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Glycosylation represents one of the most abundant posttranslational modification of pro-
teins. Glycosylation products are diverse and are regulated by the cooperative action of
various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and
their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-
fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and
summarize the potential protective functions of this structure against emphysema and
chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic
product, core fucose, are becoming an emerging area of interest in various fields of
research including inflammation, cancer and therapeutics. This article discusses what we
can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies
that were conducted by our group as well as other groups. We also include a discussion
of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4,
against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs
is one of the more promising therapeutics that compensate for the usual therapeutic
strategy that involves targeting the genome and the proteome. These typical glycans
using KS derivatives as glycomimetics, will likely become a clue to the development of
novel and effective therapeutic strategies.

Introduction
In the human body, there are several types of protein modifications that involve glycans being attached
to glycoproteins, such as N-glycosylation, O-glycosylation, glycosylphosphatidylinositol (GPI)-anchor
and glycosaminoglycan chains and others attaching to protein molecules [1]. These glycan modifica-
tions are regulated by the tissue- or cell type-dependent expression pattern of multiple glycosyltrans-
ferases, which are required for glycoproteins to express tissue- or cell type-dependent functions. Our
group focused on glycosyltransferases that are associated with branching enzymes of N-glycans [2]
and major enzymes including N-acetylglucosaminyltransferases referred to as GnT-III, GnT-IV,
GnT-V, GnT-VI and α1,6-Fucosyltransferase (N-acetyl-β-D-glucosamine α1,6 fucosyltransferase,
FUT8). They were purified to homogeneity, and GnT-IX (Vb) was identified by molecular cloning.
Among them the cDNA of GnT-III, GnT-V and FUT8 were cloned and their genes identified in our
group [3–9].
FUT8 attaches a fucose residue onto N-linked-type complex glycoproteins (N-glycans) [8], is

expressed ubiquitously in mammalian tissues and is the sole enzyme responsible for generating a core
fucose structure. The core fucose structure has a variety of functions that have been demonstrated in
studies of Fut8 knockout mice (Fut8−/−). Fut8−/− mice showed semi-lethal phenotypes with severe
growth retardation and emphysematous phenotypic changes [9], aberrant B cell development [10],
defects in T cell receptor signaling [11–14], long term potentiation [15] and enhancement of
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neuroinflammation with schizophrenia phenotypes [16]. In human patients with congenital disorders of glyco-
sylation (CDG) caused by FUT8 mutations, lung dysfunction was reported [17,18] as was observed in Fut8
knockout mice [9]. These findings facilitated the development of therapeutics using cancer immunotherapy and
tumor biomarkers. An excellent article on FUT8 was recently published [19]. Typical target proteins of FUT8
are the immunoglobulin G (IgG)-B receptor [20], μ-heavy chain [21], IgG1 [22,23], TGF-βreceptor [9], epider-
mal growth factor receptor (EGFR) [24,25], α4β1 integrin/VCAM-1 [10], α3β1integrin [26,27], T cell receptors
(TCRs) [13,28], E-cadherin [29–32], Dectin-1 [33] and program cell death 1 (PD-1) [34].
It is well known that the aberrant glycan modifications of proteins are strongly related to the onset and pro-

gression of certain diseases [35–38]. This suggests that targeting those aberrant glycans is a potentially useful
strategy for developing novel and effective therapies [39]. In fact, most of the cancer biomarkers in use today
are glycan-based molecules, examples include, CEA, CA19-9, CA15-3, CA-125, PSA and α-fetoprotein L3
[40,41]. These glycans are not just biomarkers but are functional molecules involved in tumorigenesis and the
malignant properties in some cancers [38,42]. The attachment of a core fucose to specific glycoproteins are
likely candidates for various cancer biomarkers in non-small cell lung cancer (NSCLC) [43–45], castration-
resistant and aggressive prostate cancer [46–48], papillary cancer of the thyroid [49], colorectal cancer [32,50],
pancreatic ductal adenocarcinoma [50–52], ovarian cancer [53], breast cancer [54], hepatocellular carcinoma
[44,55–60].
Research to identify unique disease-related glycans are ongoing concerning many other diseases as well

