
Jerarca: Efficient Analysis of Complex Networks Using
Hierarchical Clustering
Rodrigo Aldecoa, Ignacio Marı́n*

Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientı́ficas (IBV-CSIC), Valencia, Spain

Abstract

Background: How to extract useful information from complex biological networks is a major goal in many fields, especially
in genomics and proteomics. We have shown in several works that iterative hierarchical clustering, as implemented in the
UVCluster program, is a powerful tool to analyze many of those networks. However, the amount of computation time
required to perform UVCluster analyses imposed significant limitations to its use.

Methodology/Principal Findings: We describe the suite Jerarca, designed to efficiently convert networks of interacting
units into dendrograms by means of iterative hierarchical clustering. Jerarca is divided into three main sections. First,
weighted distances among units are computed using up to three different approaches: a more efficient version of UVCluster
and two new, related algorithms called RCluster and SCluster. Second, Jerarca builds dendrograms based on those
distances, using well-known phylogenetic algorithms, such as UPGMA or Neighbor-Joining. Finally, Jerarca provides optimal
partitions of the trees using statistical criteria based on the distribution of intra- and intercluster connections. Outputs
compatible with the phylogenetic software MEGA and the Cytoscape package are generated, allowing the results to be
easily visualized.

Conclusions/Significance: The four main advantages of Jerarca in respect to UVCluster are: 1) Improved speed of a novel
UVCluster algorithm; 2) Additional, alternative strategies to perform iterative hierarchical clustering; 3) Automatic evaluation
of the hierarchical trees to obtain optimal partitions; and, 4) Outputs compatible with popular software such as MEGA and
Cytoscape.

Citation: Aldecoa R, Marı́n I (2010) Jerarca: Efficient Analysis of Complex Networks Using Hierarchical Clustering. PLoS ONE 5(7): e11585. doi:10.1371/
journal.pone.0011585

Editor: Carl Kingsford, University of Maryland, United States of America

Received April 29, 2010; Accepted June 20, 2010; Published July 14, 2010

Copyright: � 2010 Aldecoa, Marı́n. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by grant BIO2008-05067 (Programa Nacional de Biotecnologia; Ministerio de Ciencia e Innovacion, Spain). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: imarin@ibv.csic.es

Introduction

There are many types of data, both biological and non-

biological, which can be represented as undirected graphs.

Examples in biology are networks based on protein-protein

interaction data, those based on shared protein domains, genetic

interaction networks or coexpression networks. Developing

heuristic strategies to extract useful information from them is an

active field of research (reviewed in [1–3]). A typical problem is

how to generate partitions of a network in order to establish

clusters, groups of tightly connected units. There are two basic

general strategies to perform such a task. One option is to search

for densely connected modules, for instance using a local

evaluation function that measures when adding or eliminating

units leads to a significant decrease of the average density of

connections within a group (see e. g. refs. [4–9]). A second

possibility is to generate complete partitions of the graph, assigning

each unit to a cluster. This requires global parameters to evaluate

the quality of the alternative partitions [10–12]. Although both

methods have advantages and drawbacks, the latter should be

considered preferable on theoretical grounds, given that it allows

classifying all the units of the network.

To classify data, hierarchical clustering has several advantages

over other procedures. First, it is a fully unsupervised method. In

the case of networks, this allows to cluster all units without having

to specify a priori the number of clusters present. In addition, the

generation of a hierarchical tree provides not only partitions of the

network (either by how units are grouped in agglomerative

clustering, or by how the units are divided into groups, in divisive

clustering), but also allows to visualize how the basic, first-order

clusters are combined into higher-level groups. However, the

development of hierarchical clustering strategies to analyze

networks is problematic. Particularly, clustering unweighted

undirected graphs (e. g. networks of interacting units) is seriously

hampered by the ‘‘ties in proximity’’ problem (discussed in [12]).

In this type of networks, the distance between two units is defined

as the minimal number of edges that must be walked to connect

them. Then, in typical biological networks – large and with small-

world properties – the number of tied distances is astronomical.

