Prevention and treatment of neonatal infections in facility and community settings of low- and middle-income countries: a descriptive review

Supplementary Material

Table of Contents

Appendix 1: Search Strategies	, 2
1.1 Strategies to Reduce Antimicrobial Resistance Review	2
1.1 Strategies to Reduce Antimicrobial Resistance Review	4
1.3 Clean Birth Kits Review	4
1.4 Chlorhexidine Cleansing Review	4
1.5 Topical Emollients Review	4
1.6 Probiotics Supplementation Review	5
1.7 Synbiotics Supplementation Review	
1.8 Prophylactic Systemic Antifungal Agents Review	5
1.9 Mixed Setting & Community-Based Antibiotic Delivery for PSBIs Review	5
Appendix 2: Eligibility Criteria	
Appendix 3: Classification of Antimicrobial Stewardship Interventions	17
Appendix 4: Forest Plots	
4.1 Facility Level Forest Plots	18
4.1.1. Strategies to Reduce Antimicrobial Resistance	
4.1.2. Chlorhexidine Cleansing	39
4.1.3. Topical Emollients	41

Prevention and Treatment of Neonatal Infections in LMICs 4.1.6. Prophylactic Systemic Antifungal Agents86 4.2 Mixed Level Forest Plots 88 4.2.3. Topical Emollients 90 4.2.4. Mixed Setting Antibiotic Delivery for PSBIs92 4.3.2. Topical Emollients 98

Appendix 1: Search Strategies

1.1 Strategies to Reduce Antimicrobial Resistance Review

Databases searched were Ovid MEDLINE, Ovid EMBASE, CINAHL, Global Index Medicus, and Cochrane CENTRAL. MEDLINE search strategy is shown below. This search strategy was adapted to all databases.

Table 1 Search strategy for Ovid MEDLINE, with date of final search on June 26, 2024

1	(newborn* or neonat* or infant* or baby or babies or birth* or deliver* or labo?r).ti.
2	exp Infant, Newborn/ or Neonatology/ or Perinatology/ or Intensive Care, Neonatal/
3	1 or 2
4	(((antibiotic* or antimicrobial*) and (resistan* or stewardship)) or AMR).ti.
5	Drug Resistance, Microbial/ or exp Drug Resistance, Bacterial/ or Drug Resistance, Multiple, Bacterial/ or Antimicrobial Stewardship/

6	4 or 5
7	("bacterial infection*" or "nosocomial infection*" or HAI* or "healthcare-associated infection*" or "health care-associated infection*" or sepsis or coloni#* or hygien* or cleaning or disinfect* or sterili\$* or saniti\$* or sanitary or susceptibility or culture* or antibiogram* or surveillance or monitoring or management or administration or utilization or usage or over-use or over-use or prescribing or prescription* or prophylaxis or therapy or treatment* or regimen*).ti.
8	exp Bacterial Infections/ or exp Cross Infection/ or exp Infection Control/ or Intensive Care Units, Neonatal/ or Antibiotic Prophylaxis/ or exp Microbial Sensitivity Tests/
9	7 or 8
10	(afghanistan or albania or algeria or "american samoa" or angola or "antigua and barbuda" or antigua or barbuda or argentina or armenia or armenian or aruba or azerbaijan or bahrian or bangladesh or barbados or "republic of belarus" or belarus or bylearus or belorussia or bylearussian or belize or "british honduras" or benin or dahomey or bhutan or bolivia or "bosnia and herzegovina" or bosnia or herzegovina or botswana or bechuanaland or brazil or brasil or bulgaria or "burkina faso" or "burkina fasso" or "upper volta" or burundi or urundi or "cabo verde" or "cape verde" or cambodia or kampuchea or "khmer republic" or cameroon or cameroon or cameroon or central african republic" or "ubangi shari" or chad or chile or china or colombia or comoros or "comoroor islands" or "iles comores" or mayotte or "democratic republic" or the congo" or "democratic republic congo" or congo or zaire or "costa rica" or "cote d'ivoire" or "cote divoire"

or "global south" or "africa south of the sahara" or "sub-saharan africa" or "subsaharan africa" or "africa, central" or "central africa" or "africa, northern" or "north africa" or "northern africa" or magreb or maghrib or sahara or "africa, southern" or "southern africa" or "africa, eastern" or "east africa" or "eastern africa" or "africa, western" or "west africa" or "western africa" or "west indies" or "indian ocean islands" or caribbean or "central america" or "latin america" or "south and central america" or "south america" or "asia, central" or "central asia" or "asia, northern" or "north asia" or "northern asia" or "asia, southeastern" or "southeastern asia" or "south eastern asia" or "southeast asia" or "south east asia" or "asia, western" or "western asia" or "europe, eastern" or "east europe" or "eastern europe" or "developing country" or "developing countries" or "developing nation?" or "developing population?" or "developing world" or "less developed countr*" or "less developed nation?" or "less developed population?" or "less developed world" or "lesser developed countr*" or "lesser developed nation?" or "lesser developed population?" or "lesser developed nation?" or "lesser developed nation?" or "lesser developed population?" or "lesser developed nation?" or "lesser developed nation." or "les developed world" or "under developed countr*" or "under developed nation?" or "under developed population?" or "under developed world" or "underdeveloped countr*" or "underdeveloped nation?" or "underdeveloped population?" or "underdeveloped world" or "middle income countr*" or "middle income nation?" or "middle income population?" or "low income countr*" or "low income nation?" or "low income population?" or "lower income countr*" or "lower income nation?" or "lower income population?" or "underserved countr*" or "underserved nation?" or "underserved population?" or "underserved world" or "under served countr*" or "under served nation?" or "under served population?" or "under served world" or "deprived countr*" or "deprived nation?" or "deprived population?" or "deprived world" or "poor countr*" or "poor nation?" or "poor population?" or "poor world" or "poorer countr*" or "poorer nation?" or "poorer population?" or "poorer world" or "developing econom*" or "less developed econom*" or "lesser developed econom*" or "under developed econom*" or "underdeveloped econom*" or "middle income econom*" or "low income econom*" or "lower income econom*" or "low gdp" or "low gnp" or "low gross domestic" or "low gross national" or "lower gdp" or "lower gnp" or "lower gross domestic" or "lower gross national" or lmic or lmics or "third world" or "lami countr*" or "transitional" countr*" or "emerging economies" or "emerging nation?" or "low-resource setting*" or "low-resource nation*" or "low-resource countr*" or "resource-limiting setting*" or "resource-limiting nation*" or "resource-limiting countr*").ti,sh.

3 and 6 and 9 and 10

1.2 Prevention of Hospital-Acquired Infections Review

Please refer to Fitzgerald 2022 [1] for search strategy details.

1.3 Clean Birth Kits Review

Please refer to Lassi 2020 [2] for search strategy details.

1.4 Chlorhexidine Cleansing Review

Please refer to Zhou 2022 [3] and WHO recommendations on maternal and newborn care for a positive postnatal experience (WHO 2022) [4] for search strategy details.

1.5 Topical Emollients Review

For the topic of emollients for preterm neonates, please refer to *Cleminson 2021* [5] for search strategy details. For the topic of emollients for term neonates, please refer to *Priyadarshi 2022* [6] for search strategy details.

1.6 Probiotics Supplementation Review

Please refer to reviews by Sharif 2020 [7] and Imdad 2020 [8] for search strategy details.

1.7 Synbiotics Supplementation Review

Please refer to reviews by Sharif 2022 [9] and Imdad 2020 [8] for search strategy details.

1.8 Prophylactic Systemic Antifungal Agents Review

Please refer to Cleminson 2015 [10] for search strategy details.

1.9 Mixed Setting & Community-Based Antibiotic Delivery for PSBIs Review

Please refer to Duby 2019 [11] for search strategy details.

Appendix 2: Eligibility Criteria

Table 2 Eligibility criteria for de novo, updated, and as-is reviews

Topic	Population	Intervention	Comparator	Outcomes	Included studies
Strategies to reduce AMR – de novo review	Preterm & term neonates	Interventions conducted in a neonatal unit or community setting, reporting on an intervention, policy, or strategy designed to promote antibiotic stewardship and/or mitigate the development of antimicrobial resistance	Standard practices, or no intervention	All-cause neonatal mortality, lab confirmed and suspected EOS -community or hospital onset, lab confirmed and suspected LOS -community or hospital onset, localized infections (e.g., omphalitis, UTI, meningitis) – all, localized infections – due to MDROs, confirmed blood stream infections – all, confirmed blood stream infections – MDROs, & colonization with multidrug resistant bacteria.	Randomized or quasi- randomized trials, observational studies, program evaluations, and implementation studies
				Secondary outcomes: Duration of antibiotic therapy, proportion of neonates receiving any antibiotic, length of hospital stay	

				(inpatient newborns), & use of WHO watch and reserve antimicrobials.	
HAI prevention – as-is review from Fitzgerald 2022 [1]	Hospitalized neonates, including neonatal ward and/or NICU settings	Included both single interventions [e.g., probiotics, KMC, breastfeeding, fluconazole prophylaxis] and bundled interventions (e.g., vascular device care, hand hygiene and healthcare worker education combined)	Standard of care	the effect of the interventions on (1) incidence of infection or (2) attributable mortality, depending on study definitions. Fungal or bacterial hospital-acquired invasive infections in hospitalized neonates were the primary events for study. Secondary outcomes: impact on incidence of laboratory-confirmed urinary tract infection, thrombophlebitis, NEC, device-associated infections (clinically suspected or culture proven) and clinically suspected infection where laboratory cultures were negative or not available.	RCTs, controlled and noncontrolled before-after, controlled and noncontrolled ITS and cohort studies
Clean birth kits - updated review from Lassi 2020 [2]	Pregnant mothers	3 main interventions (1) Training of TBAs, LHWs and CHWs (2) Distribution of CBKs (3) Health education/messages/counselling	Standard of care	-Neonatal mortality -Any omphalitis	RCTs (individual and cluster), and quasi experimental studies
Chlorhexidine cleansing - updated review from an existing WHO guideline [4] (i.e., Chlorhexidine Umbilical	Neonates	Routine application of chlorhexidine to the umbilical cord stump	Dry cord care or usual cord practices	 -Neonatal mortality (defined as deaths due to all causes occurring any time during the first 28 days of postnatal life) -Omphalitis (Any omphalitis: Redness or pus limited to stump; Moderate omphalitis: Redness extending to the skin at the base of the cord stump less than 2 cm, with or without pus; Severe omphalitis: Redness extending more than 2 cm from the skin, with or without pus) 	RCTs (individual and cluster)

Prevention	and Treatment	of Neonatal	Infections in	LMICs
------------	---------------	-------------	---------------	--------------

Prevention and Tr	reatment of Neor	natal Infections in LMICs			
Review Group's				-Possible serious bacterial infections (PSBIs) (Any PSBI:	
IPD meta-				Presence of any one of the following symptoms or signs:	
analysis) and a				stopped feeding, severe chest indrawing, movements	
review from				only on stimulation, fever (>38°C axillary), hypothermia	
Zhou 2022 [3]				(<35.5°C axillary), convulsions; Severe PSBI: Presence of	
				any one of the following symptoms or signs:	
				convulsions, stopped feeding well, lethargy,	
				hypothermia (<35.5°C))	
Topical	Preterm infants	Ointment or cream versus	Standard of care	Primary outcomes:	Controlled trials
emollients for		routine skincare		•	using random or
preterm	(< 37 weeks'			Invasive infection diagnosed more than 48 hours after	quasi-random
neonates	gestation)	 Oil versus routine skincare 		birth as determined by culture from a normally sterile	participant
				site: cerebrospinal fluid; blood; urine (obtained by	allocation.
– as-is review		 Ointment or cream versus oil 		sterile urethral catheterisation or suprapubic bladder	Cluster-
from Cleminson		•One oil (or combination) versus		tap); bone or joint, peritoneum, pleural space, or central	randomized trials
2021 [5]		•One oil (or combination) versus		venous line tip; or findings on autopsy examination	where the unit of
		another oil (or combination)		consistent with invasive microbial infection. If sufficient	randomization
				data were available, we planned to examine specific	
				effects on infection with these organisms:	was a group of infants (for
				Coagulase-negative staphylococci	example, in a neonatal unit)
				 Other bacteria (gram-negative bacilli, Saureus, 	were eligible for
				enterococci)	inclusion.
				• Fungi	
				Secondary outcomes:	
				Death (all cause) before hospital discharge (in facility-	
				based trials), or at latest assessment in community trials	
				 Growth: weight gain (g/kg/day); linear growth 	
				(mm/week); head circumference (mm/week); skinfold	
				thickness (mm/week) during the trial period	
				Neurodevelopmental outcomes assessed at more than	
				12 months post-term (measured using validated	

Topical emollients for term neonates – as-is review from Priyadarshi 2022 [6]	Term healthy neonates (babies up to 28 completed days of life)	Emollients can be used as an additive in bath/wash products or applied on the body as leave-on emollients. Studies were included if one group had received a routine application of leave-on emollients (including oil, cream, ointment, lotion, or moisturizer) and another group did not receive any form of emollient. Included studies	Standard of care	assessment tools) and classifications of disability, including auditory and visual disability. A composite outcome of 'severe neurodevelopmental disability' was defined as any one or combination of the following: non-ambulant cerebral palsy, severe developmental delay, auditory impairment and visual impairment. • BPD (oxygen supplementation at 36 weeks' postmenstrual age) • NEC (Bell stage 2 or 3) (Bell 1978) • ROP requiring treatment (medical or surgical) (ICCROP 2005) Key outcomes were neonatal mortality (all-cause death in the first 28 days of life); systemic infections (sepsis, pneumonia, or possible serious bacterial infection); atopic dermatitis (meeting the diagnostic criteria of at least one of the established tools, such as UK Working Party diagnostic criteria, up to one year of age); skin condition (based on a validated skin assessment score or erythema, rash, itching, oedema, exanthema, dry skin, and urticaria), and adverse events related to emollient application.	RCTs
Probiotics	Included very	where the intervention was started in the neonatal period. Included enteral administration	Standard of care	Primary outcomes:	Included RCTs
supplementation – as-is review from Sharif 2020 [7]	preterm (< 32 weeks' gestation) or VLBW (< 1500 g) infants (pre- specified	of any probiotic or probiotic combination for at least one week compared to placebo or no treatment. Categorised probiotic preparations at the genus level	Stallual u Oi Cale	NEC, confirmed at surgery or autopsy or diagnosed by at least two of the following clinical features (Walsh 1986): abdominal radiograph showing pneumatosis intestinalis or	and quasi-RCTs

Prevention and Tr	eatment of Neonatal Infections in LMICs

Trevention und Tr	extremely preterm (< 28 weeks' gestation) or ELBW (< 1000 g) infants)	(Bifidobacterium spp., Lactobacillus spp., Saccharomyces spp., Streptococcal spp., others, and combinations thereof).		gas in the portal venous system or free air in the abdomen; abdominal distension with abdominal radiograph with gaseous distension or frothy appearance of bowel lumen (or both); blood in stool elethargy, hypotonia or apnoea (or combination of these).	
				All-cause mortality before discharge from hospital Secondary outcomes:	
				 Late-onset invasive infection, as determined by culture of bacteria or fungus from blood or cerebrospinal fluid or from a normally sterile body space (> 48 hours after birth) 	
				• Late-onset infection with the supplemented probiotic microorganism	
				•Duration of hospitalization (days)	
				 Neurodevelopmental impairment assessed by a validated 	
				test after 12 months' post-term: neurological evaluations, developmental scores, and classifications of disability, including cerebral palsy and auditory and visual impairment	
Probiotics supplementation	Included neonates regardless of health status, including low	Neonatal oral probiotics/synbiotics supplementation	No probiotic supplementation/ placebo	Primary outcomes: -All-cause neonatal mortality (death between 0–28 days of life)	Studies selected for inclusion in this review were either experimental or

Prevention and T	Freatment of Neonatal Infections in LMICs		
– as-is review	birth weight and	-All-cause infant mortality at 6 months (death between	quasi-
from Imdad	preterm infants	0 days to 6 months of life)	experimental
2020 [8]		-All-cause infant mortality at 12 months (death between 0 days to 12 months life).	studies that were designed as RCTs. Other study
		In the event that the outcomes were not reported in the follow-up periods mentioned (e.g., 28 days,	designs were considered, such as before-after
		6 months, and 12 months), we first contacted the authors to obtain this data. If that data were not available from the authors, the following actions were taken: Mortality within the first six weeks of life was included as neonatal mortality at day 28, between 3–6 months were included as 6 months, and between 9–12 months were included as 12 months. If there was not a clear follow-up, the mortality data from the longest follow-up was included.	studies, regression discontinuity designs, interrupted time series (ITS) but none of these studies were included.
		Secondary outcomes:	
		-Sepsis specific mortality measured between 0–28 days, 0 days to 6 months and 0 days to 12 months of life	
		-Neonatal sepsis (as defined by authors) in the first six weeks of life	
		-Necrotizing enterocolitis (as defined by the authors)	
		-Vitamin A Deficiency	
		-Prevention of Hypoglycemia (as defined by authors) during the neonatal period -Treatment of Hypoglycemia (recurrence of hypoglycemia after the episode treated) - Any adverse reactions during the intervention period	
		-Serious adverse events	

revention and m	eatment of Neon	atal Infections in LMICs		-Neurodevelopmental outcomes at 12 and 24 months and the longest follow-up A neurodevelopment outcome is an event that involves any cognitive, neurologic, and/or sensory outcomes.	
Probiotics supplementation – as-is review from Thomas 2023 [12]	Very low birth weight (VLBW) neonates	Enteral supplementation of one or more species of probiotics	Another probiotic species/genera, or placebo/no probiotics	Primary outcomes: -All-cause neonatal mortality -Sepsis/severe infection at discharge or 28 days or the latest follow- up. (Sepsis was identified by a positive culture of bacteria or fungus from blood, cerebrospinal fluid, urine, or from a normally sterile body space or as defined by the authors of the individual studies.) Secondary outcomes: -Necrotizing enterocolitis (NEC)— stage 2 or more as per modified Bell's staging.	Randomized controlled trials (RCT) or quasi- RCTs
Synbiotics supplementation – as-is review from Sharif 2022 [9]	Very preterm (< 32 weeks' gestation) or VLBW (< 1500 g) infants	Prophylactic enteral synbiotics: any combination or dose of probiotic organisms and prebiotic oligosaccharides, commenced within 14 days of birth and continued daily (or more frequently) for at least one week. Probiotics and prebiotics need not be given simultaneously, but should be given on the same day.	Standard of care	 Primary outcomes: NEC before discharge from hospital, confirmed at surgery or autopsy or using standardized clinical and radiological criteria (VON 2020): at least one of: bilious gastric aspirate or emesis; or abdominal distention; or blood in stool; and at least one of: abdominal radiograph showing pneumatosis intestinalis; or gas in the portal venous 	Randomized or quasi- randomized (predictable allocation) controlled trials, including cluster- RCTs.