because they could be biomarkers and may be available for developing targeting therapies [60,61]. Concerning
this, we extensively investigated emphysema because our research group was the first in the world to generate
Fut8 knockout mice and we found severe emphysema and chronic obstructive pulmonary disease (COPD)-like
phenotypes in these model animals [9,62–64].
COPD is the third most common cause of death in the world between 1990 and 2010 [65]. In this disease,

the development of chronic bronchitis leads to bronchial obstruction and respiratory failure that are not fully
reversible [66]. Most COPD cases are associated with emphysema and chronic bronchitis, which is exacerbation
by viral or bacterial infections [67] and have an increased risk of primary lung cancer [68]. In any case, the
major cause of COPD is exposure to cigarette smoke, secondhand smoke and air pollutions [69]. Importantly,
cigarette smoke can strongly activate a variety of immune cells such as macrophages, neutrophils,
T-lymphocytes, B-lymphocytes and dendritic cells (DCs) in the bronchi. Those activated immune cells secrete
many inflammatory mediators and proteolytic enzymes, which further damage the bronchi and alveoli.
In the first half of this review, we summarize the protective role of Fut8, as reported in our studies using

Fut8−/− mice. Additionally, we also summarize our recent data regarding the potential therapeutic effects of the
keratan sulfate (KS) disaccharide against emphysema and COPD, and discuss its potential use in the treatment
of COPD as a candidate glycomimetic in the second half of this report.

Emphysema phenotypes in Fut8 knockout mice
FUT8 generates a core fucose structure by transferring a fucose moiety from GDP-fucose to the innermost
GlcNAc residue in N-glycans [70] (Figure 1A). Regarding the molecular structure of human FUT8, the putative
catalytic domain is located approximately in the middle of its protein primary structure, and also FUT8 con-
tains other two characteristic domains: An N-terminal α-helical coiled-coil domain and a C-terminal Src hom-
ology 3 (SH3) domain [71,72]. The existing of SH3 domain is characteristic for FUT8, but a recent study
reported that the SH3 domain is required for its enzymatic activity and identified candidate binding molecules
that bind to the SH3 domain [73]. Our research group had generated Fut8−/− mice and analyzed them in order
to address the physiological functions of Fut8 as well as its product: the core fucose structure, in in vivo.
Embryogenesis of Fut8−/− mice does not appear to be impaired, hence they are born with an apparent

normal pregnancy period. However, most newborn Fut8−/− mice died within a few days after birth. The survi-
vors showed severe growth retardation. To determine the reason for this, we examined Fut8−/− mice and identi-
fied severe emphysema phenotypes that include the attenuation of the inhalation and exhalation activity, as
well as the structural collapse of alveoli of the lung [9]. In a further study, we demonstrated that an impairment
in TGF-β receptor-II/Smad signaling was one of the molecular mechanisms by which emphysema was spontan-
eously induced in Fut8−/− mice. TGF-β receptor-II is a transmembrane kinase and forms heteromeric com-
plexes with the TGF-β receptor-I for ligand binding. Murine TGF-β receptor-II contains three N-linked glycans
on its extracellular region, and a lack of a core fucose structure results in a lower binding affinity of the ligand:
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TGF-β1, to TGF-β receptor-II in the lungs of Fut8−/− mice. This weak ligand stimulation results in low levels
of the phosphorylation of Smad2 and the up-regulation of the matrix metalloprotease (Mmp) family genes
such as Mmp1, Mmp9 and Mmp12. The strong expression of these proteolytic enzymes effectively breaks down

Figure 1. Involvement of Fut8 in emphysema and COPD.

(A) Catalytic activity of α1,6 fucosyltransferase (FUT8) for the generation of the core fucose structure on N-glycans. (B) A

scheme for the potential protective function of the core fucose structure on the TGF-β receptor-II (TβRII). On lung epithelium

cells, TβRII forms heterodimer complexes with the TGR-β receptor-I (TβRI). The low binding affinity of TGF-β1 for those

receptors is due to the deletion of the core fucose structure on TβRII which leads to a low level of phosphorylation of Smad2

and the up-regulation of Mmp9 and Mmp12. The strong expression of these proteolytic enzymes enhances the degradation of

connective tissue compartments of the lungs, resulting in the development of severe emphysema-like phenotypes in Fut8−/−

