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Abstract

Background: Evoked potentials (EPs) are a measure of the conductivity of the central nervous system. They are used
to monitor disease progression of multiple sclerosis patients. Previous studies only extracted a few variables from the
EPs, which are often further condensed into a single variable: the EP score. We perform a machine learning analysis of
motor EP that uses the whole time series, instead of a few variables, to predict disability progression after two years.
Obtaining realistic performance estimates of this task has been difficult because of small data set sizes. We recently
extracted a dataset of EPs from the Rehabiliation & MS Center in Overpelt, Belgium. Our data set is large enough to
obtain, for the first time, a performance estimate on an independent test set containing different patients.

Methods: We extracted a large number of time series features from the motor EPs with the highly comparative time
series analysis software package. Mutual information with the target and the Boruta method are used to find features
which contain information not included in the features studied in the literature. We use random forests (RF) and
logistic regression (LR) classifiers to predict disability progression after two years. Statistical significance of the
performance increase when adding extra features is checked.

Results: Including extra time series features in motor EPs leads to a statistically significant improvement compared to
using only the known features, although the effect is limited in magnitude (AAUC = 0.02 for RF and AAUC = 0.05 for
LR). RF with extra time series features obtains the best performance (AUC = 0.75 4 0.07 (mean and standard
deviation)), which is good considering the limited number of biomarkers in the model. RF (a nonlinear classifier)
outperforms LR (a linear classifier).

Conclusions: Using machine learning methods on EPs shows promising predictive performance. Using additional EP
time series features beyond those already in use leads to a modest increase in performance. Larger datasets,
preferably multi-center, are needed for further research. Given a large enough dataset, these models may be used to
support clinicians in their decision making process regarding future treatment.
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Background

Multiple sclerosis (MS) is an incurable chronic disease of
the central nervous system (CNS). Because of inflamma-
tion there is demyelination and degeneration of the CNS,
and patients acquire symptoms which depend on the site
of the lesions. Typical MS symptoms include sensation
deficits and motor, autonomic and neurocognitive dys-
function. The clinical course of MS can span decades, and
varies greatly between individuals [1]. Although there is
currently no cure, there are numerous disease-modifying
treatments (DMTs) that alter the natural disease course,
with more on the way [2].

For the time being, it remains impossible to accu-
rately predict the disease course of an individual patient.
This unpredictability causes anxiety and frustration for
patients, families and health-care professionals [3]. Ide-
ally, MS should be featured by an individualized clinical
follow-up and treatment strategy. A fast and sensitive
detection of non-response to the current treatment could
trigger a treatment switch, which would optimize the
individual treatment trajectory. While there are numer-
ous biomarkers available for MS, there is still discussion
on their relative usefulness. Besides magnetic resonance
imaging (MRI) scans, which visualize lesions in the CNS,
other clinical parameters such as the expanded disability
status scale (EDSS) [4] are used in the assessment of MS
disease progression [5-9]. Several research groups have
shown that evoked potentials (EP) allow monitoring of
MS disability and prediction of disability progression [10—
32], see [33, 34] for reviews. However, the precise value
of EPs as a biomarker for monitoring MS is still under
discussion [35-37]. EP provide quantitative information
on the functional integrity of well-defined pathways of
the central nervous system, and reveal early infra-clinical
lesions. They are able to detect the reduction in electri-
cal conduction caused by damage (demyelination) along
these pathways even when the change is too subtle to be
noticed by the person or to translate into clinical symp-
toms. EP measure the electrical activity of the brain in
response to stimulation of specific nerve pathways or, con-
versely, the electrical activity in specific nerve pathways
in response to stimulation of the brain. Different types
of EP are available corresponding to different parts of
the nervous system [38]. For visual EP (VEP) the visual
system is excited and conductivity is measured in the
optic nerve; for motor EP (MEP) the motor cortex is
excited and conductivity is measured in the feet or hands;
for somatosensory EP (SEP) the somatosensory system
(touch) is excited and conductivity is measured in the
brain; and for brainstem auditory EP (BAEP) the auditory
system (ears) is excited and conductivity is measured at
the auditory cortex. If several types of EP are available for
the same patient this is referred to as a multimodal EP
(mmEP).
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Considerable community effort has been performed to
summarize mmEP by a one-dimensional statistic, called
the EP score (EPS), by applying different scoring methods
[14, 15, 18, 19, 23, 31, 32]. The scoring methods described
in literature use a limited number of features from these
EP time series (EPTS). The latency (i.e. the time for the
signal to arrive) is always included. Besides latency, ampli-
tude and dispersion pattern are also possibly included
in the EPS [23]. By only using two or three variables
extracted from the EPTS, possibly useful information is
lost. In this study, we investigate whether a machine learn-
ing approach that includes extra features from the EPTS
can increase the predictive performance of EP in MS.