Prevention and Tr	eatment of Neon	atal Infections in LMICs							
	J	·		Secondary outcomes:					
				• Late-onset invasive infection, as determined by the culture of bacteria or fungus from blood or cerebrospinal fluid or from a normally sterile body space (> 48 hours after birth until discharge from hospital)					
				Invasive infection with the supplemented probiotic micro- organism until discharge from hospital					
				 Duration of hospitalization since birth Neurodevelopmental impairment assessed by a validated 					
				test after 12 months' post-term: neurological evaluations, developmental scores, and classifications of disability, including cerebral palsy and auditory and visual impairment					
Synbiotics supplementation	Included neonates regardless of	Neonatal oral probiotics/synbiotics supplementation	No probiotic supplementation/	Primary outcomes: -All-cause neonatal mortality (death between 0–28 days	Studies selected for inclusion in this review were				
– as-is review from Imdad 2020 [8]	health status, including low birth weight and preterm infants		placebo	of life) -All-cause infant mortality at 6 months (death between 0 days to 6 months of life)	either experimental or quasi-				
				-All-cause infant mortality at 12 months (death between 0 days to 12 months life).	experimental studies that were designed as RCTs. Other study				
				In the event that the outcomes were not reported in the follow-up periods mentioned (e.g., 28 days,	designs were considered, such				
				6 months, and 12 months), we first contacted the authors to obtain this data. If that data were not available from the authors, the following actions were taken: Mortality within the first six weeks of life was included as neonatal mortality at day 28, between 3–6	as before-after studies, regression discontinuity designs, ITS but none of these				

Prevention and Tr	eatment of Neon	atal Infections in LMICs			
Prevention and Tr	eatment of Neon	atal Infections in LMICs		months were included as 6 months, and between 9–12 months were included as 12 months. If there was not a clear follow-up, the mortality data from the longest follow-up was included. Secondary outcomes: -Sepsis specific mortality measured between 0–28 days, 0 days to 6 months and 0 days to 12 months of life -Neonatal sepsis (as defined by authors) in the first six weeks of life -NEC (as defined by the authors) -Vitamin A Deficiency -Prevention of Hypoglycemia (as defined by authors) during the neonatal period -Treatment of Hypoglycemia (recurrence of hypoglycemia after the episode treated) -Any adverse reactions during the intervention period -Serious adverse events -Neurodevelopmental outcomes at 12 and 24 months and the longest follow-up A neurodevelopment outcome is an event that involves any cognitive, neurologic, and/or	studies were included.
				sensory outcomes.	
Prophylactic systemic	Very preterm or VLBW infants,	Systemic antifungal prophylaxis, given by intravenous or enteral	Placebo or no drug, oral or topical	Primary outcomes:1. Confirmed invasive fungal infection as determined by	Randomized controlled trials
antifungal agents	with or without evidence of fungal colonisation but without	route	antifungal prophylaxis, or another systemic	culture of fungus from a normally sterile site e.g. cerebrospinal fluid, blood, urine, bone or joint, peritoneum, pleural space;	or quasi- randomized controlled trials

	eatment of Neonatal Infections in LMICs		Conditions and analysis of the condition
- updated review	evidence of	antifungal agent or	findings on autopsy examination consistent with
from Cleminson	invasive fungal	dose regimen	invasive fungal
2015 [10]	infection at study entry		infection;
			• findings on ophthalmological examination consistent with fungal ophthalmitis or retinitis;
			pathognomonic findings on renal ultrasound
			examination such as 'renal fungal balls'.
			2. Death prior to hospital discharge.
			3. Development: (i) neurodevelopmental outcomes assessed using validated tools at 12 months or more corrected age, and classifications of disability including non-ambulant cerebral palsy, developmental delay, auditory and visual impairment; (ii) cognitive and educational outcomes at 5 years or more e.g. intelligence quotient or indices of educational achievement measured using a validated tool (including school examination results).
			Secondary outcomes:
			1. Bronchopulmonary dysplasia (oxygen
			supplementation at 36 weeks postmenstrual age).
			2. Necrotising enterocolitis (Bell stage 2 or 3).
			3. Retinopathy of prematurity: a) any stage; b) requiring treatment.
			4. Duration of intensive care unit or hospital admission (days).
			5. Emergence of organisms resistant to antifungal agents, as detected in individual infants enrolled in the study or, in the case of cluster randomized studies, on

Prevention and Treatment of Neonatal Infections in LMICs
--

				surveillance of other infants in the same unit in the study centre (including infants who were admitted to the unit following completion of the study). 6. Adverse drug reactions attributed to the antifungal agent, such as rash, gastrointestinal disturbance, abnormal hepatic or renal function, cardiac arrhythmias, thrombophlebitis, seizures, and anaphylaxis or toxicity sufficient to cease drug administration.	
Mixed setting & community-based antibiotic delivery for possible serious bacterial infections (PSBIs) - updated review from Duby 2019 [11]	Neonates born at any gestational age enrolled at any time between 0 to 27 completed days of life with possible serious bacterial infection (PSBI), as defined by the World Health Organization (WHO; WHO 2015). Confirmation of a bacterial infection with a positive culture from a sterile body site, can be contributory, but is not necessary for inclusion.	Comparison 1: Community-based programmes of newborn care that include the initiation of antibiotics in the community for PSBI in LMICs Comparison 2: Community-based delivery of simplified injectable antibiotics or oral antibiotics, or both for PSBI in neonates	Comparison 1: Community-based programmes of newborn care that do not include the provision of community-based antibiotics for PSBI in LMICs (i.e., standard hospital referral) Comparison 2: Community-based delivery of seven to 10 days of injectable penicillin/ampicillin and an injectable aminoglycoside for PBSI in neonates	1. Neonatal mortality - the number of neonatal deaths from any cause among all neonates. For individually-randomized and quasi-randomized trials, neonatal morality was calculated as the number of neonatal deaths divided by the total number of neonates enrolled in the trial. For cluster-randomized trials, neonatal mortality was calculated as the number of neonatal deaths divided by the total number of live births within each cluster during the trial period. a. Early neonatal mortality: from birth through six completed days of life b. Late neonatal mortality: between 7 and 27 completed days of life 2. Sepsis-specific neonatal mortality - the number of neonatal deaths secondary to PSBI among all neonates during the trial period. Similar calculation considerations applied to sepsis- specific mortality as neonatal mortality. a. Early neonatal sepsis-specific mortality: from birth through six completed days of life	Individually- randomized, cluster- randomized and quasi- randomized trials

b. Late neonatal sepsis-specific mortality: between 7 and 27 completed days of life

Secondary outcomes:

- Treatment failure defined as any one of the following: 1) death within seven days after enrolment;
 hospital admission within seven days after enrolment due to clinical deterioration;
 change of antibiotic regimen due to lack of improvement/ clinical deterioration within seven days after enrolment
- 2. Neonatal antibiotic-associated adverse events defined as occurrence of haematoma, bleeding or infection at an injection site, inability to pass urine for 12 hours, dehydration-associated severe diarrhoea, anaphylaxis, or development of rash within seven days of enrolment
- 3. Total cost (in USD) to manage all neonates with PSBI in the community during the trial period (including training, drug cost and delivery, and equipment)
- 4. Cost of intervention (in USD) per neonate life saved among all neonates with PSBI managed in the community during the trial period
- 5. Acceptability of antibiotics defined as the number of mothers who accept community-based antibiotic treatment for their neonates among all mothers of neonates with PSBI identified during the trial period
- 6. Antibiotic resistance defined as the number of cases in which there was isolation of bacteria resistant to penicillin/ampicillin and an aminoglycoside within 30 days after enrolment

BPD, Bronchopulmonary dysplasia; CBK, clean birth kit; CHW, community health worker; EOS, early-onset sepsis; ELBW, extremely low birth weight; ITS, interrupted time series; KMC, kangaroo mother care; LHW, lady health worker; LMICs, low- and middle-income countries; LOS, late-onset sepsis; MDRO, multidrug-resistant organism; NEC, necrotizing enterocolitis; ROP, retinopathy of prematurity; RCTs, randomized controlled trials; TBA, trained birth attendant/traditional birth attendant; USD, United States dollar; UTI, urinary tract infection; VLBW, very low birth weight; WHO, World Health Organization

Appendix 3: Classification of Antimicrobial Stewardship Interventions

Table 3 Regulation, education, and restriction definitions

Regulation	Regulation interventions were defined as non-education and non-restriction structural or organizational actions which attempt to prevent or
	control the development and spread of infections and antimicrobial resistance (AMR), such as surveillance and audit, health-care worker
	vaccination, sterilization of the built environment and multi-patient use equipment, institution of patient isolation measures, and the
	implementation of protocols and policies for infection and AMR management.
Education	Education interventions were defined as efforts to educate and inform healthcare workers of the appropriate policies and procedures for
	infection and antimicrobial resistance prevention and control, including but not limited to training sessions, journal clubs, ward round
	discussions, and reminders in the form of wall posters with algorithms for improved decision-making.
Restriction	Restriction interventions were defined as prescribing- and dispensing-related actions intended to control or restrict the use of broad-
	spectrum antibiotics in favour of narrow-spectrum antibiotics, and reduce initiation or shorten duration of antimicrobials, in the treatment
	of newborns. This included using antimicrobial susceptibility testing for guided therapy, introducing antibiotic justification forms, and
	instituting hard stops or drug dispensing pre-authorization policies.

Appendix 4: Forest Plots

4.1 Facility Level Forest Plots

4.1.1. Strategies to Reduce Antimicrobial Resistance

Single-Component Intervention: <u>Regulation</u> **Outcome:** Neonatal sepsis/suspected sepsis

After Intervention			Before Inter	vention		Risk Ratio		Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95%	S CI		
Akintan 2024 (1)	12	19	5	15	35.5%	1.89 [0.86, 4.19]		-			
Wang 2020 (2)	356	4488	417	4743	64.5%	0.90 [0.79, 1.03]		=			
Total (95% CI)		4507		4758	100.0%	1.17 [0.59, 2.36]			-		
Total events	368		422								
Heterogeneity: Tau ² = Test for overall effect:			= 1 (P = 0.07)); $I^2 = 69\%$	Ś		0.1 0.2	2 0.5 1 2 Favours after Favou	t 5 rs before	10	

<u>Footnotes</u>

- (1) Akintan 2024 reported sepsis among neonates prescribed antibiotics in the NICU
- (2) Wang 2020 reported sepsis/suspected sepsis among neonates admitted to the NICU

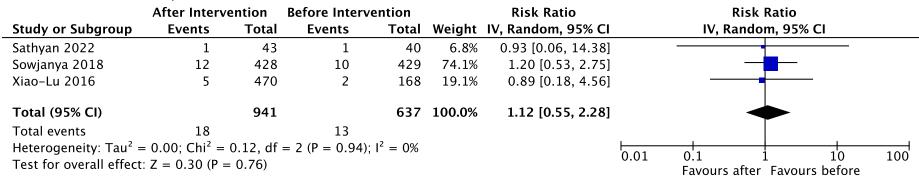
Outcome: Neonatal sepsis/suspected sepsis by study design

	After Interv	ention	Before Inter	Before Intervention		Risk Ratio		Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV,	IV, Random, 95% CI			
1.2.1 Cross-section	al study											
Akintan 2024 (1) Subtotal (95% CI)	12	19 19	5	15 15	35.5% 35.5%						— ►	
Total events	12		5									
Heterogeneity: Not a	pplicable											
Test for overall effec	t: Z = 1.58 (P =	= 0.11)										
1.2.2 Cohort study												
Wang 2020 (2)	356	4488	417	4743	64.5%	0.90 [0.79, 1.03]						
Subtotal (95% CI)		4488		4743	64.5%	0.90 [0.79, 1.03]			•			
Total events	356		417									
Heterogeneity: Not a	pplicable											
Test for overall effec	t: $Z = 1.49 (P =$	= 0.14)										
Total (95% CI)		4507		4758	100.0%	1.17 [0.59, 2.36]				—		
Total events	368		422									
Heterogeneity: Tau ²	= 0.19; Chi ² =	3.26, df	= 1 (P = 0.07)); $I^2 = 69\%$	ś		 	0 2 () 5 1			10
Test for overall effec	t: Z = 0.45 (P =	= 0.65)					0.1	٠.ـ	rs after Fav	Z Vours bo	oforo	10
Test for subgroup di	fferences: Chi ²	= 3.26,	df = 1 (P = 0.0)	$(0.7), I^2 = 6$	9.3%			ravou	s aitel Fa	vouis be	iore	

Footnotes

- (1) Akintan 2024 reported sepsis among neonates prescribed antibiotics in the NICU
- (2) Wang 2020 reported sepsis/suspected sepsis among neonates admitted to the NICU

Outcome: Number of newborns receiving at least one antimicrobial


	After Interv	Before Inter	vention	Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
Akintan 2024	17	19	15	19	42.5%	1.13 [0.86, 1.50]		- 	
Wang 2020	3328	4488	4478	4743	57.5%	0.79 [0.77, 0.80]		•	
Total (95% CI)		4507		4762	100.0%	0.92 [0.64, 1.31]			
Total events	3345		4493						
Heterogeneity: Tau ² = Test for overall effect			= 1 (P = 0.01)); $I^2 = 85\%$	Ó		0.2	0.5 1 2 Favours after Favours before	 5

Outcome: Number of newborns receiving at least one antimicrobial by study design

	After Interv	ention	Before Interv	ention		Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Rando	m, 95% CI	
1.4.1 Cross-sectiona	ıl study								
Akintan 2024 Subtotal (95% CI)	17	19 19	15	19 19	42.5% 42.5%	. , .			
Total events	17		15						
Heterogeneity: Not ap	plicable								
Test for overall effect	Z = 0.88 (P =	= 0.38)							
1.4.2 Cohort study									
Wang 2020 Subtotal (95% CI)	3328	4488 4488	4478	4743 4743	57.5% 57.5%		•		
Total events	3328		4478						
Heterogeneity: Not ap	plicable								
Test for overall effect	Z = 25.44 (P)	< 0.000	01)						
Total (95% CI)		4507		4762	100.0%	0.92 [0.64, 1.31]			
Total events	3345		4493						
Heterogeneity: Tau² = Test for overall effect Test for subgroup dif	Z = 0.47 (P = 0.47)	= 0.64)		_		-	0.7 0.85 Favours after	1 1.2 1 Favours before	

Single-Component Intervention: *Restriction*

Outcome: Neonatal mortality

Outcome: Neonatal mortality by study design

	After Interv	ention	Before Interv	ention		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
1.6.1 Cohort study									
Sathyan 2022	1	43	1	40	6.8%	0.93 [0.06, 14.38]			
Subtotal (95% CI)		43		40	6.8%	0.93 [0.06, 14.38]			_
Total events	1		1						
Heterogeneity: Not ap	plicable								
Test for overall effect	Z = 0.05 (P = 0.05)	= 0.96)							
1.6.2 Quasi-experim	ental study								
Sowjanya 2018	12	428	10	429	74.1%	1.20 [0.53, 2.75]		_	
Xiao-Lu 2016	5	470	2	168	19.1%	0.89 [0.18, 4.56]			
Subtotal (95% CI)		898		597	93.2%	1.13 [0.54, 2.37]		*	
Total events	17		12						
Heterogeneity: Tau ² =	= 0.00; Chi ² =	0.10, df	= 1 (P = 0.75);	$I^2 = 0\%$					
Test for overall effect	Z = 0.33 (P = 0.33)	= 0.74)							
Total (95% CI)		941		637	100.0%	1.12 [0.55, 2.28]		•	
Total events	18		13						
Heterogeneity: Tau ² =	= 0.00; Chi ² =	0.12, df	= 2 (P = 0.94);	$I^2 = 0\%$			0.01		10 16
Test for overall effect							0.01	0.1 İ Favours after Favours b	10 10
Test for subgroup dif	ferences: Chi ²	= 0.02,	df = 1 (P = 0.8)	9), $I^2 = 0$	%			ravours after ravours b	eioie

Prevention and Treatment of Neonatal Infections in LMICs Outcome: Culture-positive sepsis

After Intervention			Before Interv	ention	Risk Ratio			Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Rando	m, 95% CI		
Sowjanya 2018	14	428	18	429	8.8%	0.78 [0.39, 1.55]					
Xiao-Lu 2016	144	470	77	168	91.2%	0.67 [0.54, 0.83]		-			
Total (95% CI)		898		597	100.0%	0.68 [0.55, 0.83]		•			
Total events	158		95								
Heterogeneity: Tau ² =	= 0.00; Chi ² =	0.18, df	= 1 (P = 0.67)	$I^2 = 0\%$			$\frac{1}{\sqrt{2}}$	0 -	 		
Test for overall effect	Z = 3.74 (P =	= 0.0002)				0.2	Favours [After]	L ∠ Favours [Befo	ore]	