mice. P: phosphorylation of TGF-β receptors and Smad2.
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the connective tissue components of the bronchi, which induces severe emphysema phenotypes in the lungs of
Fut8−/− mice (Figure 1B). These data demonstrate the protective roles of Fut8 and the core fucose structure on
TGF-β receptor-II against emphysema and COPD. A study using mutant mice with a lung epithelium-specific
deletion of the TGF-β receptor-II also demonstrated the protective roles of the TGF-β receptor-II/Smad signal-
ing against emphysema [74].
In COPD patients, decreased levels of expression of TGF-β1 in the bronchiolar epithelium and alveolar

macrophages and TGF-β receptor-II in bronchial glands as well as TGF-β receptor-I were observed [75–77].
While these studies indicate that the down-regulation of TGF-β receptor/Smad signaling is associated with the
disease state in humans as well, these studies did not focus on the FUT8 gene and the core fucose structure.
Notably, a Thr267Lys polymorphism in human FUT8 gene was also reported to be associated with the develop-
ment of emphysema in humans. A significantly increased frequency of Thr267Lys polymorphisms in FUT8 in
subjects with emphysema compared with subjects without emphysema was found (subjects with emphysema
vs. subjects without emphysema = 18.7% vs. 14.2%) [78]. The Thr267Lys polymorphism is located in the
proline-rich region of FUT8 and is conserved among glycosyltransferases [79,80], indicating that this amino
acid change has an impact on its catalytic activity. Other recent studies reported that patients with a
FUT8-CDG were found to show respiratory abnormalities [17,18]. In one allele, a substitution in the coding
region of FUT8 (c.943C > T) contains a stop codon (p.Arg315*). As a result, the catalytic activity of FUT8 in
this individual was completely deficient [18]. There have not been any studies showing the direct involvement
of the core fucose structure on TGF-β receptor in the disease state of patients of emphysema and COPD.
However, those studies strongly suggest FUT8 and/or core fucose structure in humans have potential protective
roles in humans as well as in experimental animals.

Emphysema mouse model using Fut8 mutant mice
Cigarette smoke is the major cause of emphysema and COPD, therefore, research to address how cigarette
smoke is associated with the onset and progression of this disease is a particularly important subject.
Interestingly, it was reported that cigarette smoke decreases the level of expression of Fut8 gene and its enzym-
atic activity in the lungs of mice that were exposed to cigarette smoke [64]. Depending on this Fut8 suppres-
sion, the lasting up-regulation of Mmp9 was observed in the lungs during the period of exposure to cigarette
smoke, which is consistent with the results of a Fut8−/− mice study as described above. This indicates the
potential of using Fut8 mutant mice as an emphysema model. Importantly, the emphysema-like phenotypes
induced by exposure to cigarette smoke actually appeared in Fut8 heterozygous knockout (Fut8+/−) mice earlier
than in wild type mice [64].
Instead of a cigarette smoke-exposure model, an elastase-induced model is also commonly used in the

research field of emphysema and COPD [79]. Elastase is a proteolytic enzyme that digests elastin that is present
in the extracellular matrix [81,82]. Thus, the administration of elastase to the mice by intratracheal spray
induces the breakdown of connective tissue components in the lungs, which results in the development of
emphysema-like phenotypes such as bronchial obstruction, respiratory failure and bronchitis. In addition to the
above conventional model, we developed other models for exacerbation induced by viral and bacterial infec-
tions. During the pathogenesis and clinical course of COPD, a vicious circle of infection and inflammation is
thought to lead to the exacerbation of the disease [69]. Therefore, our research group reported that the com-
bined administration of a one shot administration of LPS and elastase to the murine bronchi induced more
severe emphysema phenotypes [62] (Figure 2). Based on this and the protective roles of Fut8 gene, as outlined
above, the intratracheal administration of elastase combined with LPS to the WT or Fut8+/- mice would be pre-
dicted to be an exacerbation model for emphysema and COPD (Figure 2). This model would be desirable in
terms of developing effective therapies for the treatment of serious cases of emphysema and COPD patients
with bacterial and viral infections.

