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As a new type of artificial neural network model, HTM has become the focus of current research and application. The sparse
distributed representation is the basis of the HTM model, but the existing spatial pool learning algorithms have high training time
overhead and may cause the spatial pool to become unstable. To overcome these disadvantages, we propose a fast spatial pool
learning algorithm of HTM based on minicolumn’s nomination, where the minicolumns are selected according to the load-
carrying capacity and the synapses are adjusted using compressed encoding. We have implemented the prototype of the algorithm
and carried out experiments on three datasets. It is verified that the training time overhead of the proposed algorithm is almost
unaffected by the encoding length, and the spatial pool becomes stable after fewer iterations of training. Moreover, the training of

the new input does not affect the already trained results.

1. Introduction

Neural computing is a hot topic in the field of artificial
intelligence and machine learning. Hierarchical temporal
memory (HTM) is a kind of machine learning technology
that simulates the organization and mechanism of cerebral
cortex cells as well as the information processing pipeline of
the human brain. HTM is trained with a large number of
time-series data and stores a large number of pattern se-
quences. Through the memory, HTM can predict the future
inputs or detect whether the current input is abnormal
according to the temporal history information.

HTM works based on sparse distributed representations
(SDRs) of the inputs. Spatial pool learning algorithm (SPL)
establishes the connection between the input code and the
minicolumn’s synapses using the Hebbian learning rule and
activates the column set by a significant bit in the input code,
thus realizing the SDR of input. In this process, the spatial
pool is expected to maintain a certain degree of flexibility
like the cerebral cortex, so several overlapping goals de-
termine how the spatial pool operates and learns, which
include the following: (1) all columns should learn to rep-
resent something useful regardless of how many columns the

spatial pool has. (2) A region needs to form a sparse rep-
resentation of the input, i.e., only a small percentage of the
columns in the spatial pool should be “winners” for an input.
(3) All columns should represent nontrivial patterns of a
certain level of complexity. (4) A column should be avoided
to respond strongly to many distinctly unrelated input
patterns, i.e., a column should represent a limited number of
input patterns, sometimes only one. (5) The spatial pool
should have the ability of self-adjusting to cope with various
changes, including the damage of the columns and the
damage or change of sensory organs. SPL uses the boosting
rule, inhibition rule, minimal threshold, large synaptic pool,
and Hebbian rule to enable the dynamic configuration of the
spatial pool, thus achieving the desired effect after multi-
rounds of training. In the conventional training, the time
overhead of the algorithm, the sparsity of the active mini-
columns, the stability of the spatial pool, and the utilization
rate of the minicolumn are the main factors to evaluate the
HTM training. In SPL, a large synaptic pool has a great
impact on the training time overhead, and the boosting and
inhibition rules lead to the instability of the spatial pool. In
this paper, we analyze the characteristics of SPL and propose
a fast spatial pool learning algorithm of HTM based on
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minicolumn’s self-nomination (SPL_SN), which includes
the calculation rules of the self-nomination status of the
minicolumn, the selection rule of the minicolumn based on
the load-carrying capacity and level, and the synapse ad-
justment rule based on compressed encoding. The prototype
of the proposed algorithm is tested on three kinds of
datasets, and four criteria are used to evaluate the time
overhead, the stability of the spatial pool, the sparsity of
active minicolumns, and the utilization rate of all columns.
The main contributions are as follows:

(1) SPL_SN reconstructs the structure of the spatial pool
and adds the matching input information to each
minicolumn. Based on the load-carrying capacity of
the minicolumn, i.e., the utilization degree of the
minicolumn, the SPL_SN can make the selected
minicolumns sparsely distributed in the spatial pool.

(2) Different from SPL that uses overlapping values to
select minicolumns, SPL_SN uses the overlapping
values to calculate the self-nomination status of the
minicolumn. The self-nomination status and the
load-carrying capacity of the minicolumn can im-
prove the utilization rate of minicolumns in the
spatial pool.