Predicting disability progression is often translated to
a binary problem, where a certain increase in EDSS is
considered as a deteriorated patient. In the literature,
the main modeling techniques are linear correlation of
latency or EPS with EDSS, and linear or logistic regres-
sion models. Except for one study with 30 patients [13],
no study has used an independent test set to asses model
performance. Some studies use cross-validation to esti-
mate model performance [17, 19, 20, 22, 27]. Akaike
information criterion (AIC) or Bayesian information cri-
terion (BIC) are sometimes included to encourage model
parsimony. While such models are statistically rigorous,
insightful, and often used in practice [39], a realistic per-
formance estimate is obtained by training on a large
dataset (part of which is used as a validation set to
tweak any hyperparameters), and testing on an inde-
pendent large dataset containing different patients. This
study provides, for the first time, such a performance
estimate.

We recently extracted a large number of EPTS from the
Rehabilitation & MS Center in Overpelt, Belgium. This
patient cohort consists of individuals undergoing treat-
ment. This is the most relevant scenario, since in a clinical
setting the majority of patients will have had some form
of treatment prior to these types of measurements. The
resulting dataset, containing the full time series of mmEP
with longitudinal information for most patients, is the first
of its kind. We perform a disability prediction analysis on
the MEP from this dataset, as this EP modality is most
abundant in the dataset. A machine learning approach
is used to see if there is extra information in the MEP
for predicting disability progression after 2 years, besides
latency and amplitude. 419 patients have at least one mea-
surement point, where previous studies had between 22
and 221 patients. Including extra EP features leads to a
statistically significant increase in performance in predict-
ing disability progression, although the absolute effect is
small. Our results suggest that this effect will become
more stable on a larger dataset. We show that a nonlinear
model (random forests) achieves significantly better per-
formance compared to a linear one (logistic regression).
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The best model for predicting disability progression
after 2 years achieves an average area under the curve
(AUC) of the receiver-operating characteristic (ROC) of
0.75. In the literature, AUC ROC values for this task range
from 0.74 to 0.89, with prediction windows between 6
months and 20 years [20, 23, 24, 26, 27]. The predic-
tive performance of the MEP in this work, achieved on
an independent test set and measured in a real-world
setting, shows MEP can be a valuable biomarker in clini-
cal practice for disease monitoring and the prediction of
disability progression. If our identified extra features are
confirmed in larger, multi-center studies, they can be used
to give additional feedback to the caregivers on the disease
evolution.

Methods

Measurement protocol

Motor evoked potentials were recorded from the prein-
nervated abductor pollicis brevis (APB) and abductor
hallucis (AH) muscles bilaterally. Magnetic stimuli were
delivered to the hand and leg areas of the motor cor-
tex with a Magstim 2002 or Bistim device (The Magstim
Company Ltd., Whitland, UK) via a round coil with an
inner diameter of 9 cm with maximal output of the
stimulator (2.2 T). Recording is done with two different
machines. The signal is recorded for 100ms, starting from
the moment the stimulus is applied. The resulting sig-
nal is digitized at a frequency rate of 20 kHz or 19.2 kHz
(depending on which machine was used), resulting in 2000
or 1920 data points per measurement respectively. One
such measurement is illustrated in Fig. 1. The 20 kHz
signals are down-sampled to 19.2 kHz. Signals from one
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machine are filtered between 0.6 Hz and 10 kHz, while the
other machine has a high-pass filter of 100 Hz.

For the hands, electrodes are placed at three places: on
top of the hand (ground), the APB muscle, and the proxi-
mal phalanx of the thumb. The first excitation is at 45% of
the maximal stimulator output. New stimuli are presented
with an increase of 5 percentage points. The measurement
ends if the amplitude reaches 1 millivolt, or if the ampli-
tude stops increasing for stronger stimuli. If the signal is
of bad quality, as judged by the nurse, it is discarded.

For the feet, electrodes are placed at three places: on top
of the foot (ground), the big toe, and the AH muscle. The
first excitation is at 50% of the maximal stimulater output.
New stimuli are presented with an increase of 5 per-
centage points. The measurements end if the amplitude
reaches 1 millivolt, or if the amplitude stops increasing for
stronger stimuli. If the signal is of bad quality, as judged by
the nurse, it is discarded.

An example of all the EPTS of the MEP for a single visit
is shown in Fig. 2. For each limb, each excitation strength
gives one EPTS. After discussion with the neurologists we
decided to use only the EPTS with the maximal peak-to-
peak amplitude, as this is likely to be the most informative
measurement.