Keratan sulfate proteoglycan in emphysema and COPD
Unfortunately, there are still significant hurdles to the develop an effective therapy for emphysema and COPD
targeting FUT8 and/or core fucose structure on TGF-β receptor-II. Thus, we studied other glycan candidates
and identified KS proteoglycan because the expression levels of KS were significantly decreased in the lungs of
mice that had been exposed to cigarette smoke [83]. This indicates that KS expression is down-regulated by cig-
arette smoke and is somehow involved in the onset and progression of emphysema. Based on this, our
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hypothesis was that KS exerted protective functions against emphysema and COPD and the supplementation
of KS into the lungs would mitigate the clinical phenotypes of the disease.
The KS proteoglycan is one of the proteoglycans that was identified in corneal extracts in 1939 [26]. The KS

is made up of a linear polymer of repeating N-acetyllactosamine (LacNAc) unit which is composed of β1.4
linked to a GlcNAc and is sulfated at different positions [80]. KS is now classified into three types, corneal
KS-I, skeletal KS-II and brain KS-III. KS-I is attached to N-linked glycans, whereas KS-II and KS-III are
attached to mucin type O-linked glycan chains and O-mannose type glycans, respectively [84,85]. The large
and diverse structure of glycans of KS seemed to be unsuitable, hence our particular focus was on the simpler
di-sulfated KS disaccharide called L4 which consists of a galactose-6-sulfate unit and a β1-4 linked
GlcNAc-6-sulfate unit (Figure 3A). Xu et al. [86] reported that the treatment of model mice of autoimmune
disease with L4 modulates Interleukin 12 (IL-12) production by macrophages. Shirato et al. [87] suggested that
L4 specifically blocks the interaction of flagellin with the toll-like receptor 5, and subsequently suppresses IL-8
production in primary normal human bronchial epithelial cells . Taking these collective issues into account, L4
represents a potential molecule that could be used for the prevention and treatment of airway inflammatory
responses to bacterial infections including COVID-19 [39], which play a critical role in the exacerbation of
COPD [87]. L4 was obtained from KS of shark fin cartilage after a keratanase II treatment [86] and provided
from the Seikagaku Corporation which is a collaborator of our group, and we identified it as a potential func-
tional ligand of Langerin, a C-type lectin receptor that is expressed on DCs [88].

Figure 2. Three types of mice model were used in this study.

Model A: Cigarette smoke model. Exposure of wild type mice (WT) to cigarette smoke induces COPD-like phenotypes

within approximately 6 months. When heterozygous Fut8 KO (Fut8+/−) mice are exposed to cigarette smoke, however,

emphysematous changes are induced within 3 months indicating these mice are sensitive to cigarette smoke [62]. Model B:

The conventional method for producing a porcine pancreatic elastase-induced emphysema model. When given a single dose

of an elastase treatment, emphysema was produced after 3 weeks. Model C: Exacerbation model. Heterozygous Fut8

knockout (Fut8+/−) mice or porcine pancreatic elastase-induced model mice plus the administration of one dose of an

intratracheal administration of LPS. To the mice with emphysema caused by the cigarette exposure for 3 month or by the

elastase treatment for 3 weeks, one shot LPS was administered intravenously.
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Potential protective functions of keratan sulfate disaccharide L4 through
Langerin in emphysema
Langerin, which was identified as a C-type lectin receptor in 2000 [89], is a type II membrane protein and has
one C-terminal carbohydrate recognition domain (CRD) in its extracellular region. Physiologically, the expres-
sion of Langerin is selective and highly enriched in Langerhans cells (LCs), a subset of DCs that are localized
in the dermis. DCs, including LCs, are antigen-presenting cells that function to initiate specific T cell immun-
ity, and LCs are particularly characterized by the presence of a unique pentalamellar cytoplasmic organelle, the
Birbeck granule, that mediates the intracellular transport of antigens. The precise roles of Birbeck granule have
not been demonstrated, but importantly, Langerin is required for the formation of Birbeck granules and
antigen presentation for nonpeptide antigens of Mycobacterium leprae in LCs [90]. However, the issue of how
interactions between Langerin and its endogenous and exogenous sugar ligands modulate DC and LC functions
and immune responses currently remain unclear.
Several studies have identified various candidates for sugar ligands of Langerin. Langerin recognizes a broad

range of glycans that contain mannose, fucose or sulfated sugars, such as oligomannose type N-glycans, the
blood group B epitope and glycosaminoglycans. Carbohydrates on gp120 of the human immunodeficiency virus
(HIV) and the hemagglutinin glycoprotein of influenza A virus that were also reported to be recognized by
Langerin [91,92], and the Langerin-mediated capture of those glycan ligands was proposed to function as a
barrier against HIV and influenza A virus [91]. On the other hands, Langerin also binds the teichoic acid of
staphylococcus aureus to enhance the inflammatory process [92] and heparin production. The binding of
Langerin to glycosaminoglycans, especially heparin, has been extensively studied and the high-affinity binding of
heparin to Langerin (dissociation constants ∼2.4 nM) as judged by surface plasmon resonance was reported [93].