(3) Different from SPL using the Hebbian rule to adjust
the link between the input and minicolumn, SPL_SN
designs a synaptic adjustment rule based on com-
pressed encoding that can reduce the training time
overhead. The learning of new input does not affect
the trained information in the minicolumn, ensuring
a dynamic adaptability of HTM and improving the
efficiency of HTM training and the stability of the
spatial pool.

(4) The prototype of SPL_SN is implemented in the
HTM open-source framework, and different types of
datasets are used for test and analysis. It is verified
that the algorithm not only meets the flexibility of the
spatial pool but also improves the training efficiency
and stability of the spatial pool.

2. Related Works

Neural networks (NNs) have achieved great success in many
fields, e.g., classification [1], recognition [2], prediction, and
control. In order to further improve their performance and
efficiency, NNs are also exploring in different directions,
such as using dendritic neurons to build networks [3] and
fusing with other neural networks [4]. HTM is a new ar-
tificial neural network model based on Jeff Hawkins’
memory prediction framework [5, 6], and its main workflow
is shown in Figure 1. The network space of HTM is described
as a region composed of multiple columns. Different regions
have hierarchical relationships. There are many cells on a
minicolumn. The cells on each minicolumn share a proximal
dendrite that is used to receive input stimuli. Cells on the
minicolumns have many branches of distal dendrites, which
can be used to build relationships with other cells [7, 8].
After the encoder, the input is transformed into a binary
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vector of equal length, and the number of components with 1
in the vector is equal. Through SPL, the vector activates a few
minicolumns to represent the input data. The temporal pool
learning algorithm (TPL) selects some cells on the activated
minicolumn to express the input location information and
establishes dendrite branches on these cells to construct the
correlation between inputs. The sequence is learned through
SPL and TPL to form memory in the network space of HTM.
When the input sequence is consistent with the memory
sequence, the HTM can predict the next content based on
memory [9]. Two core algorithms of HTM, SPL and TPL, are
used to construct the space invariant [10] and time invariant
[11] features of input sequences, which are the key tech-
nologies for HTM to distinguish similar sequences.

With its advantages in time-series data processing, HTM
has been used to deal with a variety of learning tasks in the
field of time-series data. For example, HTM can be used to
identify traffic anomalies in computer networks [12, 13], to
detect abnormal behavior of website users [14], to process
biological signals, to predict position in the background of
smart home [15], to identify abnormal trajectories of the
constructed geospatial travel pattern [16], to detect anom-
alies in stock trading data [17], to detect the optic nerve
abnormalities in retinal image [18], to detect the online
sequential attack [19], to establish IT event response system,
and so on. These applications have achieved good results.

For SPL, Ahmad and Hawkins give the characteristic
description of SDR and the expression form of information
in the spatial pool [20], which provides theoretical guid-
ance for the following research. Lattner uses the vector to
express and study the spatial pool. He proposes the formula
of calculating the overlapping value and rules of learning
[21]. Byrne describes these formulas by a matrix [22], which
provides the mathematical basis for the derivation of rules.
Leake et al. study and discuss the influence of initialization
parameters on spatial pool calculation [23]. Mnatzaganian
et al. give a comprehensive mathematical framework of
spatial pool [24], so that the follow-up scholars can un-
derstand the core characteristics of SPL and improve the
algorithm from a mathematical point of view. These studies
quantitatively analyze the existing HTM and provide
guidance for the adjustment of training parameters. If the
application has a large input space, the large synaptic pool
maintained by the spatial pool causes intolerable training
time overhead, and the boosting and inhibition rules make
the spatial pool unstable. Although the training results of
the spatial pool can be stabilized by closing the training, the
operation will prevent the new inputs from entering
the training process.

3. The Proposed Algorithm

3.1. Analysis of the Current Spatial Pool Learning Algorithm.
SPL mainly uses the overlapping value to activate the
minicolumn and dynamically adjusts the synaptic value of
the minicolumn to strengthen their relationship. By
boosting factors, the less-active minicolumn can also win the
competition, and each minicolumn in the space pool can
participate in representing the input. By the inhibition
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Ficure 1: HTM workflow. It describes that, after the input is encoded, trained in the space pool, and trained in the time pool, the subsequent

prediction can be made according to the memory.

radius, the activated minicolumns will not concentrate to-
gether, which ensures that the winning set of minicolumns is
sparsely scattered in the spatial pool. By adjusting the
minicolumn’s synapses according to the Hebbian compe-
tition rule, the training results of the spatial pool tend to be
stable after several iterations.