Dataset

The full evoked potential dataset consists of 642 patients
and has SEP (528), BAEP (1526), VEP (2482), and MEP
(6219) visits (dataset paper to be published). We only
study the MEP, because they are most frequently mea-
sured. Each MEP visit contains 4 measurements: two
for the hands (APB muscle), and two for the feet
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Fig. 1 Single MEP An example of a single motor evoked potential (MEP) measurement. The annotations indicate the following points: 1: The point
where the measurement starts, i.e, the moment the motor cortex is stimulated. 2: As the first 70 points of the measurement often contain artifacts
we discard all points up to this point. 3: The latency of the signal, as annotated by specialized nurses. The time series consists of 1920 values
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Fig. 2 EPTS example Example of the EPTS measured during a single patient visit. The titles indicate the anatomy
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EDSSt, >= 0.5 for EDSS7, > 5.5. Ty is the time of the
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We do not perform confirmation of disability progression,
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truly progressed in disability, but rather fluctuations in the
measurement or disease process.

Measurements of a duration differing from 100ms are
discarded. Around 97% of the data has duration 100ms, so
this has little influence on the dataset size, and keeps the
data homogeneous. The majority of EPTS consist of 1920
data points. Due to a slight difference in the sampling rate
(cfr. “Measurement protocol” section), some EPTS consist
of 2000 data points. These EPTS were downsampled to
1920 data points.

The latencies (as illustrated in Fig. 1) were manually
annotated by specialized nurses during routine clinical
follow-up, and are included in the extracted dataset.
Their test-retest reliability has not been calculated for this
dataset, but the literature indicates that they are reliable
[41-43], and can be used as a biomarker to study MS dis-
ease progression [44]. The peak-to-peak amplitude was
calculated by taking the difference between the minimum
and maximum value of the whole EPTS.

In case no spontaneous response or MEP in rest posi-
tion is obtainable, a light voluntary contraction of the
muscle in question is asked in order to activate the motor
cortex and increase the possibility of becoming a motor
answer. This so called facilitation method is usually very
noisy due to baseline contraction of the muscle measured,
so we decided to drop them from the dataset altogether.
Facilitated measurements are characterized by a non-flat
signal right from the start of the measurement. We drop
any EPTS that have a spectral power above an empirically
determined threshold at the starting segment of the mea-
surement. This segment is determined by the values of the
latency of a healthy patient, which we set to be 17 ms as
this is the lower bound for the hands. We use the same
threshold for the feet, which is not a problem since the
lower bound there is higher.

The type of MS was inferred from the diagnosis date
and the date of onset, both of which have missing values,
making the type of MS field somewhat unreliable.

After all these steps, we are left with a dataset of
10 008 EPTS from 2502 visits of 419 patients. Note
that one patient can have several visits that satisfy
the conditions for two-year follow-up. We have one
target (worsened after 2 years or not) for each visit,
so the total number of samples is 2502. Some of
the characteristics of the dataset are summarized in
Table 1.

Data analysis pipeline

We start with a simple model that uses a subset of the fea-
tures proposed in the literature. As other EPS require neu-
rologist interpretation, and are therefore difficult to auto-
mate, we use latencies in our baseline. The fact that this
is a fair baseline is supported by [23], where it was shown
that different EPS have similar predictive performance,
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with short-term change or baseline values in (z-scored)
latencies being more predictive than changes in other EPS.
It is furthermore supported by the results from [17], where
the central motor conduction time of the MEP was more
informative for disability progression than the MEP EPS.

Despite the increased size of the dataset, the disabil-
ity progression classification task remains a challenging
problem. Challenging aspects are the limited sensitiv-
ity to change of the EDSS measure, its dependence on
neurologist interpretation, and the heterogeneity of dis-
ease development. Therefore, our data analysis pipeline is
mainly focused on minimizing overfitting. As our dataset
includes the full EPTS, we wish to find one or more
time series features that provide supplemental informa-
tion on disability progression, on top of the features
already used in the literature. A schematic overview of
the data analysis pipeline is shown in Fig. 3. The vari-
ous steps in the data analysis pipeline are detailed below.
The data analyis pipeline was implemented in Python
using the scikit-learn library [45], with the exception
of the Boruta processing step, for which we used the
Boruta package in R [46], and the feature extraction, for
which we used the highly comparative time-series anal-
ysis (HCTSA) package [47, 48], which is implemented
in Matlab and is available on github (https://github.com/
benfulcher/hctsa). To determine sensible values for the
hyperparameters of the model, we performed grouped
4-fold cross-validation on the training set. For more
details on this, along with an analysis of the robust-
ness of the performance of the model to these choices
of hyperparameters, we refer the reader to Additional
file 1.