Figure 3. Keratan sulfate in emphysema and COPD.

(A) The structure of keratan sulfate, KS-1, L4 consists of galactose-6-sulfate unit and β1-4 linked to GlcNAc-6-sulfate. (B) A

scheme for the potential protective functions of the keratan sulfate disaccharide L4 and derivatives thereof: triangle-L4 and

pendant-L4 against emphysema and COPD. L4 shows anti-proteolytic activity caused by the inhibition of Mmp-2 and Mmp-9

activities. Triangle-L4 and pendant-L4 bind to Langerin more strongly than the L4 monomer and may result in an enhanced

down-regulation of TNFα in dendritic cells. These two functions of L4 shown by squares contribute to the mitigation of

emphysema phenotypes in the elastase-induced mouse model. The suppressed signal transduction through Langerin is not

currently understood. Langerin is required for Birbeck granule formation. 6S: the sulfate group on carbon number 6.
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Among many reports regarding the sugar-binding properties of Langerin, a comprehensive glycoconjugate
microarray revealed that galactose-6-sulfate, a component of KS, was a unique sugar ligand of Langerin [94],
suggesting that Langerin-KS interactions play important roles in the development of immunity. Interestingly,
we previously characterized the interaction between L4 and recombinant trimeric Langerin in in vitro binding
assays. Competitive enzyme-linked immunosorbent assay revealed that L4 binds to Langerin that was expressed
and purified from Escherichia coli with an IC50 value of 3.5 mM. This high IC50 value indicates that the
binding between Langerin and the L4 monomer is weak, as is the case of many lectin–sugar interactions, and
we expected that the chemical oligomerization of L4 would overcome this weak affinity and lead to the develop-
ment of high-affinity L4-related Langerin ligands for further functional analysis and clinical applications.
Therefore, we synthesized two L4 oligomers: triangle-L4 (L4 trimer) and pendant-L4 (L4 polymer). As
expected, the triangle-L4 and the pendant-L4 bound more strongly to recombinant Langerin than the L4
monomer. The IC50 value for pendant-L4 was 2.1 nM [88], which is a sufficiently low concentration to allow
further in vivo analyses to be conducted.
We recently demonstrated that the administration of L4 mitigated the disease state of elastase-induced

emphysema and the emphysema in the LPS-induced COPD exacerbation model [62].
In these studies, the intratracheal administration of L4 to the mice decreased the number of infiltrating

immune cells, namely, neutrophils and macrophages and the amount of an inflammatory cytokine: tumor
necrosis factor α (TNFα) in the bronchoalveolar lavage fluid (BALF). In addition, the activity of Mmp-9 and
Mmp-12 in BALF of elastase- or LPS-treated mice was also attenuated by the administration of L4. These anti-
inflammatory and anti-proteolytic effects of L4 attenuated severe bronchitis and the pathological collapse of
alveoli (Figure 3B). These current pre-clinical data strongly indicate that L4 could serve as a drug for the treat-
ment of emphysema and COPD. However, further investigations will be needed to determine whether Langerin
is indeed a functional receptor of L4 in these mouse models as well as in humans.

Figure 4. Proposed interaction between glycan-based PAMP and DAMP (virus and/or bacteria) and C-type lectins,

Langerin and DC-SIGN.

PAMP and DAMP can bind to DC-SIGN and Langerin but L4 binds specifically to Langerin and blocks hijacking by PAMP and

DAMP thus allowing Langerin to remain active in endocytosis and degradation of the pathogens. The structure information of

