iPSC cells, neurons, glial
cells and fibroblasts) into dopaminergic neurons. In addition, understanding the role of genetic and
epigenetic factors involved in mDA neurons ontogeny and survival may provide new information for
pharmacological manipulation of DA neurons in DA-related disorders, such as schizophrenia, drug
addiction, ADHD, depression and chronic pain.
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Abbreviations

AADC Dopa Decarboxylase (Aromatic L-amino acid decarboxylase)
ADHD Attention Deficit Hyperactive Disorder
ALDH1A1 Aldehyde Dehydrogenase 1 family member A1
Ascl1 Achaete-scute family bHLH transcription factor 1
BDNF Brain Derived Neurotrophic Factor
α-syn α-synuclein
bHLH basic Helix–Loop–Helix
CNS Central Nervous System
DA Dopamine
DAT Dopamine transporter (SLC6A3)
Dbh ß-hydroxylase
Ddc Gene encoding AADC
En1 Engrailed-1
ENS Enteric Nervous System
ERK Extracellular-signal regulated kinases 1/2
FGF8 Fibroblast Growth Factor 8
Foxa1/2 Forkhead box A1/2
Gbx2 Gastrulation brain homeobox 2
GDNF Glial Derived Neurotrophic Factor
GFAP Glial Fibrillary Acid Protein
GFRa GDNF Family Receptor alpha
Gli1 Glioma associated oncogene 1
Glu Glutamate
GRP75 Glucose Regulated Protein 75
HDAC4 Histone deacetylase 4
Grp Gastrin releasing peptide
LMX1a/b LIM homeobox transcription factor 1 alpha/beta
Lmo3 LIM Domain Only 3
MAPK Mitogen-activated protein kinases
mDA Midbrain dopaminergic
mES Mouse Embryonic Stem cells
miRNAs microRNAs
MPTP 1-Methyl-4-phenyl-1,2,3,6 tetrahydropyridine
Msx1 Msh homeobox 1
mtHsp70 Mitochondrial heat shock protein 70
mTOR Mechanistic target of rapamycin (serine/threonine kinase)
Neurod6 Neuronal differentiation 6
Ngn2 Neurogenin 2
Nkx2.2 NK2 Homeobox 2
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Nurr1 Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2)
NRLP3 Nod-like Receptor Protein 3 inflammasome
6-OHDA 6-hydroxydopamine
Otx2 Orthodenticle homeobox 2
Pax2 Paired box gene 2
PD Parkinson’s Disease
Pitx3 Paired-like homeodomain 3
PTC Patched
Ret Ret protooncogene
ROS Reactive oxygen species
RXR Retinoid X Receptor
SHH Sonic Hedgehog
SN Substantia nigra
SNc Substantia nigra pars compacta
SNG1 Small nucleolar RNA host gene 1
Sox2 SRY-2 (Sex determining region Y) Box 2
Sox10 SRY-10 (Sex determining region Y) Box 10
SVZ Subventricular zone
TH Tyrosine Hydroxylase
VEGF Vascular Endothelial Growth Factor
VGLUT2 Vesicular Glutamate Transporter 2
VMAT2 Vesicular Monoamine Transporter 2
VTA Ventral Tegmental Area
Wnt1 Wingless-type MMTV integration site family member 1
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