Feature extraction: Because each EPTS starts with a
large peak at the beginning, an uninformative artifact
of the electrophysiological stimulation, the first 70 data
points of each EPTS are discarded. A diverse and large
set of time series features is extracted from the rest of
the EPTS (1850 data points) with the HCTSA package,
which automatically calculates around 7700 features from
different TS analysis methodologies. The motivation for
this approach is to perform a wide variety of time series
analysis types, and draw general conclusions on what
approaches are useful. It makes the analysis less subjec-
tive, since one does not have to choose a priori the type
of hand-engineered features that are extracted. Given the
large size of this feature set, one expects that almost all
useful statistical information contained in the EPTS is
encoded in it. A detailed discussion of the HCTSA library
and its included features can be found in the manual
of its git repository (https://hctsa-users.gitbook.io/hctsa-
manual/) and in the supplementary information of [47].
There are several highly performant time series classi-
fication libraries available (e.g. [49]). The advantage of
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Table 1 Characteristics of the dataset
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MS type # patients age (SD) EDSS (SD) F / M ratio # visits % worsening
Unknown 138 44 (12) 310 98740 558 131

cls 7 31 (1) 1.3(0.8) 7/0 9 1.1

PPMS 12 57(11) 40(1.4) 7/5 74 122

RRMS 223 44 (11) 26(1.5) 164 /59 1592 9.6

SPMS 45 56 (8) 50(1.5) 31/14 269 14.5

All 419 45(12) 30(1.8) 301/118 2502 11.0

The final column (% worsening) represents the percentage of visits of patients that have worsened 2 years later. Abbreviations used: MS multiple sclerosis, SD standard
deviation, EDSS expanded disability status scale, F female, M male, CIS clinically isolated syndrome, PPMS primary progressive MS, RRMS relapsing-remitting MS, SPMS

secondary progressive MS

using HCTSA is interpretability: after feature selection,
the final model contains one to a few extra features, whose
content can be investigated. This in contrast to more
black-box type classifiers that take the whole signal as
input and return an output. The underlying philosophy
is very similar to, e.g., radiomics for the analyses of MRI
images [50]. To our knowledge, HCTSA is the only library
that computes such a comprehensive set of time series
features.

The feature matrix F;; has rows i for each EPTS and
columns j for each feature. If a column f; contains an error
or NaN value it is discarded. Normalization is performed
by applying the following transformation on each column:

f; — median(f;)

iqr(f;)/1.35 @

T
with iqr the interquartile range. Because the median
and iqr are used, this normalization is robust to out-
liers. All normalized columns f; that contain an error
or NaN are discarded. To exploit the symmetry between
the measurements performed on the left and the right
limb, we sum the features of both sides. This reduces
the number of features we need to consider, which is
helpful against overfitting. The final normalized fea-
ture matrices lA:,'j of AH and APB both have size
5004 x5885.
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Fig. 3 Pipeline Schematic overview of the data analysis pipeline. By grouped stratified shufflesplit we mean splits of train/test sets generated by
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targets are roughly the same for the test and training set. To assess the impact of the size of the training set, we run this pipeline for 4 different ratios

of train/test set size
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Mutual Information: Our goal is to use a feature selec-
tion algorithm in order to determine the most important
features. The ratio of the number of samples to the num-
ber of features is quite small (= 1). The feature selection
algorithm we use, Boruta [46], was expected to work well
for such a ratio [51]. We however found it to perform
poorly for our problem. The performance of Boruta was
tested by adding the latency, which is known to be rel-
evant, to the list of candidates, which was subsequently
not marked as relevant by Boruta. We therefore reduce
the number of features using mutual information with
the target as a measure of feature importance. We select
the top ten percent of features based on this metric. We
performed an analysis of the impact of this choice of
preselection method, for which we refer the reader to
Additional file 1.

Hierarchical clustering: In this step we seek to reduce
redundancy in our choice of features. We estimate this
redundancy using the correlation distance, which we
define here as

correlation distance = ® — w-v- v_) (2)

(@ =)l [(v =W

where u and v are the feature vectors we wish to compare,
and |-||2 the Euclidean distance. Note that we take the
absolute value here so highly anti-correlated features are
filtered as well. Features which are highly correlated have
a distance close to zero, and conversely features which are
not correlated have a distance close to 1. We cluster all fea-
tures at a cutoff of 0.1 and keep only one feature for each
cluster. This step roughly halves the number of features
that remained after the mutual information selection step.
We performed an analysis of the impact of this step on the
final result, for which we refer the reader to Additional file
1.