This makes it impossible to directly obtain a reasonable

hierarchical tree based on the distances among units. The problem

caused by the ties is that in each step of the clustering process a

large number of alternative agglomerations (or divisions) are

possible. Several authors attempted to solve this problem by using

PLoS ONE | www.plosone.org 1 July 2010 | Volume 5 | Issue 7 | e11585

measures of proximity among units different from their distances

[13–15]. However, to justify the usage of any of these alternative

parameters is difficult. A few years ago, we devised a valid strategy

to solve the ties in proximity problem [12]. The first step consists

in generating a large number of alternative, mathematically

equivalent partitions of the network using the distances among the

units (primary distances, according to our nomenclature) and

conventional (e. g. average linkage) hierarchical clustering. The

results are then averaged to obtain a weighted distance measure

for each pair of units (secondary distance). This distance corresponds

to the fraction of alternative partitions in which two units are

assigned to different clusters. Finally, a dendrogram is obtained

from the matrix of secondary distances. This strategy, which we

called iterative cluster analysis, has already empirically demon-

strated its usefulness. High-quality dendrograms have been

obtained from complex networks derived from different types of

biological data [16–18]. However, performing iterative hierarchi-

cal clustering has been so far hampered by the intrinsic slowness of

obtaining a representative set of partitions. For example, our

original program, UVCluster [12], runs in O(n3) time, n being the

number of nodes. For this reason, the largest analysis published so

far corresponds to a network with just 632 units [18].

In this work, we describe a suite of programs called Jerarca

(Spanish for hierarch), which contains new, efficient algorithms to

perform iterative hierarhical cluster analyses. One of them is

basically a faster implementation of the UVCluster program. The

other two, RCluster and SCluster, provide alternative ways to

obtain the matrices of secondary distances from a graph. In

addition, for the conversion of the matrix of distances into a

dendrogram, two well-known phylogenetic algorithms, UPGMA

and Neighbor-Joining [19–21] have been included in Jerarca.

Finally, Jerarca also includes two different mathematical criteria to

determine the best partition of the dendrogram into clusters. The

first one is a parameter called modularity (Q) [10], which has been

extensively used to measure community structure in networks. As

an alternative, we include a modification of a hypergeometric

distribution-based index suggested in one of our previous works

[12]. Several output files, useful to edit and visualize the results,

are generated by the program. All these options make Jerarca

much more efficient and versatile than our original UVCluster

program.

Methods

General features of the program
The Jerarca suite has been written in C++. Both the source code

and compiled versions for Windows and Linux platforms are freely

available at http://jerarca.sourceforge.net. Figure 1 details the

control flow structure of the code. To perform a round of analyses,

the user must execute the program from a command window,

writing four parameters in the following order: 1) the name of a

text file that describes the list of edges of the graph. The names of

two linked nodes, separated by a tab or space, must be written in

each line of the file; 2) the algorithm(s) chosen to iteratively

calculate the matrix(ces) of secondary distances; 3) the algorithm(s)

that will be used to obtain the dendrogram; and, 4) the number of

iterations to be performed. Therefore, a typical Jerarca input has

the following structure (parameters are indicated in brackets):

jerarca [Name of the file] [Name of the iterative algorithm: (uv,

r, s, all)] [Name of the tree algorithm: (u, nj, all)] [Number of

iterations]

For the iterative algorithm, four options are valid: uv

(UVCluster), r (RCluster), s (SCluster) and all. This last option

will produce three parallel solutions, one for each available

algorithm. For the tree algorithm, three options are valid: u

(UPGMA), nj (Neighbor-joining) and all. This last option again will

produce two solutions, one for each algorithm.

A typical Jerarca analysis is shown in Figure 2. In summary, the

program reads the input file and creates the adjacency matrix A of

the graph: Aij = 1 if vertices i and j are connected and Aij = 0

otherwise. Then, it applies the iterative algorithm(s) selected as

many times as the number of iterations specified. To calculate the

matrix of secondary distances, the algorithm saves, for each pair of

nodes, the number of iterations in which they have been clustered

separately, and the secondary distances between each two units are

calculated by dividing those values by the number of iterations.

After creating the matrix of secondary distances, the program uses

the phylogenetic algorithm(s) chosen to build a dendrogram. The

program finally evaluates, using the two indices implemented,

each level of the dendrogram and saves the optimal partition of the

tree for each index (see below). Several convenient output files

(described also in detail below) are generated.