However, the minicolumn activation rule and mini-
column synaptic adjustment rule make the training results of
the spatial pool difficult to stabilize, and the learning effi-
ciency of the algorithm is low. Next, the limitations of these
two rules are analyzed in terms of the stability of the spatial
pool and the efficiency of the current algorithm.

3.1.1. The Limitations of the Minicolumn Activation Rule.
SPL uses the following equation to calculate the overlap
between the minicolumn and the input.

0;=b; ) wyx;, (1)
JeIT;

where w;; indicates whether the connection between the i-th

minicolumn and the j-th component in the input code is

connected, x ; is the value of the j-th component in the input

code, b; is the boosting factor of the i-th minicolumn, and IT;

is the receptive domain of the i-th minicolumn.

In order to activate fewer minicolumns to participate in
the input expression, the algorithm takes the overlapping
value multiplied by the minicolumn’s boosting factor as the
competition basis. The boosting factor is calculated
according to the activation frequency of the minicolumn in
the statistical period and the average activation frequency of
all minicolumns within the inhibition radius. a; refers to the
activation frequency of the i-th minicolumn at time ¢. It can

be calculated with the following equation. T is the statistical
period.
1,

¢ T—lxﬁf’
ai—f,

a: refers to the average active frequency of all minicolumns
in the inhibition radius at time ¢. It can be calculated from
the following equation, where N, is the set of all mini-
columns within the inhibition radius of the i-th minicolumn.

—t 1 —t
a.=— a.
NP

(3)

Using these two mean values, the boosting factor of the
minicolumn can be calculated by the following equation,
and B is the adjustment factor.

b = H ) )

The value of the boosting factor will increase greatly if
the minicolumn is not activated for a long time. In this case,

the minicolumn with lower activation frequency can be
activated by the following equation:

t_
a; =

where a; indicates whether the i-th minicolumn is activated
at time t. V; is the set of overlapping values of minicolumns,
and these minicolumns are within the inhibition radius of
the i-th minicolumn. ZV;, num returns the k-th value in V;
according to the overlapping values, and k is the number of
minicolumns to be activated. 6.  is the minimum threshold
to activate the minicolumn.

1’
0,

lf Oi > ZV,‘, k and Oi > gsﬁm)

(5)

otherwise,

stim



First, the code length determines the number of the
minicolumn’s synapses and affects the size of minicolumn’s
receptive domain. The long encoding will increase the
workload of calculating the overlapping values and adjusting
synaptic persistence. The computational efficiency of the
current spatial pool learning algorithm is greatly affected by
the code length. Secondly this minicolumn activation rule
will cause the spatial pool unstable, especially when the input
training space is small and the spatial pool capacity is large.
This is because the boosting strategy ensures that all min-
icolumns participate in expressing the input while ignoring
the need for individual input to be stably expressed. For
example, if only one input X is trained and the overlap
between X’s code and y; is greater than the k-th value within
Ni={y1, Y2 - - > Vi Vis1> - - » Viem }> then y; will be activated in
the previous training. As the training process goes on, other
minicolumns are seldom activated, and their boosting fac-
tors will become very large. Then, one of them will win in the
competition and be activated. This makes the minicolumn
set activated by X unstable, which leads to ineffective distal
synaptic connections in the temporal pool.

3.1.2. The Limitation of Minicolumn Synaptic Regulation.
When a minicolumn set is activated by the input, SPL will
adjust the permanence of the proximal synapses on the
minicolumns according to the Hebbian rule, which can be
described as follows:

D;; =D, +p'Djx; - p Dy(1-x;), ifie W, (6)

where p* represents the increment of permanence and p~
represents the decrease of permanence. D;; represents the
permanence of the connection between the i-th minicolumn
and the j-th component in the input code. x; is the value of
the j-th component in the input code, and W' is the set of
active minicolumns at time .