Boruta With the number of features now reduced to
a more manageable count we run the Boruta algorithm
[46] to estimate the importance of the remaining fea-
tures. In a nutshell, the Boruta algorithm compares the
importance (as determined by a z-scored mean decrease
accuracy measure in a random forest) of a given fea-
ture with a set of shuffled versions of that feature (called
shadow features). If a feature’s importance is significantly
higher than the maximal importance of its set of shadow
features, it is marked as important. Conversely, any fea-
ture with importance significantly lower than the maximal
importance of its shadow features is marked as unim-
portant, and is removed from further iterations. This
procedure is repeated until all features are have an impor-
tance assigned to them, or until a maximal number of
iterations is reached. Because the Boruta method is based
on random forests, and because we use random forests as
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our classifier, we expect it to be well suited for the feature
selection task. We add a few literature features to the set of
TS features as well (latencies, EDSS at Ty and age). There
are multiple reasons for doing this. First off, it allows us to
check the performance of the Boruta algorithm, as these
features are known to be important. Secondly, some of the
TS features may only be informative in conjunction with a
given literature feature. Boruta returns a numerical mea-
sure of feature importance, which allows us to assign an
ordering to the features. On average, some 80 features are
confirmed to be relevant. From these we select the 6 most
important ones, based on their importance score. This
cutoff was chosen empirically using cross-validation (cfr.
Additional file 1), as more features leads to overfitting of
the classifier.

Classifier For the final classification we use a ran-
dom forest, with 100 decision trees and balanced class
weights. Using more trees led to no improvement in cross-
validation (cfr. Additional file 1). We opted for a random
forest classifier due to the fact that it is a non-linear clas-
sifier, which is known to be robust against overfitting [52].
It is a popular choice for machine learning tasks involving
relatively small datasets. We regularize the model further
by setting the minimal number of samples required for a
split to be 10% of the total number of samples. This value
was obtained using cross-validation on the training set
(cfr. Additional file 1). The maximum depth of the result-
ing decision trees averages around 8. As linear models are
most often used in the literature, we use logistic regression
for comparison. Furthermore, logistic regression is often
used as a baseline in these types of machine learning tasks.

As discussed earlier, we have 4 time series per visit, 2 of
the hands (left and right), and 2 of the feet (left and right).
We run the pipeline for the hands and feet separately and
average the predictions of the resulting classifiers to get
the final prediction. This approach was chosen for two
reasons: The time series resulting from the measurements
are quite disparate, therefore the same time series fea-
tures may not work well for both. The other reason is that
adding too many features to the model causes the classi-
fier to overfit. Splitting up the task like this reduces the

number of features per model.
We found that the performance of the algorithm is

greatly influenced by the choice of training and test set.
To get a measure for how much this factors in we run
this data analysis pipeline 1000 times, each time with a
different choice of train/test split. That way we can get
a better understanding of the usefulness of this process,
rather than focusing on a single split. It also drives down
the standard error on the mean performance estimate,
allowing for a more accurate quantification of the perfor-
mance increase we get by adding additional time series
features to the model. We ensure that patients don’t occur
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both in the training and the test set, and that the balance
of the targets is roughly the same for the train and the
test set. We refer to this as grouped (by patients) strati-
fied shuffle splits in Fig. 3, the shuffle pertains to the fact
that the samples are distributed randomly across the train
and test set for each split, subject to the aforementioned
conditions. To illustrate, for some splits we actually obtain
AUC values of 0.97, whereas others are random at 0.5.
Of course, these are just the extreme values, the perfor-
mance turns out to be normally distributed around the
reported results. At this point, we have the ranking of the
10 most important features as determined by the Boruta
algorithm. For the final prediction, we will add the top-»
features. The value of # is determined on a validation set
(as illustrated in Fig. 3). For each train-test split, we use
half of the test set as a validation set. This split into vali-
dation and test set satisfies the same conditions as before,
and we evaluate the model for 100 such splits. So in total
1000 models are trained (on the training set), and are sub-
sequently evaluated 100 times each, leading to 100 000 test
set performances.

There is a trade-off to be taken into account. On the
one hand we want as much data as possible to fit our
model, which would require allocating as much data as
possible to the training set. On the other hand, however,
we want to accurately measure the performance of said
model on an independent test set, which for a hetero-
geneous dataset also requires a large amount of data to
minimize the variance. To get an idea of both extremes we
evaluate the pipeline at various splits of the dataset. We
run the entire pipeline for 4 different sizes of the train-
ing set, composed of 20, 30, 50 and 80 percent of the
dataset. This method also gives information on the neces-
sary dataset size to achieve a certain performance [53, 54]
and on how much room for improvement the algorithm
has when given more data [55, 56].