Outcome: Number of newborns on antibiotics

	After Interv	ention	Before Interv	ention		Risk Ratio		Risk Rat	tio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random,	95% CI	
Jinka 2017	584	1276	681	1176	31.9%	0.79 [0.73, 0.85]		-		
Sowjanya 2018	370	428	385	429	34.9%	0.96 [0.92, 1.01]				
Xiao-Lu 2016	372	470	154	168	33.3%	0.86 [0.81, 0.92]		-		
Total (95% CI)		2174		1773	100.0%	0.87 [0.78, 0.98]				
Total events	1326		1220							
Heterogeneity: Tau ² =	= 0.01; Chi ² =	19.71, d	f = 2 (P < 0.00)	$(001); I^2 =$	90%		1-0	-	1 5	<u></u>
Test for overall effect	Z = 2.35 (P = 1.35)	= 0.02)					0.5 0. Favo	-	vours [Before]	2

Outcome: Number of newborns on amikacin

	After Interv	ention	Before Interv	ention/		Risk Ratio		Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Rando	m, 95% CI		
Jinka 2017	116	1276	301	1176	49.8%	0.36 [0.29, 0.43]		-			
Sowjanya 2018	160	428	190	429	50.2%	0.84 [0.72, 0.99]		-	\dashv		
Total (95% CI)		1704		1605	100.0%	0.55 [0.23, 1.28]					
Total events	276		491								
Heterogeneity: Tau ² =	= 0.37; Chi ² =	43.68, d	f = 1 (P < 0.00)	$(001); I^2 =$	= 98%		$\frac{1}{0}$	02 05	 		10
Test for overall effect	Z = 1.39 (P = 1.39)	0.17)					0.1	Favours [After]	Favours [Be	o efore]	10

Outcome: Number of newborns on amikacin (of newborns on any antibiotic)

	After Interv	ention	Before Interv	ention/		Risk Ratio	Risk I	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Randor	m, 95% CI	
Jinka 2017	116	584	301	681	49.7%	0.45 [0.37, 0.54]	-		
Sowjanya 2018	160	370	190	385	50.3%	0.88 [0.75, 1.02]	-		
Total (95% CI)		954		1066	100.0%	0.63 [0.33, 1.21]		_	
Total events	276		491						
Heterogeneity: Tau ² =	= 0.22; Chi ² =	29.78, d	f = 1 (P < 0.00)	0001); I ² =	= 97%		0 1 0 2 0 5 1	1	 5 10
Test for overall effect	Z = 1.39 (P = 1.39)	0.16)					0.1 0.2 0.3	Favours [Before]	

Outcome: Number of newborns on piperacillin-tazobactam

	After Interve	ention	Before Interv	ention		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
Jinka 2017	81	1276	109	1176	40.8%	0.68 [0.52, 0.90]			
Sowjanya 2018	155	428	175	429	59.2%	0.89 [0.75, 1.05]			
Total (95% CI)		1704		1605	100.0%	0.80 [0.62, 1.03]		•	
Total events	236		284						
Heterogeneity: Tau ² =			= 1 (P = 0.12)	$I^2 = 59\%$	ó		0.2	0.5 1 2	
Test for overall effect	Z = 1.76 (P =	(80.0						Favours [After] Favours [Before]	

Outcome: Number of newborns on piperacillin-tazobactam (of newborns on any antibiotic)

	After Interv	ention	Before Interv	ention/		Risk Ratio		Ris	k Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Rand	lom, 95%	CI	
Jinka 2017	81	584	109	681	27.2%	0.87 [0.66, 1.13]					
Sowjanya 2018	155	370	175	385	72.8%	0.92 [0.78, 1.08]			+		
Total (95% CI)		954		1066	100.0%	0.91 [0.79, 1.04]					
Total events	236		284								
Heterogeneity: Tau ² =	= 0.00; Chi ² =	0.15, df	= 1 (P = 0.70)	$I^2 = 0\%$			0.5	0.7	+	1 5	
Test for overall effect	Z = 1.39 (P = 1.39)	= 0.16)					0.5	Favours [Afte	r] Favoui	rs [Before]	۷

Outcome: AWaRe antibiotic usage

3	After Interv	vention	Before Inter	vention		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.3.1 Access group							
Jinka 2017 - Amikacin	116	584	301	681	7.1%	0.45 [0.37, 0.54]	
Jinka 2017 - Ampicillin/Gentamicin	491	584	449	681	7.3%	1.28 [1.20, 1.36]	•
Sowjanya 2018 – Amikacin	160	428	190	429	7.2%	0.84 [0.72, 0.99]	
Sowjanya 2018 -Ampicillin	40	428	45	429	6.2%	0.89 [0.59, 1.33]	
Xiao-Lu 2016 - Penicillin	346	470	156	168	7.3%	0.79 [0.74, 0.85]	*
Subtotal (95% CI)		2494		2388	35.2%	0.81 [0.58, 1.13]	•
Total events	1153		1141				
Heterogeneity: $Tau^2 = 0.13$; $Chi^2 = 172.73$, $df = 4$	(P < 0.00001)); $I^2 = 98\%$: I				
Test for overall effect: $Z = 1.25$ ($P = 0.21$)							
1.3.2 Watch group							
Jinka 2017 – 3rd Gen. Cephalosporins	39	584	281	681	6.6%	0.16 [0.12, 0.22]	
Jinka 2017 – Ciprofloxacin	45	584	5	681	3.7%	10.49 [4.19, 26.26]	
Jinka 2017 – Meropenem	58	584	58	681	6.5%	1.17 [0.82, 1.65]	 -
Jinka 2017 – Piperacillin–Tazobactam	81	584	109	681	6.8%	0.87 [0.66, 1.13]	
Sowjanya 2018 – Piperacillin–Tazobactam	155	428	175	429	7.1%	0.89 [0.75, 1.05]	
Xiao-Lu 2016 - 3rd and 4th Gen. Cephalosporins	187	470	90	168	7.1%	0.74 [0.62, 0.89]	-
Xiao-Lu 2016 - Carbapenems	168	470	27	168	6.4%	2.22 [1.54, 3.21]	
Xiao-Lu 2016 - Glycopeptides	72	470	32	168	6.3%	0.80 [0.55, 1.17]	-
Subtotal (95% CI)		4174		3657	50.6%	1.00 [0.61, 1.63]	•
Total events	805		777				
Heterogeneity: $Tau^2 = 0.45$; $Chi^2 = 165.33$, $df = 7$ Test for overall effect: $Z = 0.00$ ($P = 1.00$)	(P < 0.00001)); $I^2 = 96\%$					
1.3.3 Mix of Access and Watch group	175	420	105	420	7 20/	0.00[0.77.1.05]	
Sowjanya 2018 - Empirical 1st Line (1)	175	428	195	429	7.2%	0.90 [0.77, 1.05]	
Xiao-Lu 2016 - 1st and 2nd Gen. Cephalosporins Subtotal (95% CI)	100	470 898	126	168 597	7.1% 14.3%	0.28 [0.23, 0.34] 0.51 [0.16, 1.57]	
	275	090	221	397	14.3/0	0.31 [0.10, 1.37]	
Total events	275	12 000/	321				
Heterogeneity: $Tau^2 = 0.66$; $Chi^2 = 83.07$, $df = 1$ (I Test for overall effect: $Z = 1.18$ (P = 0.24)	P < 0.00001);	1 = 99%					
Test for overall effect: $Z = 1.18$ (P = 0.24)							
Total (95% CI)		7566		6642	100.0%	0.82 [0.64, 1.06]	
Total events	2233		2239			0.02 [0.0 ., 2.00]	
Heterogeneity: $Tau^2 = 0.22$; $Chi^2 = 486.74$, $df = 14$		1) $I^2 = 97^9$					
Test for overall effect: $Z = 1.54$ (P = 0.12)	1 (1 < 0.0000	1), 1 – 37	70				0.05 0.2 1 5 20
Test for subgroup differences: $Chi^2 = 1.32$, $Chi^2 = 1.32$	$(P = 0.52) I^2$	= 0%					Favours [After] Favours [Before]
Footnotes	(i - 0.52), i	370					
(1) Amikacin, Ampicillin, and Piperacillin-Tazobacta	am						
(1) / tillikacili, Allipicilili, alia i iperacilili- razobaci	uiii						

Multi-Component Intervention: <u>Regulation & Restriction</u>

Outcome: Neonatal mortality due to nosocomial bloodstream infection

	After Interv	ention	Before Interv	ention		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, R	andom, 95%	6 CI	
El-Baky 2020	59	617	65	462	98.6%	0.68 [0.49, 0.95]			-		
Landre-Peigne 2011	1	148	1	125	1.4%	0.84 [0.05, 13.37]			-		
Total (95% CI)		765		587	100.0%	0.68 [0.49, 0.95]			•		
Total events	60		66								
Heterogeneity: Tau ² = Test for overall effect:	•		= 1 (P = 0.88);	$I^2 = 0\%$			0.02	0.1	1	10	50
rest for overall effect.	2 - 2.20 (1 -	0.02)						Favours [A	\fter] Favou	rs [Before]	

Outcome: Neonatal mortality due to nosocomial bloodstream infection by level of care

	After Interv	ention	Before Interv	ention	,	Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
1.16.1 Tertiary or hig	gher								
El-Baky 2020 Subtotal (95% CI)	59	617 617	65	462 462	98.6% 98.6%	0.68 [0.49, 0.95] 0.68 [0.49, 0.95]		•	
Total events	59		65						
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 2.29 (P =	0.02)							
1.16.2 Secondary									
Landre-Peigne 2011	1	148	1	125	1.4%	0.84 [0.05, 13.37]			
Subtotal (95% CI)		148		125	1.4%	0.84 [0.05, 13.37]			
Total events	1		1						
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.12 (P =	0.90)							
Total (95% CI)		765		587	100.0%	0.68 [0.49, 0.95]		•	
Total events	60		66						
Heterogeneity: Tau ² =	0.00; Chi ² = 0	0.02, df =	= 1 (P = 0.88);	$I^2 = 0\%$			0.01	0.1 1 10	100
Test for overall effect:	Z = 2.28 (P =	0.02)					0.01	Favours [After] Favours [Before	
Test for subgroup diff	ferences: Chi ²	= 0.02, c	df = 1 (P = 0.88)	$(3), I^2 = 0$	6			ravours pareir ravours (before	-1

Multi-Component Intervention: Regulation, Education & Restriction

Outcome: Neonatal mortality

	After Interv	ention	Before Interv	ention/		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
Agarwal 2021	56	864	20	290	10.8%	0.94 [0.57, 1.54]		-	
Bassiouny 2020	31	150	20	60	11.2%	0.62 [0.39, 1.00]			
Chu 2023	2	90	3	96	1.7%	0.71 [0.12, 4.16]			
Feng 2022	0	2901	3	4804	0.7%	0.24 [0.01, 4.58]		· -	
Gill 2009 (1)	144	1000	290	1000	17.6%	0.50 [0.41, 0.59]		+	
Gill 2009 (2)	481	1000	598	1000	19.1%	0.80 [0.74, 0.87]		•	
Jain 2021 (3)	16	1000	25	1000	8.6%	0.64 [0.34, 1.19]			
Kommalur 2021	18	58	38	75	11.8%	0.61 [0.39, 0.95]			
Lu 2019	388	5786	473	7754	18.5%	1.10 [0.97, 1.25]		•	
Total (95% CI)		12849		16079	100.0%	0.73 [0.57, 0.93]		♦	
Total events	1136		1470						
Heterogeneity: Tau ² =	= 0.08; Chi ² =	54.12, d	f = 8 (P < 0.00)	0001); $I^2 =$	= 85%		0.01		100
Test for overall effect	Z = 2.57 (P = 1.57)	= 0.01)					0.01	0.1 1 10 Favours after Favours before	100

Footnotes

- (1) Gill 2009 reported neonatal mortality in NICU 1 as deaths per 1000 admissions
- (2) Gill 2009 reported neonatal mortality in NICU 2 as deaths per 1000 admissions
- (3) Jain 2021 reported neonatal mortality per 1000 live births

Outcome: Neonatal mortality – sensitivity analysis (omitting studies with high risk of bias)

	After Interve	ention	Before Inter	vention		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95	% CI	
Agarwal 2021	56	864	20	290	12.0%	0.94 [0.57, 1.54]				
Bassiouny 2020	31	150	20	60	12.3%	0.62 [0.39, 1.00]				
Chu 2023	2	90	3	96	1.9%	0.71 [0.12, 4.16]		-	<u>—</u>	
Feng 2022	0	2901	3	4804	0.7%	0.24 [0.01, 4.58]		•	<u></u> -	
Gill 2009 (1)	144	1000	290	1000	19.2%	0.50 [0.41, 0.59]		-		
Gill 2009 (2)	481	1000	598	1000	20.7%	0.80 [0.74, 0.87]		•		
Kommalur 2021	18	58	38	75	13.0%	0.61 [0.39, 0.95]				
Lu 2019	388	5786	473	7754	20.1%	1.10 [0.97, 1.25]		†		
Total (95% CI)		11849		15079	100.0%	0.73 [0.57, 0.95]		•		
Total events	1120		1445							
Heterogeneity: Tau ² =	= 0.08; Chi ² =	53.57, d	f = 7 (P < 0.0)	0001); $I^2 =$	= 87%		0.01		10	100
Test for overall effect	Z = 2.34 (P = 2.34)	0.02)					0.01	0.1 1 Favours after Favo	10 urs before	100

Footnotes

- (1) Gill 2009 reported neonatal mortality in NICU 1 as deaths per 1000 admissions
- (2) Gill 2009 reported neonatal mortality in NICU 2 as deaths per 1000 admissions

Outcome: Neonatal mortality by study design

	After Interv	ention	Before Inter	vention			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
1.7.1 Cohort study									
Chu 2023 Subtotal (95% CI)	2	90 90	3	96 96	1.7% 1.7%				
Total events	2		3						
Heterogeneity: Not ap	plicable								
Test for overall effect	z = 0.38 (P = 0.38)	= 0.71)							
1.7.2 Quasi-experim	nental study								
Agarwal 2021	56	864	20	290	10.8%	0.94 [0.57, 1.54]		+	
Bassiouny 2020	31	150	20	60	11.2%	0.62 [0.39, 1.00]			
Feng 2022	0	2901	3	4804	0.7%	0.24 [0.01, 4.58]			
Gill 2009 (1)	144	1000	290	1000	17.6%	0.50 [0.41, 0.59]		-	
Gill 2009 (2)	481	1000	598	1000	19.1%	0.80 [0.74, 0.87]		•	
Jain 2021 (3)	16	1000	25	1000	8.6%	0.64 [0.34, 1.19]			
Kommalur 2021	18	58	38	75	11.8%	0.61 [0.39, 0.95]			
Lu 2019 Subtotal (95% CI)	388	5786 12759	473	7754 15983	18.5% 98.3%	1.10 [0.97, 1.25] 0.73 [0.57, 0.93]		<u>_</u>	
Total events	1134	12739	1467	13963	30.3/6	0.73 [0.37, 0.33]		Y	
Heterogeneity: Tau ² =		54.10. d		0001): $I^2 =$	= 87%				
Test for overall effect				/ , -					
Total (95% CI)		12849		16079	100.0%	0.73 [0.57, 0.93]		•	
Total events	1136		1470						
Heterogeneity: Tau ² =	= 0.08; Chi ² =	54.12, d	f = 8 (P < 0.0)	0001); $I^2 =$	= 85%		0.01	0.1 1 10	100
Test for overall effect							0.01	Favours after Favours before	100
Test for subgroup dif	ferences: Chi ²	= 0.00,	df = 1 (P = 0.	98), $I^2 = 0$	%			Tavours after Tavours Defore	

- $\underline{Footnotes}$
- (1) Gill 2009 reported neonatal mortality in NICU 1 as deaths per 1000 admissions
- (2) Gill 2009 reported neonatal mortality in NICU 2 as deaths per 1000 admissions
- (3) Jain 2021 reported neonatal mortality per 1000 live births

Outcome: Necrotizing enterocolitis (any Bell stage)

	After Interv	ention	Before Interv	ention		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Agarwal 2021 (1)	49	864	21	290	8.8%	0.78 [0.48, 1.28]	
Chu 2023 (2)	8	90	7	96	2.3%	1.22 [0.46, 3.22]	
Feng 2022 (3)	30	2901	54	4804	10.9%	0.92 [0.59, 1.43]	
Lu 2019 (4)	249	5786	287	7754	77.9%	1.16 [0.98, 1.37]	<u>=</u>
Total (95% CI)		9641		12944	100.0%	1.10 [0.95, 1.27]	•
Total events	336		369				
Heterogeneity: Tau ² =	= 0.00; Chi ² =	2.91, df	= 3 (P = 0.41)	$I^2 = 0\%$			0.1 0.2 0.5 1 2 5 10
Test for overall effect	Z = 1.22 (P = 1.22)	= 0.22)					Favours after Favours before

Footnotes

- (1) Agarwal 2021 reported overall NEC
- (2) Chu 2023 reported NEC (Bell stage ≥ II)
- (3) Feng 2022 reported NEC (Bell stage ≥ II)
- (4) Lu 2019 reported NEC (Stage ≥ II)