Usually, a minicolumn is involved in the expression of
multiple inputs. The regulation of minicolumn synapses not
only enhances the expression ability of the minicolumn for
the current input but also reduces the expression ability for
other inputs. If a trained input does not participate in SPL
for a long time, it will lose the ability to activate the min-
icolumns. We can call the process of forgetting. Forgetting
has its significance in the biological system, such as reducing
the memory of uncommon concepts, reducing energy
consumption, and highlighting the cognition of recent
learning content. However, in the HTM model, forgetting in
the spatial pool will bring great cost to subsequent learning.
If the forgotten input enters SPL again, it will activate a new
minicolumn set, which leads to an unstable expression of a
given input. In this way, what the temporal pool has learned
becomes meaningless or unpredictable. Therefore, the for-
getting mechanism is not suitable for SPL, but it is very
useful for TPL of HTM.

The Hebbian rule adjusts the spatial pool dynamically to
a stable state after iterative training. If a new input destroys
much information stored in the current HTM, the spatial
pool needs many iterations of training to reach a new stable
state. It will affect the efficiency and effectiveness of HTM.
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3.2. The Self-Nominations of the Minicolumn. In SPL, the
minicolumn has two states according to the input stimulus,
active and inactive. However, in SPL_SN, the minicolumn is
given three self-nomination states based on the overlapping
values, the same, similar, and distinct. The status indicates
the willingness of the minicolumn to participate in the
expression of the current input. Then, through the spatial
pool, the appropriate minicolumns are selected to activate in
different states to express the input. In doing so, the spatial
pool is given the decision to activate the minicolumns. The
spatial pool can combine the statistical information of the
minicolumn to select the minicolumn more reasonably and
improve computational efficiency.

The overlapping value between the minicolumn and the
input is only used to determine the self-nomination state of
the minicolumn, which can be calculated by the following
equation:

0; = Z wijxj. (7)
Jel;
According to the overlap value, the minicolumn can be
given three different self-nomination states by the following
equation:

same, if 0; > Othreshold>
imil if Othreshold< <
state (i) = 4 StRHaL TS 055 Othreshold» (8)
.. . o
distinct, if o; < w,

where 0y, ehoid Tepresents the threshold at which the min-
icolumn can be activated and state(i) expresses the rec-
ommendation state of the i-th minicolumn under the
current input training environment. The value of state (i) can
be the same, similar, or distinct. If state(i) is the same, it
means that the minicolumn can be activated by the current
input, and a certain input that the minicolumn has par-
ticipated in is extremely close to or even the same as the
current input. If state (i) is similar, it means that the min-
icolumn overlaps with the current input, but it has not been
activated. The content of a certain input that the minicolumn
has participated in is similar to the current input. If state (i) is
distinct, it means that the minicolumn overlaps less with the
current input, and all inputs that the minicolumn has
participated in are quite different from the current input.

According to state (i), the minicolumn can be divided
into three levels, which represent the similarity between the
learned content and the current input, that is, the different
willingness to participate in the current input. Based on this,
the minicolumn selection algorithm can improve the uti-
lization of every minicolumn.

3.3. The Minicolumn Activation Rule. To improve the
minicolumn section for the input, we reconstruct the spatial
pool’s structure and more information of the minicolumn
will be used. The minicolumn not only calculates the degree
of willingness to participate in the current input, i.e., the self-
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nomination state, but also saves the content and the number
of different inputs that have been participated in through the
previous learning process. This information is called the
load-carrying capacity of the minicolumn, which can be used
as a measure of the utilization degree of the minicolumn. By
tully utilizing the self-nomination status and load-carrying
capacity of the minicolumn, the appropriate minicolumn set
can be selected to express the current input. Suppose that a,,
minicolumns are used to express the input in the spatial pool
and the minicolumn sets of adjacent inputs overlap at most
0,, minicolumns. The idea of the fast training algorithm is
described as follows:

(1) The current self-nomination status is calculated
according to the input.