Results
Disability progression task
Here we present the results of the disability progression
prediction task. In the literature, the main features that are
considered are: Latency, EDSS at Ty, peak-to-peak ampli-
tude, age, gender and type of MS. We note that not all
of these are found to be significant in the literature (see,
e.g., [26]). Using cross-validation (cfr. Additional file 1) we
determined that using the latencies of the left and right
side separately, the EDSS at T and the age worked best
for this prediction task. Adding additional literature fea-
tures leads to a negligible performance increase. We assess
the performance of the literature features as well as the
performance when we add additional time series features.
The main results are shown graphically in Fig. 4, and
numerically in Table 2. As is to be expected, we see that
the overall performance of the pipeline increases as the
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size of the training set increases, while the variance of the
result also increases due to the smaller size of the test set.
The general trend we see is that adding the extra time
series features improves the performance on the indepen-
dent test set, but only marginally. RF performs better than
LR both with and without the additional TS features, with
the difference being especially evident when not adding
them. The figure indicates that increasing the dataset size
further would improve the performance.

As a check for our assumption of using only a subset of
the literature features, we also checked the performance
when adding additional literature features to the classi-
fier (peak-to-peak amplitude, gender and type of MS). The
resulting model performed worse than the model using
just 4 literature features in almost every case, and in the
cases where it does increase it does so by a negligible mar-
gin. It also degrades the performance gain by adding TS
features, presumably due to overfitting. This reaffirms our
decision of using just the latencies, the age and the EDSS
at 7p.

Significance test of performance increase

To check whether the increase in performance by adding
TS features is significant, we employ the DeLong test [57]
which tests the hypothesis that the true difference in AUC
of the model with and without TS features is greater than
zero. For each split we compare the ROC curves of the
classifier with and without the additional TS features. The
results are shown in Fig. 5. We observe that the per-
centage of splits with significantly improved performance
increases with the size of the testset, reaching a maximum
at 80% of the dataset used for the testset. We argue that
the low fraction of significant improvement is mainly due
to the power of the test. To support this further we show
the significance percentages for a single model (the one
trained on 20% of the dataset), tested on subsets of the
remaining 80% of increasing size. The results are shown in
Fig. 6, from which we see the fraction of significant splits
increases steadily with the number of samples in the test
set.

Selected features

It is interesting to see which TS features are often found to
be important according to our feature selection method.
As the pipeline is run independently for 1000 times we
have 1000 ranked sets of features deemed important by
the feature selection. We consider only the train/test-split
where the training set consists of 80% of the dataset, as
the feature selection is most stable in this case. We con-
sider the anatomies separately as the selected TS features
are different for each. Here we give only a brief overview
of the features that we found to be most important. For
a ranked list of the 20 most important features for both
APB and AH we refer the reader to the additional files [see
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Fig. 4 Results of the disability progression task Results are shown for different sizes of training set. Each point represents an average over 100 000
test sets, with the error bar indicating the standard deviation. Results are shown for the baseline model which uses a subset of known features
(Latency, EDSS at Tp and age), as well as a model where we add additional TS features. Abbreviations used: RF Random Forest, LR Logistic
Regression, TS Time series. These results are represented numerically in Table 2
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Additional file 1]. There we also provide a way of obtaining
the code used to generate these features.

APB: The feature most often found to be important ranks
in the final 10 features for 83.9% of splits. In 74.7% of splits
it ranks in the top 3. The feature in question is calculated
by sliding a window of half the length of the TS across
the TS in steps of 25% of the TS (so a total of 3 windows
is considered). For each window, the mean is calculated.
Finally, the standard deviation of these means, divided by
the standard deviation of the entire TS, is calculated. In
practice this feature seems to characterize how fast the TS
returns to an average of zero after the initial peak. The
other high-ranking features are mostly other sliding win-
dow calculations or features that compute characteristics

Table 2 Results of the disability progression task

RF LR
% train Lit TS Sign  Lit TS Sign
80 0.734£0.08 0.75£0.07 121% 0.67£0.10 072+ 0.08 21.8%
50 0.71£005 073 £0.04 187% 067 £0.06 0.71 £0.05 358%
30 070 £0.04 0.72+£0.04 247% 0.65=+0.05 069+ 0.04 37.9%
20 068+0.04 071 £0.04 30.1% 0.63£0.06 0674005 42.2%

The leftmost column indicates what percentage of the dataset was used for

training. Results are shown for the classifier using just latencies, EDSS at Ty and age
(Lit), and for the classifier trained on these features + additional TS features (TS). RF
(Random Forest) and LR (Logistic Regression) indicate the classifier that was used.
The sign column indicates the percentage of splits with a significant improvement,
according to the Delong test. These results are shown graphically in Fig. 4. The
values after & indicate the standard deviations

of the spectral power of the TS. The prominence of these
features drops off quickly, e.g., the second highest ranking
feature occurs in the top 4 for 39% of splits.