Outcome: Necrotizing enterocolitis (any Bell stage) by study design

	After Intervention		Before Intervention			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.9.1 Cohort study							
Chu 2023 Subtotal (95% CI)	8	90 90	7	96 96	2.3% 2.3%	1.22 [0.46, 3.22] 1.22 [0.46, 3.22]	
Total events	8	30	7	30	2.370	1.22 [0.10, 5.22]	
Heterogeneity: Not an	_						
Test for overall effect	•	= 0.69)					
1.9.2 Quasi-experim	ental study						
Agarwal 2021	49	864	21	290	8.8%	0.78 [0.48, 1.28]	· · ·
Feng 2022	30	2901	54	4804	10.9%	0.92 [0.59, 1.43]	
Lu 2019	249	5786	287	7754	77.9%	1.16 [0.98, 1.37]	
Subtotal (95% CI)		9551		12848	97.7%	1.04 [0.82, 1.30]	◆
Total events	328		362				
Heterogeneity: Tau ² =	= 0.01; Chi ² =	2.86, df	= 2 (P = 0.24)); $I^2 = 30\%$,)		
Test for overall effect	Z = 0.30 (P = 0.30)	= 0.77)					
Total (95% CI)		9641		12944	100.0%	1.10 [0.95, 1.27]	•
Total events	336		369				
Heterogeneity: Tau ² =	= 0.00; Chi ² =	2.91, df	= 3 (P = 0.41)); $I^2 = 0\%$			
Test for overall effect							0.1 0.2 0.5 1 2 5 10 Favours after Favours before
Test for subgroup dif	ferences: Chi ²	= 0.10,	df = 1 (P = 0.7)	75), $I^2 = 0$	%		ravours after Favours before

Outcome: Necrotizing enterocolitis (Bell stage ≥ II)

	After Interv	ention	Before Inter	vention		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Chu 2023	8	90	7	96	2.5%	1.22 [0.46, 3.22]	·] -
Feng 2022	30	2901	54	4804	12.0%	0.92 [0.59, 1.43]	·] ———
Lu 2019	249	5786	287	7754	85.5%	1.16 [0.98, 1.37]	'I <u>=</u>
Total (95% CI)		8777		12654	100.0%	1.13 [0.97, 1.32]	1
Total events	287		348				
Heterogeneity: Tau ² =	= 0.00; Chi ² =	0.96, df	= 2 (P = 0.62)); $I^2 = 0\%$			1 1 1 1 1
Test for overall effect	Z = 1.58 (P = 1.58)	= 0.11)					0.1 0.2 0.5 1 2 5 10 Favours after Favours before

Outcome: Necrotizing enterocolitis (Bell stage ≥ II) by study design

	After Interv	ention	Before Interv	ention		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
1.11.1 Cohort study								
Chu 2023 Subtotal (95% CI)	8	90 90	7	96 96	2.5% 2.5%	· / -		
Total events	8		7					
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z = 0.40 (P =	0.69)						
1.11.2 Quasi-experir	nental study							
Feng 2022	30	2901	54	4804	12.0%	0.92 [0.59, 1.43]		
Lu 2019	249	5786	287	7754	85.5%	- , <u>-</u>		
Subtotal (95% CI)		8687		12558	97.5%	1.13 [0.97, 1.32]	◆	
Total events	279		341					
Heterogeneity: Tau² =	0.00; Chi ² =	0.94, df	= 1 (P = 0.33);	$I^2 = 0\%$				
Test for overall effect:	Z = 1.53 (P =	0.12)						
Total (95% CI)		8777		12654	100.0%	1.13 [0.97, 1.32]	•	
Total events	287		348					
Heterogeneity: Tau² =	0.00; Chi ² =	0.96, df	= 2 (P = 0.62);	$I^2 = 0\%$			0.1 0.2 0.5 1 2 5	10
Test for overall effect:							0.1 0.2 0.5 1 2 5 Favours after Favours before	1(
Test for subgroup diff			df = 1 (P = 0.8)	8). $I^2 = 0$	%		ravours after ravours before	

Outcome: Neonatal sepsis (any)

	After Interv	Intervention Before Intervention				Risk Ratio			Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Ra	ndom, 95%	CI		
Chu 2023 (1)	10	90	23	96	23.7%	0.46 [0.23, 0.92]			—			
Feng 2022 (2)	10	2901	12	4804	22.0%	1.38 [0.60, 3.19]				_		
Lu 2019 (3)	376	5786	884	7754	27.7%	0.57 [0.51, 0.64]		-	-			
Maalouf 2023 (4)	39	532	77	153	26.7%	0.15 [0.10, 0.20]		-				
Total (95% CI)		9309		12807	100.0%	0.46 [0.19, 1.09]						
Total events	435		996									
Heterogeneity: Tau ² =	= 0.69; Chi ² =	60.94, d	If = 3 (P < 0.0)	0001); $I^2 =$	= 95%							
Test for overall effect	Z = 1.77 (P = 1.77)	= 0.08)					0.05	0.2 Favours a	ıfter Favou	s before	20	

Footnotes

- (1) A positive blood or CSF fluid culture, or clinical deterioration and ≥2 abnormal blood indicators or changes in CSF consistent with meningitis
- (2) LOS defined as >72 hours of age and positive pathogenic results in blood, urine, or CSF fluid specimens
- (3) Late-onset defined as ≥72 hours after birth
- (4) EOS defined as ≤72 hours after birth

Outcome: Neonatal sepsis (any) by study design

	After Interv	ention	Before Inter	vention		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.13.1 Cohort study							
Chu 2023	10	90	23	96	23.7%	0.46 [0.23, 0.92]	_ _
Subtotal (95% CI)		90		96	23.7%	0.46 [0.23, 0.92]	
Total events	10		23				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 2.20 (P =	= 0.03)					
1.13.2 Quasi-experi	mental study						
Feng 2022	10	2901	12	4804	22.0%	1.38 [0.60, 3.19]	 • •
Lu 2019	376	5786	884	7754	27.7%	0.57 [0.51, 0.64]	•
Maalouf 2023	39	532	77	153	26.7%	0.15 [0.10, 0.20]	 -
Subtotal (95% CI)		9219		12711	76.3%	0.46 [0.16, 1.36]	
Total events	425		973				
Heterogeneity: Tau2 =	= 0.85; Chi ² =	60.89, d	f = 2 (P < 0.0)	0001); I ² =	= 97%		
Test for overall effect:	Z = 1.40 (P = 1.40)	= 0.16)					
Total (95% CI)		9309		12807	100.0%	0.46 [0.19, 1.09]	
Total events	435		996				
Heterogeneity: Tau ² =	= 0.69; Chi ² =	60.94, d	f = 3 (P < 0.0)	$0001); I^2 =$	= 95%		
Test for overall effect:							0.02 0.1 1 10 50 Favours after Favours before
Test for subgroup diff	ferences: Chi ²	= 0.00,	df = 1 (P = 0.1)	99), $I^2 = 0$	%		ravours arter Favours before

Outcome: Late-onset sepsis (>72 hours after birth)

	After Interv	ention	Before Inter	vention		Risk Ratio	Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Rando	m, 95% CI		
Chu 2023	10	90	23	96	25.3%	0.46 [0.23, 0.92]		_			
Feng 2022 (1)	10	2901	12	4804	19.8%	1.38 [0.60, 3.19]			_		
Lu 2019 (2)	376	5786	884	7754	54.8%	0.57 [0.51, 0.64]		•			
Total (95% CI)		8777		12654	100.0%	0.64 [0.41, 1.02]		•			
Total events	396		919								
Heterogeneity: Tau ² =	= 0.10; Chi ² =	4.59, df	= 2 (P = 0.10)); $I^2 = 56\%$	Ś		0.02	01		10	
Test for overall effect	Z = 1.86 (P = 1.86)	= 0.06)					0.02	Favours after	ι Favours be		30

Footnotes

- (1) Feng 2022 reported LOS defined as >72 hours of age and positive pathogenic results in blood, urine, or cerebrospinal fluid specimens
- (2) Lu 2019 reported LOS and defined late-onset as ≥72 hours after birth

Outcome: Late-onset sepsis (>72 hours after birth) by study design

	After Interve	Before Inter	vention		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.15.1 Cohort study							
Chu 2023	10	90	23	96	25.3%		-
Subtotal (95% CI)		90		96	25.3%	0.46 [0.23, 0.92]	
Total events	10		23				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 2.20 (P =	0.03)					
1.15.2 Quasi-experir	nental study						
Feng 2022	10	2901	12	4804	19.8%	1.38 [0.60, 3.19]	- •
Lu 2019	376	5786	884	7754	54.8%	0.57 [0.51, 0.64]	■
Subtotal (95% CI)		8687		12558	74.7%	0.80 [0.34, 1.86]	
Total events	386		896				
Heterogeneity: Tau ² =	0.30; Chi ² =	4.20, df	= 1 (P = 0.04)); $I^2 = 76\%$	ó		
Test for overall effect:	Z = 0.51 (P =	0.61)					
Total (95% CI)		8777		12654	100.0%	0.64 [0.41, 1.02]	•
Total events	396		919				
Heterogeneity: Tau ² =	0.10; Chi ² =	4.59, df	= 2 (P = 0.10)); $I^2 = 56\%$	Ś		0.05 0.2 1 5 20
Test for overall effect:	Z = 1.86 (P =	0.06)					Favours after Favours before
Test for subgroup diff	erences: Chi ²	= 0.97,	df = 1 (P = 0.1)	32), $I^2 = 0$	%		ravours arter ravours before

Outcome: Culture-negative sepsis

	After Interv	ention	Before Inter	vention		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
Feng 2022 (1)	368	2901	663	4804	73.4%	0.92 [0.82, 1.04]			
Lu 2019 (2)	156	5786	248	7754	26.6%	0.84 [0.69, 1.03]		-	
Total (95% CI)		8687		12558	100.0%	0.90 [0.81, 0.99]			
Total events	524		911						
Heterogeneity: Tau² = Test for overall effect			= 1 (P = 0.46)); $I^2 = 0\%$			0.5	0.7 1 1.5 Favours after Favours before	2

Footnotes

- (1) Feng 2022 reported infants treated in ≤5 days for culture-negative sepsis
- (2) Lu 2019 reported all infants treated for culture-negative sepsis

Outcome: Pneumonia

	After Interve	ention	Before Inter	vention	Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI		
Feng 2022 (1)	128	2901	296	4804	47.9%	0.72 [0.59, 0.88]		-		
Lu 2019 (2)	434	5786	543	7754	52.1%	1.07 [0.95, 1.21]		•		
Total (95% CI)		8687		12558	100.0%	0.88 [0.60, 1.31]				
Total events	562		839							
Heterogeneity: Tau ² =	= 0.07; Chi ² =	11.19, d	f = 1 (P = 0.0)	008); $I^2 =$	91%		0.2	0.5 1 2		
Test for overall effect	Z = 0.62 (P = 0.62)	0.54)					0.2	Favours after Favours before	5	

Footnotes

- (1) Feng 2022 reported infants treated in ≤5 days for pneumonia
- (2) Lu 2019 reported all infants treated for pneumonia

Outcome: Multidrug-resistant organism infection or colonization

	After Interv	ention	Before Inter	vention		Risk Ratio		Risk Rat	tio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random,	95% CI	
Feng 2022 (1)	3	2901	7	4804	5.2%	0.71 [0.18, 2.74]				
Lu 2019 (2)	58	5786	109	7754	94.8%	0.71 [0.52, 0.98]		-		
Total (95% CI)		8687		12558	100.0%	0.71 [0.52, 0.97]		•		
Total events	61		116							
Heterogeneity: Tau ² = Test for overall effect			= 1 (P = 0.99)); $I^2 = 0\%$			0.05	0.2 1 Favours after Fa	5 Ivours before	20 e

Footnotes

- (1) Feng 2022 reported multidrug-resistant organism infections
- (2) Lu 2019 reported multidrug-resistant organism colonizations

Outcome: Bloodstream isolates of methicillin-resistant Staphylococcus aureus (MRSA)

	After Interv	ention	Before Interve	ention	Risk Ratio			Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Ran	dom, 95%	CI	
Bassiouny 2020	4	58	0	20	34.4%	3.20 [0.18, 57.01]			-		
Gill 2009	1	776	0	486	27.9%	1.88 [0.08, 46.06]			-		
Kommalur 2021	1	58	1	75	37.7%	1.29 [0.08, 20.24]			-		
Total (95% CI)		892		581	100.0%	1.96 [0.36, 10.62]		-			
Total events	6		1								
Heterogeneity: Tau ²			= 2 (P = 0.90);	$I^2 = 0\%$			0.01	0.1	<u> </u> 	10	100
Test for overall effect	t: $Z = 0.78 (P =$	= 0.43)						Favours aft	er Favour	s before	

Outcome: Bloodstream isolates of Klebsiella spp.

	After Intervention		Before Intervention		Risk Ratio			Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
Bassiouny 2020	12	58	8	20	12.6%	0.52 [0.25, 1.08]			
Gill 2009	87	776	76	486	83.4%	0.72 [0.54, 0.95]		-	
Kommalur 2021 (1)	3	58	7	75	4.0%	0.55 [0.15, 2.05]		-	
Total (95% CI)		892		581	100.0%	0.68 [0.52, 0.88]		•	
Total events	102		91						
Heterogeneity: Tau ² :	= 0.00; Chi ² =	0.76, df	= 2 (P = 0.69)	$I^2 = 0\%$			- 		0 50
Test for overall effect	t: $Z = 2.88 (P =$	= 0.004)					0.02	Favours after Favours bef	

Footnotes

(1) Kommalur 2021 reported Klebsiella pneumoniae organisms

Outcome: Bloodstream isolates of Acinetobacter spp.

	After Interv	ention	Before Interv	ention		Risk Ratio		Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Rando	om, 95% CI		
Bassiouny 2020	8	58	1	20	26.0%	2.76 [0.37, 20.71]			-		
Gill 2009 (1)	5	776	3	486	51.5%	1.04 [0.25, 4.35]			•		
Kommalur 2021 (2)	1	58	4	75	22.6%	0.32 [0.04, 2.82]		-			
Total (95% CI)		892		581	100.0%	1.03 [0.37, 2.89]		•			
Total events	14		8								
Heterogeneity: Tau ² =	= 0.01; Chi ² =	2.02, df	= 2 (P = 0.36)	$ I^2 = 1\% $			0.01	0 1	1	10	100
Test for overall effect	z = 0.06 (P = 0.06)	= 0.95)					0.01	Favours afte	ı r Favours l	10 pefore	100

Footnotes

- (1) Gill 2009 reported Acinetobacter baumanii organisms
- (2) Kommalur 2021 reported Acinetobacter baumanii organisms

${\it Prevention \ and \ Treatment \ of \ Neonatal \ Infections \ in \ LMICs}$

Outcome: Bloodstream isolates of Escherichia coli (E. coli)

	After Interv	ention	Before Interv	ention		Risk Ratio		Risk Rat	io	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random,	95% CI	
Bassiouny 2020	4	58	0	20	24.6%	3.20 [0.18, 57.01]			•	
Gill 2009	8	776	16	486	53.7%	0.31 [0.14, 0.73]				
Kommalur 2021	1	58	0	75	21.7%	3.86 [0.16, 93.16]		-		
Total (95% CI)		892		581	100.0%	0.96 [0.15, 6.11]				
Total events	13		16							
Heterogeneity: Tau ² =	= 1.48; Chi ² =	4.24, df	= 2 (P = 0.12)	$I^2 = 53\%$,)		0.01	01 1	10	100
Test for overall effect	Z = 0.05 (P = 0.05)	= 0.96)					0.01	Favours after Fa		100

Outcome: Bloodstream isolates of Enterobacter spp.

	After Interve	ention	Before Interve	ntion		Risk Ratio		Risk	(Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Rand	om, 95% CI		
Bassiouny 2020	4	58	0	20	9.2%	3.20 [0.18, 57.01]			-		
Gill 2009	48	776	47	486	90.8%	0.64 [0.43, 0.94]		-	-		
Kommalur 2021	0	58	0	75		Not estimable					
Total (95% CI)		892		581	100.0%	0.74 [0.30, 1.85]		⋖			
Total events	52		47								
Heterogeneity: Tau ² =	= 0.20; Chi ² =	1.18, df	= 1 (P = 0.28);	$I^2 = 15\%$,)		0.01	0 1	1	+	100
Test for overall effect	Z = 0.64 (P = 0.64)	0.52)					0.01	0.1 Favours afte	-	10 efore	100

Outcome: Bloodstream isolates of coagulase-negative staphylococci (CoNS)

	After Interv	ention	Before Interv	vention		Risk Ratio		Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Rand	om, 95% CI		
Bassiouny 2020	14	58	1	20	10.0%	4.83 [0.68, 34.41]		_	-		_
Gill 2009	34	776	11	486	86.1%	1.94 [0.99, 3.78]					
Kommalur 2021	0	58	1	75	3.8%	0.43 [0.02, 10.35]		•		_	
Total (95% CI)		892		581	100.0%	2.00 [1.08, 3.73]			•		
Total events	48		13								
Heterogeneity: Tau ² = Test for overall effect			= 2 (P = 0.43)); $I^2 = 0\%$			0.01	0.1 Favours afte	-	10 efore	100

Outcome: Bloodstream isolates of Pseudomonas spp.

	After Interv	ention	Before Interv	ention		Risk Ratio		Risk F	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Randor	n, 95% CI	
Bassiouny 2020	1	58	0	20	2.4%	1.07 [0.05, 25.21]				
Gill 2009	20	776	52	486	95.2%	0.24 [0.15, 0.40]		-		
Kommalur 2021 (1)	0	58	1	75	2.4%	0.43 [0.02, 10.35]				
Total (95% CI)		892		581	100.0%	0.25 [0.15, 0.41]		•		
Total events	21		53							
Heterogeneity: Tau ² =	= 0.00; Chi ² =	0.94, df	= 2 (P = 0.63)	$I^2 = 0\%$			0.01		10	100
Test for overall effect	z = 5.49 (P < 1)	< 0.0000	1)				0.01	0.1 1 Favours after	. 10 Favours before	100

Footnotes

(1) Kommalur 2021 reported *Pseudomonas aeruginosa* organisms

Outcome: Bloodstream isolates of Candida spp.