(2) For minicolumns with state (i) = same, the algo-
rithm selects the minicolumns containing the cur-
rent input values to activate and count them as n;. If
n, > a,, it returns this set of active minicolumns for
the input. Otherwise, the 1, minicolumns with the
lowest load-carrying capacity are randomly selected
from the remaining minicolumns for activation, and
n, takes the maximum value that satisfies the con-
straint n; + n, <o,,. Then, the algorithm updates the
load-carrying information of the n, minicolumns,
saves the current input on the minicolumns, and
increases the number of inputs that the minicolumn
participates in by 1.

(3) For the minicolumns with state(i) = similar, ns
minicolumns with the lowest load-carrying capacity
are randomly selected to activate, and n; takes the
maximum value that satisfies the constraint
n, +n, + ny<o,. Then, the algorithm updates the
load-carrying information of the n, minicolumns,
saves the current input on the minicolumns, and
increases the number of inputs that the minicolumn
participates in by 1.

(4) For minicolumns with state (i) = di stinct, a,, —n, —
n, — ny minicolumns are selected to activate. Then,
the algorithm updates the load-carrying information
of these minicolumns, saves the current input on the
minicolumns, and increases the number of inputs
that the minicolumn participates in by 1.

SPL_SN activates a predetermined number of mini-
columns with state(i) being the same or similar, which
ensures that the training results of the spatial pool satisty the
characteristic that the minicolumn sets of similar input have
a certain overlap. The random minicolumn selection strategy
ensures that the set of active minicolumns can be sparsely
scattered in the spatial pool and improves the utilization rate
of the minicolumns as much as possible. The a,, limits the
number of activated minicolumns to ensure the convergence
of the algorithm.

3.4. The Synaptic Adjustment Rule. There is a mapping be-
tween the minicolumn set activated by SPL_SN and the
current input. Therefore, it is necessary to add synaptic

connections to the input to maintain the mapping. How the
active minicolumn increases the synaptic connection is
shown in the following equation:

W =W ,uive_iencoder (CurrentInput), 9)

active_i

where active_i is the number of active minicolumns selected
by the algorithm for the current input, W ;. ; represents the
connected synapses of the minicolumn. CurrentInput is the
content of the current input, and encoder (CurrentInput) is
the compressed code of the current input.

SPL is based on the input distribution code. The rule
of the encoding is usually to express the input with a
fixed-length binary vector, in which the number of
components with value 1 is small and fixed. This encoding
rule scatters the input characters to each component with
value 1, which can be called 1-component. By encoding
similar inputs with a certain number of overlapped
components, the influence of noise on the input can be
reduced and the robustness of the system can be im-
proved. In the training process of the spatial pool, the
number and position of the 1-components are the factors
to calculate the overlapping values and adjust the syn-
apse. Therefore, we propose an effective compressed
encoding method, which expresses scalars with shorter
vectors.

For any scalar i, the corresponding encoding rule can be
given as shown in the following equation:

s(i) = (w—-k) x1i, (10)

encoderi ={s(i),s (i) + 1,s(i) + 2,...,s(i) +w}, (11)

where w represents the number of 1-components in the
code, k represents the overlap number of 1-components in
adjacent scalar coding, s(i) represents the starting position
of l-components in input coding, and encoderi is the
compressed code of scalar i.

In the input compressed encoding, a longer binary vector
can be represented as the position vector of 1-components,
and the length of the uncompressed code is hidden.
Therefore, no matter what the input value is, the length of
the compressed code is fixed and short. This encoding rule
can improve the efficiency of calculating the overlapping
values. When the input code is superimposed on the
minicolumn, it shows that the minicolumn has participated
in the expression of the input, so that the spatial pool can
express the input with a relatively fixed set of minicolumns
through fewer rounds of training. Moreover, when a new
input enters the training and modifies the connection of the
minicolumn’s synapses, the connection among the existing
synapses is not adjusted, so the trained result will not be
affected. Although the adjusting rule shown in equation (11)
may result in a large overlap between the minicolumn and
the uncorrelated input code, the minicolumn will not be
activated because the minicolumn’s load-carrying capacity
does not have the input information. Thus, different inputs
can be mapped into different minicolumn sets.