Details of the iterative algorithms
We recently developed several novel ideas that are the basis of

Jerarca. We first thought a way to notably improve the speed of

the UVCluster program. UVCluster contained a parameter called

Affinity Coefficient (AC), which sets how permissive the clustering

process is, in such a way that the lower the AC value, the larger the

average distances among clustered units can be (see [12] for a

detailed explanation). The maximum value of AC = 100 implies

that only units that are directly connected in the graph are

clustered together. Very significantly, this value was the only used

in all our subsequent works [16–18]. Not a single useful

application for other values has ever been found. This has an

important consequence, given that, if we fix AC = 100, UVCluster-

based iterative hierarchical clustering can be performed using the

adjacency matrix of the network instead of the matrix of primary

distances. This avoids computing the primary distances among all

units using Floyd’s algorithm, whose time complexity is O(n3).

Once noticed that important point, we decided to generate a new

version of UVCluster implementing this new approach. It turns

out that this improved version is qualitatively faster than our

former program, running in O(n2) time.

Two new algorithms, called RCluster and SCluster, described

here for the first time, provide alternative ways to establish the

matrix of secondary distances, following strategies related to the

one implemented in the new version of UVCluster. These

programs use alternative methods to select the units to be merged.

Figure 3 shows a compact, technical description of their

differences. However, we think that the reader may benefit from

the following verbal summary of how the three programs work.

The differences in the clustering process are as follows:

A) To select which units to merge, UVCluster generates in each

iteration a list in which the units are randomly ordered and

then proceeds to generate a cluster taking the first unit in that

list and searching for all the units that can be merged to that

one, according to the provided AC parameter. If AC = 100

(fixed value in the new version of the program) this means

that UVCluster establishes cliques, i. e. groups in which each

unit is connected with all the rest of units in the group. Once

the largest clique that can be formed from the first selected

unit is found, the units of that clique are set apart (i. e. they

are considered to form a cluster) and the next unit still

available in the list is used to start again the same process.

This is a greedy algorithm, which tends to favor finding

compact clusters.

Clustering with Jerarca

PLoS ONE | www.plosone.org 2 July 2010 | Volume 5 | Issue 7 | e11585

Figure 1. Control flowchart of Jerarca. The four input parameters are file (list of interactions that represent the edges of the network), iAlg
(iterative algorithm to use), tAlg (tree algorithm to use) and n (number of iterations to perform).
doi:10.1371/journal.pone.0011585.g001

Clustering with Jerarca

PLoS ONE | www.plosone.org 3 July 2010 | Volume 5 | Issue 7 | e11585

B) Our second algorithm, RCluster (R meaning random), also

establishes cliques but, instead of using a starting unit and

greedily making a particular cluster to grow from it, RCluster

in each step randomly merges two clusters, provided that all

their units are connected (i. e. they form, after being merged,

a clique). The program follows a hybrid strategy to select the

clusters. To start with, the program simply randomly picks

up two clusters, establishes whether they can be merged or

not and, if indeed it is possible to merge them, puts all the

units together into a single, new cluster. While there are

many clusters that can be merged, this simple strategy is very

efficient and it has the big advantage of not requiring to

recalculate the adjacency matrix in each merging step,

something that is very time consuming for large graphs.

However, as the merging process progresses, the likelihood of

finding mergeable clusters just by randomly picking up two

of them gets smaller. It is then convenient to shift to a second

strategy, which is indeed based on generating in each step of

the merging process an adjacency matrix, in which a value

Aij = 1 means that the units of the two clusters (i, j) form a

clique. This second strategy is implemented in two steps: 1)

The program generates an adjacency matrix and then

randomly searches for a Aij = 1 value in that matrix to merge

two clusters; 2) It recalculates the adjacency matrix.

Logically, for the newly formed cluster, it assigns a value of

‘‘1’’ with another cluster only when all the units in both

clusters are connected. These two processes are repeated

until no clusters can be merged. The transition from the first

to the second strategy occurs when n random picks, n being

the number of nodes of the network, have failed to find two

mergeable clusters. Empirical analyses have shown this to be

a convenient cutoff. Notice that, in RCluster, and differently

from what occurs in UVCluster, multiple clusters grow at the

same time. However, the process of choosing a random pair

of clusters to merge in each iteration makes the program

slower than the current version of UVCluster. We found that

it runs in O(n2 log n) time.