	After Interv	ention	Before Interv	ention		Risk Ratio		R	isk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Ra	ndom, 959	% CI	
Bassiouny 2020	3	58	8	20	87.1%	0.13 [0.04, 0.44]					
Kommalur 2021	0	58	1	75	12.9%	0.43 [0.02, 10.35]					
Total (95% CI)		116		95	100.0%	0.15 [0.05, 0.47]					
Total events	3		9								
Heterogeneity: Tau ² : Test for overall effect			= 1 (P = 0.49);	$I^2 = 0\%$			0.01	0.1 Favours a	1 fter Favou	10 urs before	100

Outcome: Mean length of hospital stay

	After	Interver	ition	Before	Interver	ntion		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Bassiouny 2020	11.94	10.71	150	15.15	11.38	60	49.9%	-3.21 [-6.56, 0.14]	-
Maalouf 2023	41.6	31.8	563	23.6	5.5	153	50.1%	18.00 [15.23, 20.77]	-
Total (95% CI)			713			213	100.0%	7.42 [-13.37, 28.20]	
Heterogeneity: Tau² = Test for overall effect				df = 1 (P	< 0.000	01); I ² =	= 99%	-	-20 -10 0 10 20 Favours [After] Favours [Before]

Outcome: Mean length of hospital stay (including Feng 2022 [13])

	After	Interver	ition	Before	Interver	ntion		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Bassiouny 2020	11.94	10.71	150	15.15	11.38	60	32.9%	-3.21 [-6.56, 0.14]	-
Feng 2022 (1)	7	2.96	2901	7	3.7	4804	33.9%	0.00 [-0.15, 0.15]	•
Maalouf 2023	41.6	31.8	563	23.6	5.5	153	33.2%	18.00 [15.23, 20.77]	-
Total (95% CI)			3614			5017	100.0%	4.92 [-6.34, 16.18]	
Heterogeneity: Tau ² = Test for overall effect				df = 2 (P	< 0.000	01); I ² =	= 99%		-20 -10 0 10 20 Favours after Favours before

Footnotes

(1) Feng 2022 expressed length of hospital stay as median and IQR; assuming the distribution of data is symmetrical, we estimated mean and SD

Outcome: Number of newborns receiving antibiotics

	After Interv	ention	Before Interv	ention		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Agarwal 2021 (1)	544	864	226	290	21.8%	0.81 [0.75, 0.88]	
Chu 2023 (2)	60	90	95	96	18.7%	0.67 [0.58, 0.78]	
Feng 2022 (3)	1341	2901	3153	4804	22.9%	0.70 [0.67, 0.74]	*
Kommalur 2021 (4)	44	58	63	75	17.2%	0.90 [0.76, 1.08]	
Maalouf 2023 (5)	208	532	118	153	19.3%	0.51 [0.44, 0.58]	
Total (95% CI)		4445		5418	100.0%	0.71 [0.61, 0.81]	•
Total events	2197		3655				
Heterogeneity: Tau ² =	= 0.02; Chi ² =	41.16, d	f = 4 (P < 0.00)	$(001); I^2 =$	= 90%	•	
Test for overall effect	t: $Z = 4.84 (P - 4.84)$	< 0.0000	1)				Favours after Favours before

Footnotes

- (1) Agarwal 2021 reported neonates unexposed to antibiotics (from which the neonates exposed to antibiotics was derived)
- (2) Chu 2023 reported proportion of early antibiotic usage
- (3) Feng 2022 reported proportion of antibiotic exposure
- (4) Kommalur 2021 reported percentage of neonates with no antibiotics (from which neonates receiving antibiotics was derived)
- (5) Maalouf 2023 reported proportion of neonates treated for early-onset sepsis

Outcome: Number of newborns receiving antibiotics by study design

	After Interv	ention	Before Interv	vention		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
1.29.1 Cohort study									
Chu 2023	60	90	95	96	18.7%			-	
Subtotal (95% CI)		90		96	18.7%	0.67 [0.58, 0.78]		•	
Total events	60		95						
Heterogeneity: Not ap	oplicable								
Test for overall effect	Z = 5.25 (P < 1.00)	< 0.0000	1)						
1.29.2 Quasi-experi	mental study								
Agarwal 2021	544	864	226	290	21.8%	0.81 [0.75, 0.88]			
Feng 2022	1341	2901	3153	4804	22.9%	0.70 [0.67, 0.74]		•	
Kommalur 2021	44	58	63	75	17.2%	0.90 [0.76, 1.08]			
Maalouf 2023	208	532	118	153	19.3%	- , -			
Subtotal (95% CI)		4355		5322	81.3%	0.71 [0.60, 0.84]		•	
Total events	2137		3560						
Heterogeneity: Tau ² =	= 0.03; Chi ² =	40.55, d	f = 3 (P < 0.00)	$0001); I^2 =$	= 93%				
Test for overall effect	Z = 3.91 (P < 1.00)	< 0.0001)							
Total (95% CI)		4445		5418	100.0%	0.71 [0.61, 0.81]		•	
Total events	2197		3655						
Heterogeneity: Tau ² =	= 0.02; Chi ² =	41.16, d	f = 4 (P < 0.00)	$0001); I^2 =$	= 90%		0.2	0.5 1 2	
Test for overall effect	Z = 4.84 (P < 1.84)	< 0.0000	1)				0.2	Favours after Favours before	5
Test for subgroup dif	ferences: Chi ²	= 0.24,	df = 1 (P = 0.6	52), $I^2 = 0$	%			ravours areer ravours before	

Outcome: *Duration of antibiotic therapy >5 days*

	After Intervention			vention		Risk Ratio		Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Rando	om, 95% CI		
Chu 2023 (1)	19	90	92	96	47.8%	0.22 [0.15, 0.33]		_			
Feng 2022 (2)	654	2901	1882	4804	52.2%	0.58 [0.53, 0.62]					
Total (95% CI)		2991		4900	100.0%	0.36 [0.14, 0.93]					
Total events	673		1974								
Heterogeneity: Tau ² : Test for overall effect			f = 1 (P < 0.0)	0001); I ² =	= 95%		0.05	0.2 Favours after	1 5 Favours before	20	

<u>Footnotes</u>

- (1) Chu 2023 reported the proportion of neonates treated with an initial antibiotic course >7 days
- (2) Feng 2022 reported the proportion of neonates treated with a duration of therapy >5 days

Outcome: Duration of antibiotic therapy >5 days by study design

	After Interv	ention	Before Interv	ention/		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
1.31.1 Cohort study									
Chu 2023 Subtotal (95% CI)	19	90 90	92	96 96	47.8% 47.8%	0.22 [0.15, 0.33] 0.22 [0.15, 0.33]		•	
Total events	19		92						
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 7.38 (P <	< 0.0000	1)						
1.31.2 Quasi-experir	nental study								
Feng 2022	654	2901	1882	4804	52.2%	0.58 [0.53, 0.62]		=	
Subtotal (95% CI)		2901		4804	52.2%	0.58 [0.53, 0.62]		♦	
Total events	654		1882						
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 14.23 (P	< 0.000	01)						
Total (95% CI)		2991		4900	100.0%	0.36 [0.14, 0.93]			
Total events	673		1974						
Heterogeneity: Tau ² =	0.44; Chi ² =	21.21, d	f = 1 (P < 0.00)	$0001); I^2 =$	= 95%		0.02	0.1 1 10	
Test for overall effect:	Z = 2.11 (P =	= 0.03)					0.02	Favours after Favours before	
Test for subgroup diff	erences: Chi ²	= 21.21,	df = 1 (P < 0)	.00001), I	$^{2} = 95.3\%$)		ravours arter ravours below	Ξ

Outcome: Neonates with antibiotics discontinued after 48 hours

	After Intervention		Before Interv	ention		Risk Ratio		Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI			
Kommalur 2021	11	58	0	75	30.6%	29.63 [1.78, 492.56]		-			
Lu 2019	5497	5786	2481	7754	69.4%	2.97 [2.87, 3.07]					
Total (95% CI)		5844		7829	100.0%	6.00 [0.75, 47.88]					
Total events	5508		2481								
Heterogeneity: Tau ² = Test for overall effect			= 1 (P = 0.11)	$I^2 = 61\%$	Ó		0.002	0.1 1 10 Favours after Favours before	500		

4.1.2. Chlorhexidine Cleansing

Comparison: Chlorhexidine umbilical cord cleansing versus dry cord care

Outcome: Neonatal mortality

	3 ,			d care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Gathwala 2013	0	70	4	70	100.0%	0.11 [0.01, 2.03]	<u> </u>
Total (95% CI)		70		70	100.0%	0.11 [0.01, 2.03]	
Total events	0		4				
Heterogeneity: Not ap Test for overall effect	-)					0.01 0.1 1 10 100 Favours [Chlorhexidine] Favours [Dry cord care]

Outcome: Omphalitis

	Chlorhexidine cle	ansing	Dry core	d care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Gathwala 2013	13	70	24	70	31.2%	0.54 [0.30, 0.98]	
Ishaq 2023	2	32	7	32	4.8%	0.29 [0.06, 1.27]	
Kinanu 2022	26	165	44	163	57.4%	0.58 [0.38, 0.90]	-
Riaz 2019	5	100	4	100	6.5%	1.25 [0.35, 4.52]	
Total (95% CI)		367		365	100.0%	0.58 [0.42, 0.80]	•
Total events	46		79				
Heterogeneity: Tau ² =	= 0.00; Chi ² = 2.29,	df = 3 (P	= 0.51); I	$ ^2 = 0\%$		-	
Test for overall effect			,,				0.1 0.2 0.5 1 2 5 10 Favours [Chlorhexidine] Favours [Dry cord care]

Outcome: Omphalitis by cleansing frequency

	Chlorhexidine cle	eansing	Dry cord	d care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.7.1 Single cleansin	ıg						
Ishaq 2023	2	32	7	32	4.7%	0.29 [0.06, 1.27]	
Ozdemir 2017	1	86	3	86	2.1%	0.33 [0.04, 3.14]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)		118		118	6.8%	0.30 [0.09, 1.04]	
Total events	3		10				
Heterogeneity: Tau2 =	= 0.00; Chi ² = 0.01,	df = 1 (P	= 0.91); I	$^{2} = 0\%$			
Test for overall effect	Z = 1.90 (P = 0.06)	5)					
1.7.2 Multiple cleans	sing						
Gathwala 2013	13	70	24	70	30.2%	0.54 [0.30, 0.98]	
Kinanu 2022	26	165	44	163	55.5%	0.58 [0.38, 0.90]	
Ozdemir 2017	0	86	3	86	1.2%	0.14 [0.01, 2.72]	-
Riaz 2019	5	100	4	100	6.3%	1.25 [0.35, 4.52]	
Subtotal (95% CI)		421		419	93.2%	0.59 [0.42, 0.82]	•
Total events	44		75				
Heterogeneity: Tau ² =	= 0.00; Chi ² = 2.28,	df = 3 (P	= 0.52); I	$^{2} = 0\%$			
Test for overall effect	Z = 3.10 (P = 0.00))2)					
Total (95% CI)		539		537	100.0%	0.56 [0.41, 0.78]	•
Total events	47		85				
Heterogeneity: Tau ² =	= 0.00; Chi ² = 3.37,	df = 5 (P)	= 0.64); I	$^{2} = 0\%$			
Test for overall effect							0.01 0.1 1 10 1 Favours [Chlorhexidine] Favours [Dry cord care]
Test for subgroup dif			(P = 0.30)	$1.1^2 = 5$	7%		ravours [Chiornexiume] ravours [Dry cord care]

Comparison: Chlorhexidine for whole-body cleansing versus water/saline

Outcome: Neonatal mortality

	Chlorhexidine clea	insing	Water/s	aline		Risk Ratio		Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		М	-H, Random, 95% C	CI .	
Anitha 2022	6	59	10	61	100.0%	0.62 [0.24, 1.60]		_			
Total (95% CI)		59		61	100.0%	0.62 [0.24, 1.60]		-			
Total events	6		10								
Heterogeneity: Not ap Test for overall effect							0.02 F	0.1 avours [Chlor	1 hexidine] Favours [\	10 Water/Saline]	50

Outcome: Bloodstream infection/sepsis

	Chlorhexidine clea		Water/saline			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Anitha 2022	6	59	12	61	100.0%	0.52 [0.21, 1.29]	-
Total (95% CI)		59		61	100.0%	0.52 [0.21, 1.29]	
Total events	6		12				
Heterogeneity: Not a Test for overall effect	• •)				F (0.01 0.1 1 10 100 Favours [Chlorhexidine] Favours [Water/Saline]

4.1.3. Topical Emollients

Comparison: Topical ointment/cream versus routine skin care in preterm neonates

Outcome: *Invasive infection (any organism)*

	Topical ointment,	Routine ski	n care		Risk Ratio		Risk Ratio						
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI			M-H,	Fixed, 95	% CI		
Darmstadt 2005	27	157	40	181	65.8%	0.78 [0.50, 1.21]							
Erdemir 2014	23	100	19	97	34.2%	1.17 [0.68, 2.01]			_				
Total (95% CI)		257		278	100.0%	0.91 [0.65, 1.28]			•				
Total events	50		59										
Heterogeneity: Chi² = Test for overall effect	·		26%				0.1	0.2 Favours	0.5 ointment/cr	1 eam Favo	2 urs routine	5 skin care	10

Outcome: Invasive infection (coagulase negative staphylococci)

To	Topical ointment/cream		Routine skin care		Risk Ratio						
Study or Subgroup	Events	Total	Events Total		Weight M-H, Fixed, 95% C			M-H, Fixed, 95% CI			
Darmstadt 2005	0	157	0	181		Not estimable					
Erdemir 2014	22	100	17	97	100.0%	1.26 [0.71, 2.22]					
Total (95% CI)		257		278	100.0%	1.26 [0.71, 2.22]					
Total events	22		17								
Heterogeneity: Not applic Test for overall effect: Z =		3)					0.02	0.1	1	10	
rest for overall effect. Z -	= 0.70 (I = 0. 1 .	٠,						Favours ointmen	it/cream Favours	routine skin care	

${\it Prevention \ and \ Treatment \ of \ Neonatal \ Infections \ in \ LMICs}$

Outcome: *Invasive infection (other bacteria)*

	Topical ointment,	cream	Routine ski	n care		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI		
Darmstadt 2005	23	157	34	181	92.6%	0.78 [0.48, 1.27]				
Erdemir 2014	0	100	2	97	7.4%	0.19 [0.01, 3.99]	•	-		
Total (95% CI)		257		278	100.0%	0.74 [0.46, 1.18]				
Total events	23		36							
Heterogeneity: Chi ² = Test for overall effect			0%				0.01	0.1 1 Favours ointment/cream Favours ro	 10 utine skin care	100 e

Outcome: *Invasive infection (fungi)*

	Topical ointment,	/cream	Routine ski	n care		Risk Ratio		Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI				
Darmstadt 2005	4	157	3	181	84.6%	1.54 [0.35, 6.76]			_			
Erdemir 2014	1	100	0	97	15.4%	2.91 [0.12, 70.60]	_	-				
Total (95% CI)		257		278	100.0%	1.75 [0.46, 6.65]			-			
Total events	5		3									
Heterogeneity: Chi ² = Test for overall effect			0%				0.01 0.1 Favours oint	1 ment/cream Favours ro	10 outine skin care	100		

Outcome: All-cause neonatal mortality

	Topical ointment	/cream	Routine ski	n care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Darmstadt 2005	85	157	128	181	96.7%	0.77 [0.64, 0.91]	-
Erdemir 2014	10	100	4	97	3.3%	2.42 [0.79, 7.47]	
Total (95% CI)		257		278	100.0%	0.82 [0.69, 0.98]	•
Total events	95		132				
Heterogeneity: Chi ² = Test for overall effect			76%				0.2 0.5 1 2 5 Favours ointment/cream Favours routine skin care

Outcome: Necrotizing enterocolitis

	Topical ointment/crea					Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI	
Erdemir 2014	3	100	2	97	100.0%	1.46 [0.25, 8.52]			
Total (95% CI)		100		97	100.0%	1.46 [0.25, 8.52]			
Total events	3		2						
Heterogeneity: Not ap	plicable						0.01	0.1 1 1	0 100
Test for overall effect	Z = 0.42 (P = 0.68)	3)					0.01	Favours ointment/cream Favours routine	

Comparison: Topical oil versus routine skin care in preterm neonates

Outcome: *Invasive infection (any organism)*

	l oil	Routine skin	care		Risk Ratio		Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI			
Arora 2005	4	23	1	46	0.8%	8.00 [0.95, 67.55]		•			
Darmstadt 2004	12	51	26	52	31.2%	0.47 [0.27, 0.83]					
Darmstadt 2005	22	159	43	181	48.7%	0.58 [0.36, 0.93]		-			
Kukreja 2018	2	39	2	39	2.4%	1.00 [0.15, 6.75]					
Salam 2015	4	126	14	128	16.8%	0.29 [0.10, 0.86]					
Sankaranarayanan 2005	0	32	0	31		Not estimable					
Soriano 2000	0	29	0	31		Not estimable					
Total (95% CI)		459		508	100.0%	0.57 [0.41, 0.78]		•			
Total events	44		86								
Heterogeneity: $Chi^2 = 8.1$	16, df = 4	(P = 0.	09); $I^2 = 51\%$				0.01				
Test for overall effect: Z =	= 3.44 (P	= 0.000	06)				0.01	0.1 1 10 100 Favours topical oil Favours routine skin care			

Prevention and Treatment of Neonatal Infections in LMICs Outcome: Invasive infection (coagulase negative staphylococci)

	Topica	Topical oil Routine skin care				Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI	
Darmstadt 2005	0	159	0	181		Not estimable			
Kukreja 2018	0	39	0	39		Not estimable			
Salam 2015	1	128	7	130	100.0%	0.15 [0.02, 1.16]			
Sankaranarayanan 2005	0	32	0	31		Not estimable			
Soriano 2000	0	29	0	31		Not estimable			
Total (95% CI)		387		412	100.0%	0.15 [0.02, 1.16]	-		
Total events	1		7						
Heterogeneity: Not application	able						0.01	0.1	10 100
Test for overall effect: Z =	1.82 (P	= 0.07)				0.01	Favours topical oil Favours rout	