3.5. The Flow of SPL_SN. 'The flow of SPL_SN is shown in
Table 1.

SPL_SN modifies the rules of SPL. It calculates the self-
nomination states of the minicolumns based on the over-
lapping values to express the willingness of the minicolumns
to represent the input and activates minicolumns based on
their self-nomination states and load-carrying capacity. The
minicolumn selection rule is dominated by the spatial pool,
so it can make full use of the minicolumns and improves the
efficiency of spatial pool learning. The compressed encoding
algorithm uses the position of 1-components to reconstruct
the code which simplifies the expression of the code and
improves the efficiency of the query. When learning the new
inputs, the synaptic adjustment rule based on compressed
encoding does not affect the trained information in the
minicolumns, which improves the efficiency of training and
the stability of the spatial pool.

4. Evaluation and Analysis

Built upon the Numenta’s open-source HTM code, a pro-
totype system of SPL_SN is implemented. Three datasets are
used to evaluate the SPL and SPL_SN.

4.1. Datasets and Evaluation Metrics. In this paper, three
datasets are used to evaluate SPL and SPL_SN. The first two
datasets are constructed artificially using the integer number
between 1 and N as the input space. Relative to the spatial
pool settings, N takes 10 and 5000 for the smaller input space
and larger input space. The last dataset is the time-period
statistics of New York taxi passengers, which is constructed
by choosing the number of passengers every 30 minutes
between July 1, 2014, and October 13, 2014, in total 5,000
data.

We train SPL and SPL_SN with the three datasets
separately and analyze the advantages and disadvantages of
the algorithm through the result of each training round. The
evaluation criteria are listed below:

(1) Time overhead: for the same input space and dif-
ferent length of code, the computation efficiency of
the algorithm is evaluated by the time overhead for
one round of training.

(2) Stability of the spatial pool: it includes two meanings.
The first is to describe whether the spatial pool can
express the input with a fixed set of minicolumns.
The second is to describe whether the new input will
affect the trained results. The mean stability (MS) is
used to evaluate the stability of the spatial pool.
Assume that the set of minicolumns corresponding
to input i after the k-th round is C¥; then, the stability
of input i after the k-th round (S¥) is calculated with
the following equation:

{1, ifCk! == ¥,

0, otherwise.

sk =

1

(12)
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With the stability of each input (Sf‘), the mean sta-
bility (MS) of the spatial pool after the k-th round is
calculated using the following equation, where M is
the number of inputs:

MS = - fs" (13)
_Mi:I a

(3) The sparsity of input representation: it describes
whether a spatial pool can express the input with a
relatively fixed number of minicolumns. After each
round of training, we count the number of active
minicolumns for each input and calculate their mean

(Eqparse) and standard deviation (0pqree)- Egparee and

Ogparse €an evaluate the sparsity of the input repre-
sentation. These two values are calculated using the

following equation, where M is the number of inputs:

M
Esparse = % Z ’Cfcl’ (14)
i=1
2
M <|C:(| - Esparse) (15)
Usparse = . T

—_

(4) The utilization of minicolumns: it describes whether
the minicolumns can be activated more evenly. The
standard deviation of the minicolumn activation
frequency is used to describe this indicator. After the
k-th round, the activation frequency of minicolumn j
(P (j)) is calculated by the following equation, where
ac; indicates whether the input i activates the

minicolumn j and M is the number of inputs:

. k
1 M , 1, jeC;,
P(j)=— ) ac’, ac; = S (16)
V= y &%
i=1 0, otherwise,

The average activation frequency of all minicolumns
(Efrequency) can be calculated by the following equation,
where N is the number of minicolumns:

1Y
Efrequency = N le(.]) (17)

The standard deviation of minicolumn activation fre-
quency (Ofequency) can be calculated by the following
equation:

. 2
N (P(]) - Efrequency) (18)
Ofrequency = Z N .

—

4.2. Testing Environment. The parameters of the spatial pool
are shown in Table 2.

We have implemented the algorithm using Java in the
Windows 10 operating system, and the program runs on a
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TasLE 1: The flow of SPL_SN.