C) Finally, the third alternative is our novel SCluster algorithm (S

stands for simple), which is both our greediest and our fastest

algorithm, running in O(n log n) time. SCluster just picks up a

unit by random and then collapses in a cluster that unit with all

the units directly connected to it. These units are removed from

the graph and then another unit is randomly chosen and the

process is repeated until no further units remain. Notice the

difference with UVCluster and RCluster: the units collapsed in

a cluster do not have to be all connected among them (forming

cliques) but just linked to the initial unit.

Dendrogram algorithms and evaluation of the partitions
Using any/all the algorithms described above, a matrix of

secondary distances is obtained from which dendrograms can be

Figure 2. A typical analysis with Jerarca. The user specifies the input file where the graph is represented. It is analyzed by the program through
diverse algorithms returning four different outputs: the tree in Newick format, a MEGA-compatible file, a file with attributes for Cytoscape and a text
file containing the optimal partition of the tree.
doi:10.1371/journal.pone.0011585.g002

Clustering with Jerarca

PLoS ONE | www.plosone.org 4 July 2010 | Volume 5 | Issue 7 | e11585

generated. Jerarca implements two well-known phylogenetic

algorithms for this task, UPGMA and Neighbor-Joining. The

user may run one or both algorithms.

From the dendrogram, partitions of the units into clusters can

be obtained. Jerarca establishes partitions by scanning the

dendrogram from the root to the external leaves. Starting from

the root, each dichotomy in the tree (that increases the number of

clusters) generates an alternative partition that can be evaluated.

Given that the neighbor-joining method generates unrooted trees,

the middle point of the tree is used as root [22]. Jerarca

implements two mathematically independent criteria in order to

evaluate the community structure of a given partition. The first

index is the well-known and broadly used modularity (Q) [10],

which measures the distribution of within and between commu-

nities links in a certain partition compared to the expected number

of connections that should exist given a specific degree distribution

[23]. The second index (called H) is based on the cumulative

hypergeometric distribution of links, and derives from an index

proposed in the paper that described UVCluster [12]. The

definition of H is as follows:

H~{ log
XMin(M,n)

j~p

M

j

� �
F{M

n{j

� �

F

n

� � ,

where F is the maximum possible number of direct interactions

in the whole network (for a network of k elements, F = k (k21)/2), n

is the number of direct interactions actually observed among the k

elements of the network, M is the maximum possible number of

intracluster direct interactions in a given partition and p is the total

number of direct intracluster interactions actually detected in that

partition. The parameter H measures the probability of obtaining

by chance a given partition assuming a random distribution of

intracluster and intercluster connections. The larger the value of

H, the better (‘‘more unexpected’’) the partition of the tree.

Output files
Jerarca produces four types of output files (Figure 2). Their

names, automatically generated, include a reference to the

algorithms and the evaluation criterion used (e. g. a typical name

would be ‘‘Filename_partitionH_SCluster_Upgma.txt’’). More-

over, the extension of a file specifies the content of the output:

1) Files with ‘‘.meg’’ extension contain the matrix of distances

among units and the clusters obtained in the optimal

partition of the dendrogram, according to either Q or H.

This file can be directly imported into the software MEGA 4

[24] for further analyses.

2) Files with ‘‘.att’’ extension contain the assignment of nodes

to clusters in the best partition. These files are designed to be

imported into Cytoscape (version 2.x) [25] as attributes of

the nodes (from the main Cytoscape menu: File – Import –

Node attributes).

3) Files with a ‘‘.txt’’ extension save the best partition of the

dendrogram obtained in text format. They include a

description of the optimal partition: number of clusters, value

of the index used and the assignment of nodes to each cluster.

4) Finally, the files with ‘‘.nwk’’ extension describe the

dendrogram structure in standard Newick format, which

Figure 3. Main loop of the three iterative clustering algorithms implemented in Jerarca. An iteration defines a partition of the network by
assigning the nodes to clusters. These loops are repeated as many times as iterations are specified by the user.
doi:10.1371/journal.pone.0011585.g003

Clustering with Jerarca

PLoS ONE | www.plosone.org 5 July 2010 | Volume 5 | Issue 7 | e11585

can be read by virtually all programs that analyze trees, such

as MEGA.