Outcome: *Invasive infection (other bacteria)*

	Topical oil			ı care		Risk Ratio	Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% C	il .	
Darmstadt 2005	26	159	34	181	61.6%	0.87 [0.55, 1.38]		-		
Kukreja 2018	2	39	2	39	3.9%	1.00 [0.15, 6.75]				
Salam 2015	7	128	18	130	34.6%	0.39 [0.17, 0.91]				
Sankaranarayanan 2005	0	32	0	31		Not estimable				
Soriano 2000	0	29	0	31		Not estimable				
Total (95% CI)		387		412	100.0%	0.71 [0.48, 1.05]		•		
Total events	35		54							
Heterogeneity: $Chi^2 = 2.7$ Test for overall effect: Z =							0.01 0.1 Favou	1 rs topical oil Favours	10	100

Prevention and Treatment of Neonatal Infections in LMICs Outcome: Invasive infection (fungi)

	Topical oil			care		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI		
Darmstadt 2005	3	159	0	181	19.1%	7.96 [0.41, 152.98]		-		
Kukreja 2018	0	39	0	39		Not estimable				
Salam 2015	1	128	2	130	80.9%	0.51 [0.05, 5.53]				
Sankaranarayanan 2005	0	32	0	31		Not estimable				
Soriano 2000	0	29	0	31		Not estimable				
Total (95% CI)		387		412	100.0%	1.93 [0.42, 8.78]				
Total events	4		2							
Heterogeneity: $Chi^2 = 2.0$	8, df = 1	(P = 0.	15); $I^2 = 52\%$				0.01	0.1 1 10	100	
Test for overall effect: Z =	= 0.85 (P	= 0.39))				0.01	0.1 1 10 Favours topical oil Favours routine sk	100 in care	

Outcome: All-cause neonatal mortality

	Topical oil			n care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Arora 2005	3	23	1	46	1.3%	6.00 [0.66, 54.54]	· · · · · · · · · · · · · · · · · · ·
Darmstadt 2004	12	51	18	52	15.9%	0.68 [0.37, 1.26]	- •
Darmstadt 2005	46	151	75	181	69.6%	0.74 [0.55, 0.99]	- ■-
Fallah 2013	1	30	0	30	0.6%	3.00 [0.13, 70.83]	· ·
Kukreja 2018	8	38	6	39	6.7%	1.37 [0.52, 3.57]	 •
Kumar 2013	1	26	0	23	0.6%	2.67 [0.11, 62.42]	· ·
Salam 2015	4	128	7	126	4.2%	0.56 [0.17, 1.87]	· ·
Sankaranarayanan 2005	0	32	0	31		Not estimable	2
Soriano 2000	1	29	2	31	1.1%	0.53 [0.05, 5.58]	•
Total (95% CI)		508		559	100.0%	0.78 [0.61, 1.00]	•
Total events Heterogeneity: Chi ² = 6.6							0.01 0.1 1 10 100
Test for overall effect: Z =	= 1.99 (P	= 0.05)				Favours topical oil Favours routine skin care

Prevention and Treatment of Neonatal Infections in LMICs Outcome: Rate of weight gain (g/kg/day)

	Тор	•			Routine skin care			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Fallah 2013	10.9	5.6	28	6.6	5.5	27	18.2%	4.30 [1.37, 7.23]	
Farhat 2010	8	5.6	30	7.8	5.5	29	19.5%	0.20 [-2.63, 3.03]	
Jabraeille 2016	16	7.7	42	6.8	10.1	44	10.9%	9.20 [5.41, 12.99]	
Soriano 2000	18	3.3	29	14.9	3.6	31	51.4%	3.10 [1.35, 4.85]	- ■-
Total (95% CI)			129			131	100.0%	3.42 [2.17, 4.67]	•
Heterogeneity: $Chi^2 = 14.40$, $df = 3$ ($P = 0.002$); $I^2 = 79\%$ Test for overall effect: $Z = 5.36$ ($P < 0.00001$)									-10 -5 0 5 10 Favours routine skin care Favours topical oil

Outcome: Change in crown-heel length (mm/week)

	Topical oil Routine skin care							Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI			
Fallah 2013	8	2.5	28	6	6.1	27	42.8%	2.00 [-0.48, 4.48]	 			
Jabraeille 2016	10.3	10.1	33	7.7	8.4	37	13.7%	2.60 [-1.78, 6.98]	- •			
Soriano 2000	8.4	2.5	29	7	6.5	31	43.5%	1.40 [-1.06, 3.86]				
Total (95% CI)			90			95	100.0%	1.82 [0.20, 3.44]				
Heterogeneity: $Chi^2 = 0.25$, $df = 2$ (P = 0.88); $I^2 = 0\%$ Test for overall effect: $Z = 2.20$ (P = 0.03)									-10 -5 0 5 10 Favours routine skin care Favours topical oil			

Outcome: Change in circumference (mm/week)

	Тор	Topical oil Routine skin				care		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Fallah 2013	5.5	7.4	28	4	7.3	27	20.7%	1.50 [-2.39, 5.39]	- •
Jabraeille 2016	5.7	5.2	33	4.6	4.6	37	58.5%	1.10 [-1.21, 3.41]	- •
Soriano 2000	7.7	7.5	29	7.2	7.8	31	20.8%	0.50 [-3.37, 4.37]	
Total (95% CI)			90			95	100.0%	1.06 [-0.71, 2.83]	
Heterogeneity: Chi ² = Test for overall effect					: 0%				-10 -5 0 5 10 Favours routine skin care Favours topical oil

Outcome: Change in triceps skinfold thickness (mm/week)

Topical oil				Routin	e skin	care		Mean Difference	Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV,	Fixed, 95% C		
Soriano 2000	0.16	0.27	29	0.14	0.28	31	100.0%	0.02 [-0.12, 0.16]			-		_
Total (95% CI)			29			31	100.0%	0.02 [-0.12, 0.16]			*		
Heterogeneity: Not ap Test for overall effect			= 0.78)						+ -2 F	-1 avours routine skir	0 1 care Favour	1 s topical oil	2

Comparison: Topical ointment/cream versus topical oil in preterm neonates

Outcome: *Invasive infection (any organism)*

	Topical ointment/o	ream	Topica	ıl oil		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Darmstadt 2005	27	157	30	159	100.0%	0.91 [0.57, 1.46]	
Total (95% CI)		157		159	100.0%	0.91 [0.57, 1.46]	
Total events	27		30				
Heterogeneity: Not ap Test for overall effect	•						0.05 0.2 1 5 20 Favours topical ointment Favours topical oil

Outcome: Invasive infection (coagulase negative staphylococci)

	Topical ointment	:/cream	Topica	l oil		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-I	H, Fixed, 95%	S CI	
Darmstadt 2005	0	157	0	159		Not estimable					
Total (95% CI)		157		159		Not estimable					
Total events	0		0								
Heterogeneity: Not ap Test for overall effect	•						0.01 Favo	0.1 ours topical oin	1 Itment Favou	10 rs topical oil	100

Prevention and Treatment of Neonatal Infections in LMICs Outcome: Invasive infection (other bacteria)

	Topical ointment,	/cream	Topica	l oil		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Darmstadt 2005	23	157	26	159	100.0%	0.90 [0.53, 1.50]	-
Total (95% CI)		157		159	100.0%	0.90 [0.53, 1.50]	
Total events	23		26				
Heterogeneity: Not ap Test for overall effect	-)				_	0.05 0.2 1 5 20 Favours topical ointment Favours topical oil

Outcome: Invasive infection (fungi)

	Topical ointment/	cream	Topica	ıl oil		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-I	H, Fixed, 95% CI		
Darmstadt 2005	4	157	3	159	100.0%	1.35 [0.31, 5.94]		_		_	
Total (95% CI)		157		159	100.0%	1.35 [0.31, 5.94]		-		-	
Total events	4		3								
Heterogeneity: Not a	· •						0.01	0.1	1	10	100
Test for overall effect	(2 = 0.40) (P = 0.69)						Favo	ours topical oir	ntment Favours t	opical oil	

Outcome: All-cause neonatal mortality

	Topical ointment/	cream	Topica	l oil		Risk Ratio		Ri	sk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, F	ixed, 95%	CI	
Darmstadt 2005	85	157	105	159	100.0%	0.82 [0.68, 0.98]					
Total (95% CI)		157		159	100.0%	0.82 [0.68, 0.98]			_		
Total events	85		105								
Heterogeneity: Not ap Test for overall effect	•					_	0.5 Favour	0.7 s topical ointm	1 ent Favour	1.5 s topical oil	2

Comparison: One topical oil (or combination) versus another oil (or combination)

Outcome: *Invasive infection*

	Coconu	ıt oil	Minera	ıl oil		Risk Ratio		Ris	k Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fi	xed, 95% C	<u> </u>	
Sankaranarayanan 2005	0	32	0	32		Not estimable					
Total (95% CI)		32		32		Not estimable					
Total events	0		0								
Heterogeneity: Not applic Test for overall effect: No		ole					0.01	0.1 Favours coconut	1 oil Favours	10 mineral oil	100

Outcome: All-cause mortality

	Coconu	t oil	Minera	ıl oil		Risk Ratio		Ris	k Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fi	xed, 95% CI	
Sankaranarayanan 2005	0	32	0	32		Not estimable				
Total (95% CI)		32		32		Not estimable				
Total events	0		0							
Heterogeneity: Not applic Test for overall effect: No		le					0.01	0.1 Favours coconut o	1 10 1 Tavours mine	100 ral oil

Comparison: Combined topical ointment/cream or oil versus routine skin care in preterm newborns

Outcome: All-cause neonatal mortality

	Topical ointment	/cream	Routine ski	n care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1.5.1 Topical oil							
Arora 2005	3	23	1	46	0.3%	6.00 [0.66, 54.54]	+
Darmstadt 2004	12	51	18	52	7.9%	0.68 [0.37, 1.26]	
Darmstadt 2005 (2)	46	151	75	181	30.2%	0.74 [0.55, 0.99]	
Fallah 2013	1	30	0	30	0.2%	3.00 [0.13, 70.83]	-
Kukreja 2018	8	38	6	39	2.6%	1.37 [0.52, 3.57]	 • • • • • • • • •
Kumar 2013	1	26	0	23	0.2%	2.67 [0.11, 62.42]	
Salam 2015	4	128	7	126	3.1%	0.56 [0.17, 1.87]	
Sankaranarayanan 2005	0	32	0	31		Not estimable	
Soriano 2000	1	29	2	31	0.9%	0.53 [0.05, 5.58]	
Subtotal (95% CI)		508		559	45.5%	0.80 [0.63, 1.02]	•
Total events	76		109				
Heterogeneity: Chi ² = 6.66	$6, df = 7 (P = 0.46); I^2$	2 = 0%					
Test for overall effect: Z =	1.77 (P = 0.08)						
1.5.2 Topical ointment o	r cream						
Darmstadt 2005 (1)	85	157	128	181	52.7%	0.77 [0.64, 0.91]	=
Erdemir 2014	10	100	4	97	1.8%	2.42 [0.79, 7.47]	+ -
Subtotal (95% CI)		257		278	54.5%	0.82 [0.69, 0.98]	◆
Total events	95		132				
Heterogeneity: Chi ² = 4.19	θ , df = 1 (P = 0.04); θ	² = 76%					
Test for overall effect: Z =	2.25 (P = 0.02)						
Total (95% CI)		765		837	100.0%	0.81 [0.70, 0.94]	♦
Total events	171		241			_	
Heterogeneity: Chi ² = 10.8	30, df = 9 (P = 0.29):	l ² = 17%					<u> </u>
Test for overall effect: Z =	· · · · · · · · · · · · · · · · · · ·	-					0.01 0.1 1 10 100
Test for subgroup differen	` '	= 1 (P = 0.9	38) I ² = 0%				Favours ointment/cream Favours routine skin care

4.1.4. Probiotics Supplementation

Comparison: Probiotics versus control in preterm newborns by probiotic type

Outcome: *Necrotizing enterocolitis*

Study or Subgroup	Probio:	tics Total	Cont	rol Total	Weight	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M-H, Fixed, 95% CI
1.1.1 Bifidobacterium spp.	Events	· Otai		rotal	reigilt	, 11xeu, 53% Cl	M-11, 11ACU, 33/0 CI
Dilli 2015	2	100	18	100	7.6%	0.11 [0.03, 0.47]	,
Huang 2009 Hussain 2016	0	95 150	3 3 7	88 150	1.5%	0.13 [0.01, 2.53] 0.19 [0.09, 0.41]	
Subtotal (95% CI)	,	345	,,	338	24.6%	0.16 [0.08, 0.31]	•
Total events	9		58				
Heterogeneity: Chi ² = 0.44, d Test for overall effect: Z = 5.3	if = 2 (P = 38 (P < 0	= 0.80); .00001)	I* = 0%				
1.1.2 Lactobacillus spp. Cui 2019	1	45	5	48	2.0%	0.21 [0.03, 1.76]	
Hernandez-Enriquez 2016	1	24	5	20	2.3%	0.17 [0.02, 1.31]	
Kaban 2019	0	47 26	3	47 26	1.5%	0.14 [0.01, 2.69]	· · · · · ·
Matin 2022 Oncel 2014	0	200	10	200	4.2%	Not estimable 0.80 [0.32, 1.99]	
Rojas 2012	9	372	15	378	6.3%	0.61 [0.27, 1.38]	
Shadkam 2015	2 6	30 37	11 10	30 35	4.6% 4.3%	0.18 [0.04, 0.75]	 _
Singh 2017 Subtotal (95% CI)	ь	781	10	784	25.2%	0.57 [0.23, 1.40] 0.46 [0.30, 0.70]	•
Total events	27		59				-
Heterogeneity: Chi ² = 5.81, d Test for overall effect: Z = 3.5	if = 6 (P = 56 (P = 0	= 0.44); .0004)	I ² = 0%				
1.1.3 Saccharomyces spp.							
Demirel 2013 Serce 2013	6	135 104	7	136 104	2.9%	0.86 [0.30, 2.50] 1.00 [0.36, 2.75]	
Subtotal (95% CI)		239		240	5.9%	0.93 [0.45, 1.94]	*
Total events	13	0.00	14				
Heterogeneity: $Chi^2 = 0.04$, d Test for overall effect: $Z = 0$.	11 = 1 (P = 19 (P = 0	= 0.84); .85)	I ² = 0%				
1.1.4 Bacillus spp. Sari 2011	6	110	10	111	4.2%	0.61 [0.23, 1.61]	
Tewari 2015	0	123	0	121		Not estimable	-
Subtotal (95% CI)		233		232	4.2%	0.61 [0.23, 1.61]	-
Total events Heterogeneity: Not applicable Test for overall effect: Z = 1.0		.31)	10				
1.1.5 Bacillus subtilis plus E							
Lin 2013	2	65	8	55	3.6%	0.21 [0.05, 0.96]	
Subtotal (95% CI) Total events	2	65	8	55	3.6%	0.21 [0.05, 0.96]	
Heterogeneity: Not applicable Test for overall effect: Z = 2.0		.04)					
1.1.6 Bifidobacterium spp. p							
Braga 2011	0	119 60	4	112 59	1.9% 2.5%	0.10 [0.01, 1.92]	
Chowdhury 2016 Roy 2014	2	56	2	56	0.8%	0.16 [0.02, 1.32] 1.00 [0.15, 6.85]	
Saengtawesin 2014	1	31	1	29	0.4%	0.94 [0.06, 14.27]	
Samanta 2009 Sowden 2022	5	91 100	15 1	95 100	6.2%	0.35 [0.13, 0.92] 0.33 [0.01, 8.09]	
Van Niekerk 2014	0	91	4	93	1.9%	0.11 [0.01, 2.08]	• • •
Zahed Pasha 2016	1	30	1	30 574	0.4% 14.9%	1.00 [0.07, 15.26] 0.33 [0.17, 0.63]	
Subtotal (95% CI) Total events	10	578	34	574	14.9%	0.33 [0.17, 0.63]	•
Heterogeneity: Chi ² = 4.05, d Test for overall effect: Z = 3.3	if = 7 (P =	= 0.77); .0007)					
1.1.7 Bifidobacterium spp. p			s spp.	plus Sa	ccharomy	ces spp.	
Chandrashekar 2018	0	70	3	70	1.5%	0.14 [0.01, 2.72]	
Duta 2015 Hariharan 2016	6	114 93	0	35 103	0.3%	4.07 [0.23, 70.49]	
Shashidhar 2017	2	49	6	49	2.5%	1.11 [0.23, 5.35] 0.33 [0.07, 1.57] 0.67 [0.28, 1.58]	
Subtotal (95% CI)		326		257	5.5%	0.67 [0.28, 1.58]	-
Total events Heterogeneity: Chi ² = 3.76, d Test for overall effect: Z = 0.9	11 if = 3 (P =	= 0.29);	12 I ² = 20	%			
1.1.8 Bifidobacterium spp. p			s spp.	plus St	reptococo	us spp.	
Dashti 2014	2	69	1	67	0.4%	1.94 [0.18, 20.92]	
Fernández-Carrocera 2014	6	75 73	12	75 73	5.0%	0.50 [0.20, 1.26]	
Rehman 2018 Ren 2010	2	/3 80	8	73 70	3.4% 2.2%	0.25 [0.05, 1.14]	
Subtotal (95% CI)		297		285	11.1%	0.53 [0.13, 2.12] 0.48 [0.25, 0.92]	•
Total events Heterogeneity: Chi ² = 2.06, d Test for overall effect: Z = 2.3	13 if = 3 (P = 21 (P = 0	= 0.56);	26 I ² = 0%				
1.1.9 Bifidobacterium spp. p		obacillu	s spp.			ıs	
Wu 2020	2	250	12	250	5.0%	0.17 [0.04, 0.74]	
Subtotal (95% CI) Total events	2	250	12	250	5.0%	0.17 [0.04, 0.74]	_
Heterogeneity: Not applicable		03)	12				
Test for overall effect: Z = 2.: Total (95% CI)	ου (P = 0.	.02)		3015	100.0%	0.39 [0.31, 0.49]	
Total (95% CI)	93	3114	233	2012	100.0%	0.33 [0.31, 0.49]	•
Heterogeneity: Chi2 = 32.98,	df = 30 (P = 0.32		9%			0.01 0.1 1 10 100
Test for overall effect: Z = 7.9 Test for subgroup differences	94 (P < 0 s: Chi² =	.00001) 17.30, d	f = 8 (I	P = 0.0	3), I ² = 53	.8%	Favours probiotics Favours control