DC-SIGN is cited from the Uniprot database.
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Undesirable roles of FUT8 in cancer tissues and cells
Patients with COPD are at increased risk for the development of primary lung cancer [95–97]. Although the
down-regulation of FUT8 is involved in the disease state of emphysema and COPD as described above, the
overexpression of FUT8 and/or core fucose-containing glycans was reported in lung cancer and prostate cancer
[45,98]. Moreover, a correlation of the expression of core fucose structure with poor survival outcome in some
cancer has been reported [45,52,99]. Importantly, FUT8 was also identified as a driver of metastasis of melan-
oma cells [98].
Epithelial–mesenchymal transition (EMT) and its reversion process MET (mesenchymal–epithelial transi-

tion) are important in embryonal development, wound healing and cancer. The overexpression of FUT8 gene
in breast cancer cells drives strong TGF-β signals and EMT due to excess levels of core fucose structures on
TGF-β receptors in breast cancer cells [54]. In relation to EMT, our group summarized the role of glycosyl-
transferases involved in N-glycan branching and emphasized the roles of above glycosyltransferases including
FUT8 in EMT and MET as transition state as well as biomarkers [99]. Moreover, the overexpression of FUT8
in cancer-associated fibroblasts (CAFs) can promote the malignancy of NSCLC through the activation of EGFR
signaling in CAFs [100]. A knockdown study of FUT8 also revealed that weakened EGFR signaling in CAFs
attenuated the malignancy of NSCLC [100].
Core fucose unit of N-linked glycan has a unique function in modulating anti-cancer immune responses, for

instance, the core fucose structure of N-linked glycan on the TCR is required for the activation of TCR signal-
ing [11–13]. Based on these reports, the inhibition of the core fucose structure considered to be one of the
novel therapeutic strategies for cancer patients, but these trials are still in progress. TCR is required for the acti-
vation of TCR signaling, and the core fucose structure of PD-1 is essential for cancer immunotherapy [34].
Based on these reports, the inhibition of the core fucose structure is considered to be one of the novel thera-
peutic strategies for cancer patients [101], but these trials are still in progress.

Glycomimetic using two C-type lectin receptors on dendritic cells as targets
Rational of Langerin as a glycomimetic target
DCs contain two major C-type lectin receptors, Langerin and ICAM-3 grabbing non-integrin (DC-SIGN)
[102]. On the cell surface of DCs, both receptors can recognize pathogen- and danger-associated molecular
patterns (PAMS and DMPS, respectively) [103] and function to regulate immune responses. However, if
some receptor(s) are hijacked by viruses or bacteria, these functions are blocked. Therefore, the develop-
ment of a specific ligand for binding to a receptor that would protect against this hijacking. This would be a
candidate for a glycomimetic drug [39]. In HIV infections, DC-SIGN and Langerin have opposing effects,
and DC-SIGN acts on the facilitating of viral survival transmission and infection, whereas Langerin acts on
the promotion of viral uptake and degradation [104]. Wamhoff et al. [105] analyzed 275 sugar compounds
using the bacterially produced and fluorescence-labeled monomeric carbohydrate recognition domain of
DC-SIGN and Langerin, and found that the carbohydrate specificity for Langerin were a terminal mannose,
a terminal N-acetylglucosamine and a 6-sulfogalactose residue. Portolabo et al. reported on a specific inhibi-
tor against DC-SIGN, and Wen et al. [106] also reported on a highly specific inhibitor against DC-SIGN
with a polyproline tetra helix macrocyte scaffold. Additionally, Pottelverge et al. [107] reported that there
are two segregated subsets of tissue-resident pulmonary myeloid DCs and these cells were identified in
subtle cell suspensions by flowcytometry. In those patients with COPD, Langerhans-type DCs were accumu-
lated selectively in small airways. Therefore, as a target for COPD, Langerin would play a key role. In this
respect, KS derivatives are specific ligands for Langerin and protect hijacking by viruses or bacteria as
shown in Figure 4.

Perspectives
• The molecular mechanisms responsible for the onset and progression of emphysema and

COPD have not been completely revealed, and there is still no fundamental therapy for curing
these diseases. This has already become one of the crucial issues for world health.
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• From the glycoscience point of view, the core fucose structure and KS are prospective targets
for novel and effective drug discovery. It is particularly noteworthy that the KS disaccharide
L4: a specific glycan ligand to Langerin, can be administered through the trachea as well as
intravenously, and the protective functions against emphysema and COPD have been demon-
strated in mouse models.

• Although studies are needed to be continued to clarify the role of Langerin as well and to
verify the anti-inflammatory effects and safety of L4 more substantially, we believe that L4 has
the potential to be developed as a breakthrough glycan-based drug and vaccine for the sub-
jects who are suffering from inflammatory diseases including COPD and cancer in near future.
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