Results

The speed of the programs has been tested in several

benchmarks. Here we describe the results for three of them,

consisting in an artificial and two real networks:

Benchmark A
We prepared a synthetic graph of known community structure,

in which 512 units were divided into 16 clusters of equal size.

Within each cluster all units were initially fully connected (for a

total of (k22k)/2 edges, being k the number of units in a cluster).

Then, we progressively ‘‘degraded’’ that structure by removing a

certain percentage of edges and then randomly shuffling a number

of edges among the units. The networks generated are a variation

of the connected-caveman graphs defined by Watts [26].

Benchmark B
The proteins (nodes) that constitute 408 different protein

complexes described in the yeast Saccharomyces cerevisiae were

obtained from the CYC2008 database (http://wodaklab.org/

cyc2008; [27]). We then downloaded from the BioGRID database

[28] the protein-protein interactions (edges) characterized so far

for all these proteins. The final graph contained 1604 nodes and

14171 edges.

Benchmark C
The complete set of protein-protein interactions (interactome) of

S. cerevisiae was obtained from BioGRID. These data generated a

network formed by 5735 nodes (proteins) and 51134 edges

(protein-protein interactions).

Benchmark A was specifically created for testing the quality of

the optimal partitions computed by the algorithms implemented in

Jerarca. We generated networks with progressive percentages of

degradation. In this context, a percentage of degradation of, say,

10%, means that first, 10% of links were eliminated and, from the

rest, 10% shuffled among units. The shuffling process involves the

random removal of an edge of the graph and the later addition of a

new edge between two nodes, chosen also randomly. We

previously suggested using a number of iterations equal to 10

times the number of units [12]. Thus, for each of those networks,

we ran 5000 iterations of Jerarca with the parameter all for both

the iterative and the tree algorithms. This means that 12 analyses

(= 3 iterative algorithms62 tree algorithms62 partition criteria)

were performed for each network. With 0–30% degradation, all

algorithms recovered the original community structure of the

network without errors. However, starting at 40% degradation,

slight errors in recovering the original community structure of the

graph began to emerge, so we focused on this case. For each of the

six dendrograms constructed by using the three iterative and the

two tree algorithms, the optimal partitions given by the two

evaluation indexes implemented in Jerarca (Q and H) were exactly

the same. In all cases but one, a single unit of the network,

different for each combination of programs, was misclassified.

Only the combination of SCluster and UPGMA recovered the

exact community structure of the original network. Significantly,

this particular combination also obtained the highest Q and H

values. This example shows that all the programs efficiently

recover the original structure, even when it is quite cryptic (40%

degradation means that just about a third of the original links

remain). On the other hand, it also shows the advantage of using

when possible all the programs together, given that some may

perform better than others.

We performed speed tests in a PC-compatible computer with an

Intel Core 2 Quad Q8200 at 2.33 GHz and 4 GB of RAM,

running Linux. The analyses of benchmark A were very fast. The

12 analyses per network described in the previous paragraph (5000

iterations/analysis) required just between 30 and 75 seconds. The

least degraded (= more compact) graphs, allow for the fastest

analyses. To test the speed of the program in real networks of

larger sizes, we used benchmarks B and C. For benchmark B (1604

nodes), 16000 iterations took about 3.25 hours when using the

RCluster algorithm, while for UVCluster and SCluster the cost

was 2 minutes and less than a minute respectively. This large

difference is due to the fact that this network contains densely

connected modules (each protein complex was much more tightly

connected internally than with the rest of the network), a feature

that favors the greedy strategies implemented in UVCluster and

SCluster. For benchmark C (5735 nodes), 60000 iterations took

40 minutes with SCluster and about 3 hours with UVCluster. For

RCluster, we estimated the analysis to require around 300 hours,

so it was not performed in full.

In summary, the new algorithms implemented in Jerarca make

possible to analyze large networks. As the times just detailed

demonstrate, a single computer may easily cope with problems

involving several thousands of units in a reasonable time, using

both UVCluster and SCluster. Also, for networks with up to 1000

nodes, the user can test the three programs together, obtaining the

results in minutes to a few hours.