Prevention and Treatment of Neonatal Infections in LMICs Outcome: All-cause neonatal mortality

Study or Subgroup	Probio Events		Conti Events		Weight	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M-H, Fixed, 95% CI
1.2.1 Bifidobacterium spp.	-	100	10	100	6 10/	0.35 (0.07.0.00)	
Dilli 2015 Subtotal (95% CI)	3	100 100	12	100 100	6.1% 6.1%	0.25 [0.07, 0.86] 0.25 [0.07, 0.86]	
Total events	3	100	12	100	0.1/0	5.23 [0.07, 0.00]	
rotal events Heterogeneity: Not applicable			12				
Test for overall effect: $Z = 2$.		.03)					
1.2.2 Lactobacillus spp.							
Hernandez-Enriquez 2016	2	24	0	20	0.3%	4.20 [0.21, 82.72]	
Kaban 2019	1	47	4	47	2.0%	0.25 [0.03, 2.15]	-
Matin 2022	0	26	0	26		Not estimable	
Oncel 2014	15	200	20	200	10.2%	0.75 [0.40, 1.42]	
Rojas 2012	22	372	28	378	14.2%	0.80 [0.47, 1.37]	
Shadkam 2015	1	30	2	30	1.0%	0.50 [0.05, 5.22]	-
Singh 2017 Subtotal (95% CI)	3	37 736	3	35 736	1.6% 29.4%	0.95 [0.20, 4.38] 0.77 [0.53, 1.13]	
		/50		/30	29.4%	0.77 [0.55, 1.15]	—
Fotal events Heterogeneity: Chi ² = 2.52, o			57 ; $I^2 = 0\%$				
Fest for overall effect: $Z = 1$.	.33 (P = 0	.18)					
1.2.3 Saccharomyces spp.	-	125	_	120	9 50	1.01.50.20.2	
Demirel 2013	5	135	5	136	2.5%	1.01 [0.30, 3.40]	
Serce 2013 Subtotal (95% CI)	5	104 239	4	104 240	2.0% 4.6%	1.25 [0.35, 4.52]	
	10	239	9	240	4.0%	1.12 [0.46, 2.70]	
Fotal events Heterogeneity: Chi² = 0.06, o		- 0.01					
Heterogeneity: Chi ² = 0.06, o Fest for overall effect: Z = 0.			, i = U%				
L.2.4 Bacillus spp.							
Sari 2011	3	110	3	111	1.5%	1.01 [0.21, 4.89]	
Tewari 2015	12	123	14	121	7.2%	0.84 [0.41, 1.75]	
Subtotal (95% CI)	12	233	1.4	232	8.7%	0.87 [0.45, 1.69]	•
Total events	15		17				Ŧ
Heterogeneity: Chi ² = 0.04, of Fest for overall effect: Z = 0.			$I^2 = 0\%$				
I.2.5 Bifidobacterium spp.	plus Lact	obacill	us spp.				
Braga 2011	26	119	27 27	112	14.2%	0.91 [0.56, 1.45]	
Chowdhury 2016	5	60	7	59	3.6%	0.70 [0.24, 2.09]	
i 2019	ő	16	1	14	0.8%	0.29 [0.01, 6.69]	
Roy 2014	7	56	8	56	4.1%	0.88 [0.34, 2.25]	
Saengtawesin 2014	0	31	0	29		Not estimable	
Samanta 2009	4	91	14	95	7.0%	0.30 [0.10, 0.87]	
Sowden 2022	0	100	1	100	0.8%	0.33 [0.01, 8.09]	
Van Niekerk 2014	5	91	6	93	3.0%	0.85 [0.27, 2.69]	
Zahed Pasha 2016	2	30	0	30	0.3%	5.00 [0.25, 99.95]	
Subtotal (95% CI)		594		588	33.8%	0.75 [0.54, 1.06]	•
Fotal events Heterogeneity: Chi² = 5.74, o	49 df = 7 (P :	= 0.57)	64 : I ² = 0%				
Test for overall effect: $Z = 1$.	64 (P = 0	.10)	,				
1.2.6 Bifidobacterium spp.	plus Lact						
Chandrashekar 2018	1	70	4	70	2.0%	0.25 [0.03, 2.18]	
Outa 2015	8	114	2	35	1.6%	1.23 [0.27, 5.52]	
Hariharan 2016	4	93	5	103	2.4%	0.89 [0.25, 3.20]	
hashidhar 2017	1	49	3	49	1.5%	0.33 [0.04, 3.09]	
Subtotal (95% CI)		326	_	257	7.6%	0.67 [0.30, 1.49]	
Fotal events	14		14				
Heterogeneity: Chi² = 1.98, o Fest for overall effect: Z = 0.			; 1' = 0%				
L.2.7 Bifidobacterium spp.			us spp. i	plus St	reptococc	us spp.	
Dashti 2014	8	69	4	67	2.1%	1.94 [0.61, 6.15]	+
Fernández-Carrocera 2014	1	75	7	75	3.6%	0.14 [0.02, 1.13]	
Rehman 2018	4	73	6	73	3.1%	0.67 [0.20, 2.26]	
Sinha 2015	1	668	2	672	1.0%	0.50 [0.05, 5.53]	
Subtotal (95% CI)		885	-	887	9.7%	0.73 [0.37, 1.43]	-
Fotal events	14		19				
Heterogeneity: Chi² = 5.27, o Fest for overall effect: Z = 0.	df = 3 (P = 0	= 0.15) .36)		%			
L.2.8 Bifidobacterium spp.			iis snn	nlus Fr	terococci	ıs	
Nu 2020	pius Lace 0	250	us spp. 0	250		Not estimable	
Subtotal (95% CI)	U	250	U	250		Not estimable	
Total events	0	_55	0	_55		2541114016	
Heterogeneity: Not applicable Fest for overall effect: Not ap	e		U				
	piicabie	2262		2205	100.05	0.75 (0.61 6.55)	
Fotal (95% CI) Fotal events	149	3363	192	3290	100.0%	0.75 [0.61, 0.92]	•
Heterogeneity: Chi ² = 19.62,		P = 0.9		0%			
			/, -				0.01 0.1 1 10
est for overall effect: Z = 2. est for subgroup difference	80 (P = 0 s: Chi ² =	.005) 4.12, d	f = 6 (P	= 0.66)	$I^2 = 0\%$		Favours probiotics Favours control

Outcome: *Invasive infection*

Study or Subgroup	Probio Events		Contr Events		Weight	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M-H, Fixed, 95% CI
1.3.1 Bifidobacterium spp.							
Dilli 2015	8	100	13	100	2.8%	0.62 [0.27, 1.42]	
Subtotal (95% CI)		100		100	2.8%	0.62 [0.27, 1.42]	
Total events	8		13				
Heterogeneity: Not applicable							
Test for overall effect: $Z = 1.1$	L4 (P = 0	.26)					
1.3.2 Lactobacillus spp.							
Cui 2019	2	45	4	48	0.8%	0.53 [0.10, 2.77]	
Hernandez-Enriquez 2016	6	24	1	20	0.2%	5.00 [0.66, 38.15]	 •
Kaban 2019	1	47	3	47	0.7%	0.33 [0.04, 3.09]	
Matin 2022	0	26	3	26	0.8%	0.14 [0.01, 2.63]	
Oncel 2014	13	200	25	200	5.4%	0.52 [0.27, 0.99]	
Shadkam 2015	0	30	0	30		Not estimable	
Subtotal (95% CI)		372		371	7.9%	0.60 [0.36, 1.01]	•
Total events	22		36				-
Heterogeneity: $Chi^2 = 5.60$, d Test for overall effect: $Z = 1.9$			$ I^2 = 299$	6			
1.3.3 Saccharomyces spp.							
Demirel 2013	20	135	21	136	4.5%	0.96 [0.55, 1.69]	
Serce 2013	19	104	25	104	5.4%	0.76 [0.45, 1.29]	
Xu 2016	4	65	6	60	1.4%	0.62 [0.18, 2.08]	
Subtotal (95% CI)	4	304	0	300	11.3%	0.82 [0.18, 2.08]	~
Total events	43	'	52			,,	7
Heterogeneity: $Chi^2 = 0.59$, d Test for overall effect: $Z = 1.0$	f = 2 (P =						
1.3.4 Bacillus spp.							
	20	110	20	111	F C01	1 12 [0 71 1 70]	<u> </u>
Sari 2011	29	110	26	111	5.6%	1.13 [0.71, 1.78]	
Tewari 2015 Subtotal (95% CI)	8	123 233	11	121 232	2.4% 8.0%	0.72 [0.30, 1.72]	
		233		232	8.0%	1.00 [0.67, 1.51]	—
Total events	37		37				
Heterogeneity: $Chi^2 = 0.81$, d Test for overall effect: $Z = 0.0$			$; 1^2 = 0\%$				
1.3.5 Bifidobacterium spp. p							
Braga 2011	40	119	42	112	9.4%	0.90 [0.63, 1.27]	+
Roy 2014	31	56	42	56	9.1%	0.74 [0.56, 0.98]	
Saengtawesin 2014	2	31	1	20	0.3%	1.29 [0.13, 13.31]	
Samanta 2009	13	91	28	95	5.9%	0.48 [0.27, 0.88]	
Van Niekerk 2014	15	91	10	93	2.1%	1.53 [0.73, 3.23]	
		388		376	26.8%	0.81 [0.66, 0.99]	◆
Subtotal (95% CI)							
Total events	101		123				
Total events Heterogeneity: Chi² = 6.59, d	f = 4 (P :			6			
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.0	f = 4 (P = 05 (P = 0	.04)	$I^2 = 399$		ccharomy	ces spp.	
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p	f = 4 (P = 05 (P = 0	.04)	; I ² = 399 us spp. p		ccharomy 2.8%		
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018	f = 4 (P : 05 (P = 0 olus Lactor	.04) obacill 70	; I ² = 399 us spp. r 13	olus Sa 70	2.8%	1.15 [0.59, 2.24]	
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015	f = 4 (P = 0)5 (P = 0) lus Lacter 15	.04) obacill 70 114	; I ² = 399 us spp. r 13 6	olus Sa 70 35	2.8% 2.0%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31]	
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.6 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016	f = 4 (P = 0)5 (P = 0) lus Lacte 15 10 9	.04) obacill 70 114 93	; I ² = 399 us spp. r 13 6 16	70 35 103	2.8% 2.0% 3.3%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34]	
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017	f = 4 (P = 0)5 (P = 0) lus Lacter 15	.04) obacill 70 114 93 49	; I ² = 399 us spp. r 13 6	70 35 103 49	2.8% 2.0% 3.3% 1.5%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34] 0.86 [0.31, 2.37]	
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (05% CI)	f = 4 (P = 0)5 (P = 0) lus Lacte 15 10 9 6	.04) obacill 70 114 93	; I ² = 399 us spp. p 13 6 16 7	70 35 103	2.8% 2.0% 3.3%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34]	-
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 2.46, d	f = 4 (P = 0)5 (P = 0) lus Lacte 15 10 9 6 40 f = 3 (P = 0)	.04) 70 114 93 49 326	; I ² = 399 us spp. p 13 6 16 7	70 35 103 49	2.8% 2.0% 3.3% 1.5%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34] 0.86 [0.31, 2.37]	•
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 2.46, d Test for overall effect: Z = 1.1	f = 4 (P = 0)	.04) bbacill 70 114 93 49 326 = 0.48)	; ² = 399; us spp. r 13 6 16 7 42 ; ² = 0%	70 35 103 49 257	2.8% 2.0% 3.3% 1.5% 9.6%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18]	•
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p	f = 4 (P = 0)	.04) pbacill 70 114 93 49 326 = 0.48) .26)	us spp. p 13 6 16 7 42 ; l ² = 0% us spp. p	70 35 103 49 257	2.8% 2.0% 3.3% 1.5% 9.6%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18]	•
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014	f = 4 (P = 0)	.04) bbacill 70 114 93 49 326 = 0.48)	; ² = 399; us spp. r 13 6 16 7 42 ; ² = 0%	70 35 103 49 257	2.8% 2.0% 3.3% 1.5% 9.6%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18]	•
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% Cl) Total events Heterogeneity: Chi² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández–Carrocera 2014 Sinha 2015	f = 4 (P = 0)	.04) bbacill 70 114 93 49 326 = 0.48) .26) bbacill	us spp. p 13 6 16 7 42 ; 2 = 0% us spp. p 44	70 35 103 49 257 blus St	2.8% 2.0% 3.3% 1.5% 9.6%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03]	•
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.C 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI)	f = 4 (P = 0)5 (P = 0)6 (P = 0)6 (P = 0)7 (P = 0	.04) 70 114 93 49 326 = 0.48) .26) bbacill 75 668	us spp. r 13 6 16 7 42 ; 1 ² = 0% us spp. r 44 107	70 35 103 49 257 blus Str 75 672	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26]	•
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI) Total events	f = 4 (P = 0)	.04) 70 114 93 49 326 = 0.48) .26) bbacill 75 668 743	us spp. r 13 6 16 7 42 ; l ² = 0% us spp. r 44 107	70 35 103 49 257 blus Str 75 672	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03]	•
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% Cl) Total events Heterogeneity: Chi² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% Cl) Total events Heterogeneity: Chi² = 1.05, d	f = 4 (P = 0) f = 7 (P = 0) f = 8 (P = 0) f = 15 f = 10 f	.04) pbacill 70 114 93 49 326 = 0.48) .26) pbacill 75 668 743 = 0.31)	us spp. r 13 6 16 7 42 ; l ² = 0% us spp. r 44 107	70 35 103 49 257 blus Str 75 672	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03]	•
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.05, d Test for overall effect: Z = 1.7 1.3.8 Bifidobacterium spp. p, p	f = 4 (P = 0)	.04) 70 114 93 326 = 0.48) .26) bbacill 75 668 743 = 0.31)	; 2 = 399; us spp. p 13 6 16 7 42 ;	70 35 103 49 257 blus Str 75 672 747	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1% 32.7%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03] 0.84 [0.69, 1.02]	•
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.05, d Test for overall effect: Z = 1.7 1.3.8 Bifidobacterium spp. p	f = 4 (P = 0)	.04) pbacill 70 114 93 49 326 = 0.48) .26) pbacill 75 6688 743 = 0.31) .09) pbacill 250	; 2 = 399; us spp. p 13 6 16 7 42 ;	olus Sa 70 35 103 49 257 olus Str 75 672 747	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1% 32.7%	1.15 [0.59, 2.24] 0.51 [0.20, 134] 0.62 [0.21, 134] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03] 0.84 [0.69, 1.02]	•
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 2.46, d Test for overall effect: Z = 1.1 3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.05, d Test for overall effect: Z = 1.7 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.05, d Test for overall effect: Z = 1.7	f = 4 (P = 0) f = 7 (P = 0) f = 8 (P = 0) f = 15 f = 10 f = 3 (P = 0) f = 3 (P = 0) f = 3 (P = 0) f = 10 (P = 0	.04) 70 114 93 49 326 = 0.48) .26) bbacill 75 668 743 = 0.31)	us spp. r 13 6 16 7 42 ; l ² = 0% us spp. r 44 107 151 ; l ² = 4% us spp. r	olus Sa 70 35 103 49 257 olus Sti 75 672 747	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1% 32.7%	1.15 [0.59, 2.24] 0.51 [0.20, 1.31] 0.62 [0.29, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03] 0.84 [0.69, 1.02]	•
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.05, d Test for overall effect: Z = 1.7 1.3.8 Bifidobacterium spp. p William 2015 Las Bifidobacterium spp. p 1.3.8 Bifidobacterium spp. p	f = 4 (P = 0) f = 7 (P = 0) f = 8 (P = 0) f = 15 f = 10 f = 3 (P = 0) f = 3 (P = 0) f = 3 (P = 0) f = 10 (P = 0	.04) pbacill 70 114 93 49 326 = 0.48) .26) pbacill 75 6688 743 = 0.31) .09) pbacill 250	us spp. r 13 6 16 7 42 ; l ² = 0% us spp. r 44 107 151 ; l ² = 4% us spp. r	olus Sa 70 35 103 49 257 olus Str 75 672 747	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1% 32.7%	1.15 [0.59, 2.24] 0.51 [0.20, 134] 0.62 [0.21, 134] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03] 0.84 [0.69, 1.02]	•
Total events Heterogeneity: Chi ² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.05, d Test for overall effect: Z = 1.7 1.3.8 Bifidobacterium spp. p Wu 2020 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.05, d Test for overall effect: Z = 1.7 1.3.8 Bifidobacterium spp. p Wu 2020 Subtotal (95% CI) Total events	f = 4 (P : 05 (P = 0 olus Laction 15	.04) bbacill 70 114 93 49 326 = 0.48) .26) bbacill 75 668 743 = 0.31) .09)	us spp. r 13 6 16 7 ; l ² = 0% us spp. r 44 107 151 ; l ² = 4% us spp. r 4	olus Sa 70 35 103 49 257 olus Str 75 672 747	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1% 32.7%	1.15 [0.59, 2.24] 0.51 [0.20, 134] 0.62 [0.21, 134] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03] 0.84 [0.69, 1.02]	•
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.05, d Test for overall effect: Z = 1.7 1.3.8 Bifidobacterium spp. p Wu 2020 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.05, d Total events Heterogeneity: Chi² = 1.7 1.3.8 Bifidobacterium spp. p Wu 2020 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.3	f = 4 (P : 05 (P = 0 olus Laction 15	.04) bbacill 70 114 93 326 = 0.48) .26) bbacill 75 668 743 = 0.31) .09) bbacill 250 250	us spp. r 13 6 16 7 ; l ² = 0% us spp. r 44 107 151 ; l ² = 4% us spp. r 4	70 35 103 257 257 5672 747	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1% 32.7%	1.15 [0.59, 2.24] 0.51 [0.20, 1.34] 0.62 [0.21, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03] 0.84 [0.69, 1.02] 15 0.75 [0.17, 3.32] 0.75 [0.17, 3.32]	•
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.05, d Test for overall effect: Z = 1.7 1.3.8 Bifidobacterium spp. p Usal Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.05, d Test for overall effect: Z = 1.7 1.3.8 Bifidobacterium spp. p Wa 2020 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.3 Total (95% CI)	f = 4 (P : 5) (P = 0 to 5) (P : 10 to 5) (P : 1	.04) bbacill 70 114 93 49 326 = 0.48) .26) bbacill 75 668 743 = 0.31) .09)	us spp. ; 1 ² = 39 ² us spp. ; 1 ³ = 6 16 7 42 42 107 151 151 151 151 17 4 4 4 4	70 35 103 257 257 5672 747	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1% 32.7%	1.15 [0.59, 2.24] 0.51 [0.20, 134] 0.62 [0.21, 134] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03] 0.84 [0.69, 1.02]	•
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.05, d Test for overall effect: Z = 1.7 1.3.8 Bifidobacterium spp. p Wu 2020 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.3 Total (95% CI) Total (95% CI)	f = 4 (P : 5 (P = 0 to 5) (P =	.04) bbacill 70 114 93 49 326 cobbacill 75 668 743 cobbacill 250 250 .70)	us spp. ;	70 35 103 49 257 5672 747 0lus Str 75 672 747	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1% 32.7%	1.15 [0.59, 2.24] 0.51 [0.20, 1.34] 0.62 [0.21, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03] 0.84 [0.69, 1.02] 15 0.75 [0.17, 3.32] 0.75 [0.17, 3.32]	•
Total events Heterogeneity: Chi² = 6.59, d Test for overall effect: Z = 2.0 1.3.6 Bifidobacterium spp. p Chandrashekar 2018 Duta 2015 Hariharan 2016 Shashidhar 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 2.46, d Test for overall effect: Z = 1.1 1.3.7 Bifidobacterium spp. p Fernández-Carrocera 2014 Sinha 2015 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.05, d Test for overall effect: Z = 1.7 1.3.8 Bifidobacterium spp. p Usal Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.05, d Test for overall effect: Z = 1.7 1.3.8 Bifidobacterium spp. p Wa 2020 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.3 Total (95% CI)	f = 4 (P + (P	.04) bbacill 70 114 93 49 326 = 0.48) .26) bbacill 75 668 743 = 0.31) .09) .70) .70) .70) .716 P = 0.5	us spp. ;	70 35 103 49 257 5672 747 0lus Str 75 672 747	2.8% 2.0% 3.3% 1.5% 9.6% reptococc 9.5% 23.1% 32.7%	1.15 [0.59, 2.24] 0.51 [0.20, 1.34] 0.62 [0.21, 1.34] 0.86 [0.31, 2.37] 0.79 [0.53, 1.18] us spp. 0.95 [0.72, 1.26] 0.79 [0.61, 1.03] 0.84 [0.69, 1.02] 15 0.75 [0.17, 3.32] 0.75 [0.17, 3.32]	0.01 0.1 10 1 Favours problotics Favours control