(1) Encode the input

(2) Calculate the overlapping value between the minicolumn and the input

(3) Calculate the minicolumn’s self-nomination status according to the overlapping value

(4) Activate the minicolumns based on their self-nomination statuses and load-carrying capacity
(5) Update the loading capacity and adjust synapses on activated minicolumns

TaBLE 2: Parameter configuration for the spatial pool.

Common parameter Value
COLUMN_DIMENSIONS 128
GLOBALINHIBITION True
NUMACTIVECOLUMNSPERINHAREA 7.0
SYN_PERM_ACTIVE_INC 0.015
SYN_PERM_INACTIVE_DEC 0.0005
DUTY_CYCLE_PERIOD 1000
MAX_BOOST 10

PC with an Intel core tm i7-7500u 2.9 GHz CPU processor
and 8 GB memory.

4.3. Results and Analysis

4.3.1. The Artificial Dataset with Small Input Space. The
input space is constructed by numbers from 1 to 10. The
coding length is set to 5000, 20000, and 40000, respectively.
The two algorithms train all inputs for 10 rounds with
different code lengths. Then, we collect and compare the
results after each round.

Figure 2 shows the training time overhead in each round
with different coding lengths. It can be seen that, with the
increase of code length, the time overhead of SPL increases
rapidly, while the time overhead of SPL_SN is much lower
and almost does not increase. This is because, in SPL, the
increase of code length increases the number of the mini-
column’s synapses and also affects the size of the receptive
domain, which increases the workload of calculating the
overlapping value. In SPL_SN, the length of the compressed
code is fixed and short, and the number of the minicolumn’s
synapses which are composed of a small number of input
codes is small, so the workload of calculating overlapping
values is low and hardly changed. It shows that the time cost
of SPL_SN is hardly affected by the code length.

Figure 3 shows the stability of the spatial pool. When SPL
trains data with small input space, the stability of the spatial
pool tends to increase with more training rounds. However,
the spatial pools cannot be stabilized completely because of
the boosting and inhibition rules. Therefore, SPL suggests
that the learning function should be turned off after certain
rounds of training. This is to avoid that the instability of the
spatial pool may introduce invalid distal synapses to the
temporal pool. However, turning off the learning function
will make the spatial pool unable to deal with the new inputs.
SPL_SN maintains the high stability of the spatial pool. This
is because the synaptic adjustment rule based on compressed
encoding enables the proximal synapses of the minicolumn
to quickly establish and solidify the corresponding mapping
with the input code, to express the input with a relatively

stable minicolumn set. Each subsequent training can be
regarded as training on a new input relative to the trained
content. If the new input training does not affect the trained
content, it shows that the training algorithm has a strong
anti-interference performance. SPL_SN cannot change the
trained content in each training, which shows that the al-
gorithm has a high anti-interference performance.

Figure 4 shows the results on the sparsity of the input
representation. SPL_SN, like SPL, is able to express the input
with a sparse minicolumn set according to the parameters.

Figure 5 shows the minicolumn utilization. Because of
the small input space, the results of the two algorithms
cannot make all minicolumns participate in the input ex-
pression. In the early training of SPL, the activated mini-
columns are in a small range of the spatial pool. With the
boosting and inhibition rule, the activated minicolumns
gradually scatter in the spatial pool. SPL_SN can express the
input with a more dispersed set of minicolumns in the first
round of training.

4.3.2. The Artificial Dataset with Larger Input Space. The
input space is constructed by numbers from 1 to 5000. The
code length is set to 5000, 20000, and 40000, respectively.
The two algorithms train all inputs for 10 rounds with
different code lengths. Then, we collect and compare the
results after each round.

Figure 6 shows the training time overhead in each round
with different coding lengths. It also can be seen that, with
the increase of code length, the time cost of SPL increases
rapidly, and the time cost of SPL_SN is lower and almost
does not increase. Compared with the previous dataset, the
training time overhead of this dataset is much higher
because the number of inputs is much more than that of the
previous dataset. It shows that the time overhead of SPL is
affected by the size of input space and code length, while the
time overhead of SPL_SN is only affected by the size of input
space and is hardly affected by the length of the code.