AH: For AH one feature in particular stands out. It is
included in the final 10 features for 97.5% of splits. In
90.6% of the splits, it is in the top 3 most important
features. In fact, it is very consistently marked as being
important for various methods of feature selection (cfr.
Additional file 1), more consistently even than all the other
literature features (latency, EDSS and age). Using just this
feature extracted from the AH measurements, a predic-
tion model can achieve a performance of 0.7 & 0.07 AUC
(mean and standard deviation). This makes it a very inter-
esting candidate for further research. Unfortunately, it is
not very interpretable. The feature is calculated by fitting
an autoregressive model to the timeseries, and evaluat-
ing its performance on 25 uniformly selected subsets of
the timeseries of 10% the total length of the time series.
The evaluation is based on 1-step ahead prediction. The
difference between the real and predicted value forms a
new TS, of length 192 in our case. The autocorrelation at
lag 1 is calculated of each of these 25 TS. Finally, we take
the absolute value of the mean of these 25 autocorrelation
values. Further research could be done to determine why
this particular feature is found to be this important. Other
high-ranking features include those that quantify the level
of surprise of a data point, given its recent memory. The
remaining features show no clear pattern of type. As was
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the case for APB, we find that these lower ranked features’
prominence drops off rapidly.

The distributions for the most important features for
each anatomy are shown in Fig. 7. These figures were gen-
erated using kernel density estimation with a Gaussian
kernel. Despite significant overlap in the distributions for

the two classes, there is a definite difference between the
two. For APB the distributions suggest that patients that
are going to worsen have a more rapid return to an aver-
age of zero after the initial peak than patients that will not
worsen. For AH such an intuitive interpretation is diffi-
cult due to the oblique nature of its most important TS

1.0 3

0.9 3

0.5

0.8 :/"“'*'
0.7 3

06- -@- fraction improved LR
i -m- fraction significantly improved LR
—&— fraction improved RF
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likely increase the fraction of splits that show significant improvement

0.5 0.6 0.7 0.8
fraction of the dataset used for testing

Fig. 6 Significance results single model Results of the significance tests, using a single model (trained on 20% of the dataset), and tested on various
sizes of test set. Both the fraction of improved splits and the fraction of significantly improved splits are shown. The trend suggests more data would
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feature. The features that were found have a few hyper-
parameters associated with them that could be optimized
to further boost the performance of the classifier. We will
not be doing this here, as these features were selected
by looking at all splits at once, which covers the com-
plete dataset. Their performance should be evaluated on
another independent test set.

Discussion

This paper presents the first analysis on a new dataset,
containing the full time series of several EP types. The idea
was to extract a large number of features from the MEP
from different time series analysis methods, and use a
machine learning approach to see which ones are relevant.
Improving the prediction of disability progression com-
pared to using only the latencies, age, and EDSS at T was
quite difficult, despite its larger size compared with the
literature. The main problem was overfitting. We expect
the algorithm to deal quite well with noisy input features,
caused by generic measurement noise and variations in
the manual latency annotation. In fact, small input noise
could help to avoid overfitting. The main reason for over-
fitting seems, to us, the noise in the binary target, caused
mainly by an inherent unreliability of the EDSS measure-
ment itself, and the lack of confirmation of the disability
progression. Furthermore, there is an unknown upper
limit for this task: even with an infinitely large cohort, the
task will not be perfectly solvable with the biomarkers in
our model. Our results shown in Fig. 4 suggest that this
upper limit is not yet reached, although we could be close
to it.

On average, one in four TS features that remained
after the mutual information and hierarchical cluster-
ing steps was found to contain at least some infor-
mation relevant to the prediction task, though only a

small subset contained a strong enough signal to be
consistently marked important across multiple train/test
splits. Nevertheless, a significant improvement was found
by adding extra features that showed high importance.
The usefulness of non-linear methods is also clearly
demonstrated.

Much more remains to be investigated on this dataset.
Given the large amount of literature on the usefulness
of mmEP (as discussed in the introduction), the largest
performance improvement is most likely achieved by
including the VEP and SEP. Given the large differences
in measurement times and frequencies of the different
EP modalities, one has to decide between throwing away
a lot of data, or using more elaborate techniques that
robustly handle missing data. The second option that
has potential for significant improvement is analyzing the
whole longitudinal trajectory of the patient [58]. This
in contrast to our current analysis, where a single visit
is used for predicting progression over 2 years. Inclu-
sion of all (sparsely measured) mmEP and longitudinal
modeling can be combined, and is an active research
area [59, 60]. An obvious extension is to use TS algo-
rithms not included in HCTSA. For example, another
library with qualitatively different TS analysis methods is
HIVE-COTE [49].