Discussion

As the amount of biological information is rapidly increasing,

one of the main goals in bioinformatics is the generation of fast

programs able to deal with large datasets. For network analyses,

the bottleneck of the iterative hierarchical clustering strategy is

precisely that the clustering algorithm must be repeatedly used to

generate a sufficiently large set of iterations as to be representative

of the underlying structure of the graph. The second part of the

analysis, the construction of the tree applying a phylogenetic

algorithm is performed just once and therefore has little effect in

the time complexity of the program. As already indicated in the

Introduction, the applications of our UVCluster program were

limited by the high amount of time needed for analyzing large

networks. An optimization of the iterative clustering method

implemented in that program was therefore mandatory. By setting

certain restrictions (fixed AC), we have qualitatively reduced the

time complexity of the UVCluster algorithm. Traditionally limited

to analyses below 1000 units, the current algorithm can cope with

networks of several thousand units in a few hours. This allows

analyzing some very interesting datasets, such as the whole

interactome of the eukaryotic species Saccharomyces cerevisiae (see

benchmark C above).

A second significant advantage of Jerarca is that it also includes

two novel algorithms, RCluster and SCluster, which provide

alternative ways of computing the secondary distances between the

nodes of the graph. RCluster randomly grows multiple clusters at

the same time, avoiding the greedy agglomerative process

implemented in UVcluster. However, the randomization process

required makes the program slower than UVCluster. SCluster is

just the opposite: it is the fastest and greediest of the three

algorithms. In spite of its simplicity, its performance is also

appropriate (See results for benchmark A above). Since Jerarca

allows to execute several parallel analyses, we recommend to use

the three iterative algorithms for networks with up to 1000 nodes.

Clustering with Jerarca

PLoS ONE | www.plosone.org 6 July 2010 | Volume 5 | Issue 7 | e11585

A complete analysis of such networks may require less than two

hours (see Results). With larger networks, up to 10000 units, both

UVCluster and SCluster can be used, the analyses with both

programs requiring just a few hours. The inclusion of SCluster,

which runs in O(n log n) time, allows for the analyses of even larger

networks. This may be of interest in fields such as the analysis of

coexpression or gene interaction networks, in which the number of

nodes (in those cases, corresponding to genes) may be in the tens of

thousands. All these considerations obviously refer to analyses

using a single computer. However, it is important to take into

account that the programs can be very easily parallelized, given

that the iterations can be divided into multiple processors and the

results added together at the end of the computation.

In addition to UPGMA, already included in the original version

of UVCluster, Jerarca also allows the alternative of building the

trees using the neighbor-joining algorithm, probably the most

frequently used algorithm to generate trees from a distance matrix.

We suggest to obtain both trees (which is almost instantaneous), in

order to evaluate the congruence of the results. An additional

advantage of Jerarca respect to UVCluster refers to the

determination of the optimal partitions of the graph according

to two statistical parameters (Q and H). We added these options

considering that the users may be often not only interested in

obtaining a hierarchical representation of the network, but also in

how the network can be divided into clusters or communities (see

Introduction). The strategy used to obtain the partitions is in fact

quite simple, given that the tree is just scanned from root to leaves.

Therefore, the number of partitions examined is quite reduced

(equal to the number of nodes n). More complex methods can be

easily envisaged. For example, partitions could be generated at

different distances from the root in different sections of the tree.

However, although this option may potentially improve the

likelihood of obtaining a better partition of the network, it is

computationally much more expensive. We plan to explore this

possibility in future versions of the suite. A final advantage of

Jerarca is the set of outputs that it generates, which is much more

complete than the one provided by our original UVCluster

program. The possibility to directly export the data to powerful

packages such as MEGA and Cytoscape will allow the users both

to perform additional analyses that may complement those

generated by Jerarca and to obtain sophisticated graphical

representations of the results. All these advantages clearly make

Jerarca a better tool to perform iterative clustering analyses of

network data than our original UVCluster program.