Figure 7 shows the test results on the stability of the
spatial pool. When SPL trains input data with a larger input
space, the spatial pool can be more stable after the first round
of training compared to the result of a small input space. This
is because all minicolumns participate in the expression of
inputs and the activation frequencies of the minicolumns are
similar. Therefore, the probability of minicolumn synaptic
adjustment is reduced and the spatial pool is relatively more
stable. However, due to the boosting and inhibition rules of
SPL, the spatial pool cannot achieve a completely stable state
even with more training rounds. SPL_SN has established the
mapping between the input and minicolumn set in the first
round of training, and the subsequent training process does
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FIGURE 2: The training time overhead of two algorithms. Each column in the graph represents the training time overhead of the dataset after
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F1Gure 3: Comparison of stability in small input space. Each node
in the graph represents the proportion of inputs which SDRs have
not changed in the whole dataset compared with the results of the
previous round of training. The dataset was trained for 10 rounds
using different algorithms.

not change the learned content, so SPL_SN can keep the
desired stability of the spatial pool.

Figure 8 shows the sparsity of the input representation.
SPL_SN, like SPL, is able to express the input with a sparse
minicolumn set according to the parameters.

Figure 9 shows the minicolumn utilization. For the large
input space, all minicolumns in the spatial pool participate
in the expression. Each minicolumn of both algorithms
participates in the expression of 273 inputs on average. With
the increase of training rounds, SPL slowly decreases the
standard deviation of the average participation degree due to
the boosting rule and inhibition rule. This indicates that the
utilization degree of the minicolumn becomes higher. For
SPL_SN, the standard deviation of the average participation
degree of the minicolumn is close to 0 in the first round of
training, which means the proposed algorithm can efficiently
utilize the minicolumns at the beginning.

4.3.3. The New York Taxi Passenger Flow Dataset. The input
space is constructed by the New York taxi passenger flow
with 5000 data. In this dataset, the largest piece of data is
39375. Therefore, we set the code length to 40000 to express
the input. This setting can meet the requirements of the
input space encoding. The two algorithms train all data for
10 rounds. Then, according to the training results of each
round, we evaluate the characteristics of the spatial pool.

Figure 10 shows the comparison of the training time
overhead of each round. The time overhead of SPL is
much larger than that of SPL_SN in each training round.
It is because the maximum value of taxi passenger flow
data is 39375, which requires a longer code to express the
input. The longer code length increases the number of
synapses of the minicolumn and the workload of cal-
culating overlapping values. In SPL_SN, the input’s
compressed code is not affected by the code length, so the
time overhead does not increase. These results are con-
sistent with the prior experiment where the encoding has
the same length.

Figure 11 shows the test results on the stability of the
spatial pool. This result is the same as that of the artificial
dataset with 5000 data. SPL_SN can keep the desired stability
of the spatial pool. SPL increases the stability of the spatial
pool with more training rounds, but ultimately it does not
achieve the desired goal.

Figure 12 shows the sparsity of the input representation.
SPL_SN, like SPL, is able to express the input with a sparse
minicolumn set according to the parameters.

Figure 13 shows the minicolumn utilization. This ob-
servation is the same as that of the artificial dataset with 5000
data. Both algorithms make efficient use of the minicolumns
of the spatial pool, while SPL_SN achieves this faster.

5. Conclusions and Prospection

In this paper, we propose a fast spatial pool learning algorithm
called SPL_SN. The spatial pool is reconstructed so that more
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information and states are provided into the minicolumn. We
propose a minicolumn selection strategy based on the load-
carrying degree and a synaptic adjustment algorithm based on
compressed encoding. These improvements not only ensure the
flexibility of the spatial pool but also greatly improve the
training efficiency and stability. In the future research, we intend
to construct a model based on HTM which can deal with the
data with 3D (2D spatial+1D time) feature. Besides, we intend
to implement a content-based fast retrieval system that can
improve the retrieval speed of such applications.
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