We have constricted ourselves to predicting progres-
sion over 2 years. This choice was made because it fre-
quently occurs in the literature, and it leads to many
training samples. Longer or shorter time differences are
also of interest. It is, furthermore, believed by some clin-
icians that EPTS pick up disease progression faster than
EDSS. One could check this by using short time-scale
EPTS changes (e.g., 6 months) to predict EDSS changes
on longer time-scales [23], or to detect non-response to
treatment.



Yperman et al. BMC Neurology (2020) 20:105

The obvious left-right-symmetry of the limb measure-
ments is taken into account in a rudimentary way. Incor-
porating this symmetry in a more advanced way could
boost performance. Data augmentation can be used to
expand the size of the training set, which could stabilize
the performance estimate. We note that even small neural
networks are difficult to train on the current dataset. Data
augmentation could make them competitive.

While the achieved AUC of 0.75 £ 0.07 is impressive
for a model with only MEP latency, EDSS at To, age,
and a few additional MEP TS features, there is surely an
upper limit to what mmEP can predict. Other variables
such as, e.g., MRI, cerebrospinal fluid, and genomic data
could boost performance [5]. A very important variable
that is currently not included is the type of DMT the
patient is on. In the absence of a single, highly predictive
marker, personalization will depend on a combinations
of markers. Indeed, several studies show that a multi-
parametric approach may improve our prognostic ability
in MS [61, 62]. It involves the development of predictive
models involving the integration of clinical and biological
data with an understanding of the impact of disease on
the lives of individual patients [63]. Besides the inclusion
of extra biomarkers, another step of great practical impor-
tance is to move towards multi-center design studies. How
well mmEP data from different centers can be combined
remains an open and very important question [64, 65].

Our results contribute to the long-term goal of improv-
ing clinical care of people with MS in several ways.
We add evidence to the hypothesis that EP are a valu-
able biomarker in personalized prediction models. This is
important, because the precise value of EPs for monitor-
ing MS is still under discussion [35-37]. Our evidence is
stronger compared to previous work, because the perfor-
mance is tested on an independent test set, and the EPs
were measured in routine clinical follow-up.

If a model predicts that the patient is likely to progress
in disability, this could be a sign of treatment inefficacy,
and a switch to a different or more aggressive DMT could
be done. Improving the performance of predictive mod-
els can therefore lead to a faster optimal treatment choice,
and result in slower disability progression.

Finally, if our identified extra features are confirmed in
larger, multi-center studies, their evolution over time can
be used to give additional feedback to the caregivers on
the disease evolution.

Conclusions

Multiple sclerosis is a chronic disease affecting millions
of people worldwide. Gaining insight into its progres-
sion in patients is an important step in the process of
gaining a better understanding of this condition. Evoked
potential time series (EPTS) are one of the tools clinicians
use to estimate progression. The prediction of disability
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progression from EPTS can be used to support a clinician’s
decision making process regarding further treatment, and
reduce uncertainty for patients about their disease course.

We presented a prediction model for disability pro-
gression after 2 years, trained on a dataset containing all
available motor EP measurements from the Rehabilitation
& MS Center in Overpelt, Belgium. Any patient with two-
year follow-up is included. It is an order of magnitude
larger than most datasets used in previous works, and for
the first time includes the raw time series, as opposed to
just the high-level features extracted from them (i.e. laten-
cies, peak-to-peak amplitude, and dispersion pattern).
The dataset consists of individuals undergoing treatment,
which is clinically the most relevant scenario. We plan to
make this dataset publicly available in the near future.

We found that adding additional features extracted
from the raw time series improves performance, albeit
marginally (AAUC = 0.02 for the best performing clas-
sifier). Results suggest that the model would benefit from
an increased dataset size. We found that linear models,
often used in previous works, are significantly outper-
formed by the random forest classifier, especially when
not adding extra TS features (AAUC = 0.06). Given the
limited number of biomarkers in the model (EDSS at
To, MEP, and age) and heterogeneity of the cohort, the
reported performance (AUC 0.75 % 0.07) is quite good.
We took an initial look at the features that were found
to boost predictive power and found a few candidates
that might be a good starting point for further research.
The feature found to be important for the feet (AH) (see
“Selected features” section) is particularly robust to all
feature selection methods (cfr. Additional file 1), even
more so than the features currently considered by clini-
cians. If its importance is confirmed in larger, multi-center
studies, further investigation into what this feature mea-
sures could potentially lead to new physiological insights,
and could guide clinicians in their interpretation of the
measurements.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512883-020-01672-w.

Additional file 1: Most important TS features / alternative feature
preselection algorithms. This file contains tables of the 20 most prominent
TS features across the 1000 train/test splits, for both APB and AH
anatomies. It also provides a way of obtaining the code used to generate
these features. There is also a section on a few alternatives for the feature
preselection step. Lastly the process of chosing hyperparameters is
discussed and motivated.
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