The program, along with the source code is freely available

under the GNU General Public License v3 at http://jerarca.

sourceforge.net. The modular code structure of Jerarca permits

easily including new features to the program. New algorithms,

both iterative and for building the trees, as well as new indexes for

extracting the optimal partition of the tree, can be easily added.

Acknowledgments

The authors would like to thank Vicente Arnau for his contributions in the

development of the original UVCluster program, and Antonio Marco for

his suggestions about how to implement the calculation of the H

parameter.

Author Contributions

Conceived and designed the experiments: IM. Performed the experiments:

RA. Analyzed the data: RA. Contributed reagents/materials/analysis

tools: RA. Wrote the paper: IM.

References

1. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s

functional organization. Nat Rev Genet 5: 101–114.
2. Aittokallio T, Schwikowski B (2006) Graph-based methods for analysing

networks in cell biology. Brief Bioinform 7: 243–255.
3. Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein

function. Mol Syst Biol 3: 88.

4. Spirin V, Mirny LA (2003) Protein complexes and functional modules in
molecular networks. Proc Natl Acad Sci U S A 100: 12123–12128.

5. Bader GD, Hogue CWV (2003) An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics 4: 2.

6. Brun C, Herrmann C, Guénoche A (2004) Clustering proteins from interaction
networks for the prediction of cellular functions. BMC Bioinformatics 5: 95.

7. Pereira-Leal JB, Enright AJ, Ouzounis CA (2004) Detection of functional

modules from protein interaction networks. Proteins 54: 49–57.
8. Pržulj N, Wigle DA, Jurisica I (2004) Functional topology in a network of protein

interactions. Bioinformatics 20: 340–348.
9. Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S (2006)

Development and implementation of an algorithm for detection of protein

complexes in large interaction networks. BMC Bioinformatics 7: 207.
10. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in

networks. Phys Rev E 69: 026113.
11. King AD, Pržulj N, Jurisica I (2004) Protein complex prediction via cost-based

clustering. Bioinformatics 20: 3013–3020.
12. Arnau V, Mars S, Marı́n I (2005) Iterative cluster analysis of protein interaction

data. Bioinformatics 21: 364–378.

13. Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc
Natl Acad Sci U S A 100: 1128–1133.

14. Lu H, Zhu X, Liu H, Skogerbø G, Zhang J, et al. (2004) The interactome as a
tree – an attempt to visualize the protein-protein interaction network in yeast.

Nucl Acids Res 32: 4804–4811.

15. Yip AM, Horvath S (2007) Gene network interconnectedness and the

generalized topological overlap measure. BMC Bioinformatics 8: 22.
16. Lucas JI, Arnau V, Marı́n I (2006) Comparative genomics and protein domain

graph analyses link ubiquitination and RNA metabolism. J Mol Biol 357: 9–17.
17. Marco A, Marı́n I (2007) A general strategy to determine the congruence

between a hierarchical and a non-hierarchical classification. BMC Bioinfor-

matics 8: 442.
18. Marco A, Marı́n I (2009) Interactome and Gene Ontology provide congruent

yet subtly different views of a eukaryotic cell. BMC Syst Biol 3: 69.
19. Sokal RR, Michenner CD (1958) A statistical method for evaluating systematic

relationships. Univ Kansas Sci Bull 38: 1409–1438.
20. Saitou N, Nei M (1987) The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

21. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford
University Press.

22. Farris JS (1972) Estimating phylogenetics trees from distance matrices. Am Nat
106: 645–668.

23. Clauset A, Newman MEJ, Moore C (2005) Finding local community structure in

networks. Phys Rev E 72: 026132.
24. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary

Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
25. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, et al. (2007)

Integration of biological networks and gene expression data using Cytoscape.
Nature Protocols 2: 2366–2382.

26. Watts DJ (1999) Small worlds. The dynamics of networks between order and

randomness. Princeton University Press.
27. Pu SY, Wong J, Turner B, Cho E, Wodak SJ (2009) Up-to-date catalogues of

yeast protein complexes. Nucl Acids Res 37: 825–831.
28. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, et al. (2008) The

BioGRID interaction database: 2008 update. Nucl Acids Res 36: D637–D640.

Clustering with Jerarca

PLoS ONE | www.plosone.org 7 July 2010 | Volume 5 | Issue 7 | e11585