Comparison: Probiotics versus control in preterm newborns by probiotic strain type

Outcome: Necrotizing enterocolitis

Probiotics Control Risk Ratio Risk Ratio

	Probio	tics	Conti	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
2.1.1 Single strain							
Cui 2019	1	45	5	48	2.0%	0.21 [0.03, 1.76]	
Demirel 2013	6	135	7	136	2.9%	0.86 [0.30, 2.50]	
Dilli 2015	2	100	18	100	7.6%	0.11 [0.03, 0.47]	
Hernandez-Enriquez 2016	1	24	5	20	2.3%	0.17 [0.02, 1.31]	<u> </u>
Huang 2009	0	95	3	88	1.5%	0.13 [0.01, 2.53]	•
Hussain 2016	7	150	37	150	15.5%	0.19 [0.09, 0.41]	
Kaban 2019	0	47	3	47	1.5%	0.14 [0.01, 2.69]	•
Matin 2022	0	26	0	26		Not estimable	
Oncel 2014	8	200	10	200	4.2%	0.80 [0.32, 1.99]	
Rojas 2012	9	372	15	378	6.3%	0.61 [0.27, 1.38]	
Sari 2011	6	110	10	111	4.2%	0.61 [0.23, 1.61]	
Serce 2013	7	104	7	104	2.9%	1.00 [0.36, 2.75]	
Shadkam 2015	2	30	11	30	4.6%	0.18 [0.04, 0.75]	
Singh 2017	6	37	10	35	4.3%	0.57 [0.23, 1.40]	
Tewari 2015	0	123	0	121	4.3/0	Not estimable	
Subtotal (95% CI)	U	1598	U	1594	59.9%	0.39 [0.29, 0.53]	A
Total events	55	1330	141	133.	331370	0.55 [0.25, 0.55]	~
Heterogeneity: Chi ² = 19.75.		(D = 0		2.00/			
Test for overall effect: Z = 6.				39%			
Test for overall effect. $Z = 6$.	10 (P < U	.00001	L)				
2.1.2 Multiple strains							
Braga 2011	0	119	4	112	1.9%	0.10 [0.01, 1.92]	
Chandrashekar 2018	0	70	3	70	1.5%	0.14 [0.01, 2.72]	
Chowdhury 2016	1	60	6	59	2.5%	0.16 [0.02, 1.32]	
Dashti 2014	2	69	1	67	0.4%	1.94 [0.18, 20.92]	
Duta 2015	6	114	0	35	0.3%	4.07 [0.23, 70.49]	
Fernández-Carrocera 2014	6	75	12	75	5.0%	0.50 [0.20, 1.26]	
Hariharan 2016	3	93	3	103	1.2%	1.11 [0.23, 5.35]	
Lin 2013	2	65	8	55	3.6%	0.21 [0.05, 0.96]	
Rehman 2018	2	73	8	73	3.4%	0.25 [0.05, 1.14]	
Ren 2010	3	80	5	70	2.2%	0.53 [0.13, 2.12]	
Roy 2014	2	56	2	56	0.8%	1.00 [0.15, 6.85]	
Saengtawesin 2014	1	31	1	29	0.4%	0.94 [0.06, 14.27]	
Samanta 2009	5	91	15	95	6.2%	0.35 [0.13, 0.92]	
Shashidhar 2017	2	49	6	49	2.5%	0.33 [0.07, 1.57]	
Sowden 2022	0	100	1	100	0.6%	0.33 [0.01, 8.09]	
Van Niekerk 2014	0	91	4	93	1.9%	0.11 [0.01, 2.08]	
Wu 2020	2	250	12	250	5.0%	0.17 [0.04, 0.74]	
Zahed Pasha 2016	1	30	1	30	0.4%	1.00 [0.07, 15.26]	
Subtotal (95% CI)	1	1516	1	1421	40.1%	0.39 [0.27, 0.56]	_
Total events	38	1310	92	1	10.170	0.55 [0.27, 0.50]	~
Heterogeneity: Chi ² = 13.19.		(D 0		00/			
Test for overall effect: Z = 5.		•		U%			
	,			201-	100.007	0.20 [0.24 6 :0]	_
Total (95% CI)		3114		3015	100.0%	0.39 [0.31, 0.49]	•
Total events	93		233				
Heterogeneity: $Chi^2 = 32.98$		•		9%			0.01 0.1 1 10 1
Test for overall effect: $Z = 7$.							Favours probiotics Favours control
Test for subgroup difference	s: Chi ² =	0.00, 0	df = 1 (P)	= 0.95	$1^2 = 0\%$		and production in a control

Outcome: All-cause neonatal mortality

Study or Subgroup	Probio Events		Conti Events		Wejaht	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M–H, Fixed, 95% CI
2.2.1 Single strain		· Jui		· · · · · · ·		11, 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	,
Demirel 2013	5	135	5	136	2.6%	1.01 [0.30, 3.40]	
Dilli 2015	3	100	12	100	6.2%	0.25 [0.07, 0.86]	
Hernandez-Enriquez 2016	2	24	0	20	0.3%	4.20 [0.21, 82.72]	
Kaban 2019	1	47	4	47	2.1%	0.25 [0.03, 2.15]	
Matin 2022	0	26	0	26	2.1/0	Not estimable	
Oncel 2014	15	200	20	200	10.3%	0.75 [0.40, 1.42]	
Rojas 2012	22	372	28	378	14.3%	0.80 [0.47, 1.37]	
Sari 2011	3	110	3	111	1.5%	1.01 [0.21, 4.89]	
Serce 2013	5	104	4	104	2.1%	1.25 [0.35, 4.52]	
Shadkam 2015	1	30	2	30	1.0%	0.50 [0.05, 5.22]	
Singh 2017	3	37	3	35	1.6%	0.95 [0.20, 4.38]	
Tewari 2015	12	123	14	121	7.3%	0.84 [0.41, 1.75]	
Subtotal (95% CI)	12	1308	17	1308	49.2%	0.76 [0.56, 1.02]	•
Total events	72	-500	95	-500		0 0 [0.00, 1.01]	•
Heterogeneity: Chi ² = 6.63, a		P = 0.76		%			
Test for overall effect: $Z = 1$.			5), 1 — 0	70			
2.2.2 Multiple studing							
2.2.2 Multiple strains	26	119	27	112	14 20/	0.01 [0.56 1.45]	
Braga 2011			27	112	14.3%	0.91 [0.56, 1.45]	
Chandrashekar 2018	1 5	70	4	70	2.1%	0.25 [0.03, 2.18]	·
Chowdhury 2016	8	60 69	7 4	59 67	3.6%	0.70 [0.24, 2.09]	<u> </u>
Dashti 2014	_				2.1%	1.94 [0.61, 6.15]	
Duta 2015	8	114	2	35	1.6%	1.23 [0.27, 5.52]	
Fernández-Carrocera 2014	1	75 03	7	75	3.6%	0.14 [0.02, 1.13]	•
Hariharan 2016	4	93	5	103	2.4%	0.89 [0.25, 3.20]	
Li 2019	0	16	1	14	0.8%	0.29 [0.01, 6.69]	<u> </u>
Rehman 2018	4 7	73 5.0	6	73	3.1%	0.67 [0.20, 2.26]	
Roy 2014	-	56	8	56	4.1%	0.88 [0.34, 2.25]	
Saengtawesin 2014	0	31 91	0	29 95	7 10/	Not estimable	
Samanta 2009	4		14		7.1%	0.30 [0.10, 0.87]	
Shashidhar 2017	1	49	3	49 672	1.5%	0.33 [0.04, 3.09]	<u> </u>
Sinha 2015	1	668	2	672	1.0%	0.50 [0.05, 5.53]	•
Sowden 2022	0	100	0	100	2 10/	Not estimable	
Van Niekerk 2014	5	91	6	93	3.1%	0.85 [0.27, 2.69]	•
Wu 2020 Zahad Basha 2016	0	250	0	250	0.20/	Not estimable	
Zahed Pasha 2016 Subtotal (95% CI)	2	30 2055	0	30 1982	0.3% 50.8%	5.00 [0.25, 99.95] 0.74 [0.56, 0.99]	<u> </u>
Total events	77	_055	96	1502	33.070	o [0.50, 0.55]	~
Heterogeneity: Chi ² = 12.74,		(P = 0.1)		0%			
Test for overall effect: $Z = 2$.	05 (P = 0)	.04)					
Total (95% CI)		3363		3290	100.0%	0.75 [0.61, 0.92]	♦
Total events	149		191				
Heterogeneity: $Chi^2 = 19.35$,			78); $I^2 =$	0%			0.01 0.1 1 10 1
Test for overall effect: $Z = 2$.							U.U.1 U.1 1 1U !

Outcome: *Invasive infection*

Study or Subgroup Events Total Events Total Weight M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl State St	,	Probio	tics	Conti	ol		Risk Ratio	Risk Ratio
Cui 2019	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Demirel 2013	2.3.1 Single strain							
Dilli 2015	Cui 2019	2	45	4	48	0.8%	0.53 [0.10, 2.77]	
Hernandez-Enriquez 2016 6 24 1 20 0.2% 5.00 [0.66, 38.15] Kaban 2019 1 47 3 47 0.7% 0.33 [0.04, 3.09] Matin 2022 0 26 3 26 0.8% 0.14 [0.01, 2.63] Matin 2022 0 26 3 26 0.8% 0.52 [0.27, 0.99] Matin 2022 0 25 200 5.4% 0.52 [0.27, 0.99] Matin 2021 13 200 25 200 5.4% 0.52 [0.27, 0.99] Matin 2021 2 9110 26 1111 5.6% 11.13 [0.71, 1.78] Matin 2015 0 30 0 30 Not estimable Tewari 2015 8 123 11 121 2.4% 0.76 [0.45, 1.29] Matin 2015 8 123 11 121 2.4% 0.72 [0.30, 1.72] Mu 2016 4 65 6 60 1.4% 0.62 [0.18, 2.08] Matin 2015 0 1009 1003 30.0% 0.79 [0.63, 1.00] Matin 2015 Mutatil [95% CI) 1009 1003 30.0% 0.79 [0.63, 1.00] Matin 2015 Mutatil 2 10.09 0.42); I² = 2% Subtotal [95% CI] Mutatil 2 10.09 0.42); I² = 2% Mutatil 2 10.09 0.42); I² = 0% 0.42); I²	Demirel 2013	20	135	21	136	4.5%	0.96 [0.55, 1.69]	
Hernandez-Enriquez 2016 6 24 1 20 0.2% 5.00 [0.66, 38.15] Kaban 2019 1 47 3 47 0.7% 0.33 [0.04, 3.09] Matin 2022 0 26 3 26 0.8% 0.14 [0.01, 2.63] Matin 2022 0 26 3 26 0.8% 0.52 [0.27, 0.99] Matin 2022 0 25 200 5.4% 0.52 [0.27, 0.99] Matin 2021 13 200 25 200 5.4% 0.52 [0.27, 0.99] Matin 2021 2 9110 26 1111 5.6% 11.13 [0.71, 1.78] Matin 2015 0 30 0 30 Not estimable Tewari 2015 8 123 11 121 2.4% 0.76 [0.45, 1.29] Matin 2015 8 123 11 121 2.4% 0.72 [0.30, 1.72] Mu 2016 4 65 6 60 1.4% 0.62 [0.18, 2.08] Matin 2015 0 1009 1003 30.0% 0.79 [0.63, 1.00] Matin 2015 Mutatil [95% CI) 1009 1003 30.0% 0.79 [0.63, 1.00] Matin 2015 Mutatil 2 10.09 0.42); I² = 2% Subtotal [95% CI] Mutatil 2 10.09 0.42); I² = 2% Mutatil 2 10.09 0.42); I² = 0% 0.42); I²	Dilli 2015	8	100	13	100	2.8%		
Kaban 2019 1 47 3 47 0.7% 0.33 [0.04, 3.09] Matin 2022 0 26 3 26 0.8% 0.14 [0.1, 2.63] 4 Concel 2014 13 200 25 200 5.4% 0.52 [0.27, 0.99] Sar 2011 29 110 26 111 5.6% 1.13 [0.71, 1.78] Serce 2013 19 104 25 104 5.4% 0.75 [0.45, 1.29] Shadkam 2015 0 30 0 30 Not estimable Tewari 2015 8 123 11 121 2.4% 0.72 [0.30, 1.72] 2.7 Standam 2016 4 465 6 6 6 6 6.14% 0.62 [0.18, 2.08] 1.72] Total events 110 138 Heterogeneity: Chi² = 10.22, df = 10 (P = 0.42); l² = 2% Test for overall effect: Z = 1.96 (P = 0.05) 2.32 Multiple strains Braga 2011 40 119 42 112 9.4% 0.90 [0.63, 1.27] 0.94	Hernandez-Enriquez 2016	6	24	1	20	0.2%		
Matin 2022		1	47	3	47	0.7%		· · · · · · · · · · · · · · · · · · ·
Sari 2011 29 110 26 111 5.6% 1.13 [0.71, 1.78] Serce 2013 19 104 25 104 5.4% 0.76 [0.45, 1.29] Shadkam 2015 0 30 0 30 Not estimable Tewari 2015 8 123 11 121 2.4% 0.72 [0.30, 1.72] Xu 2016 4 65 6 60 1.4% 0.62 [0.18, 2.08] Subtotal (95% Cl) 1009 1003 30.0% 0.79 [0.63, 1.00] Total events 110 138 Heterogeneity: Chi² = 10.22, df = 10 (P = 0.42); i² = 2% Test for overall effect: Z = 1.96 (P = 0.05) 2.3.2 Multiple strains Braga 2011 40 119 42 112 9.4% 0.90 [0.63, 1.27] Chandrashekar 2018 15 70 13 70 2.8% 1.15 [0.59, 2.24] Duta 2015 10 114 6 35 2.0% 0.51 [0.20, 1.31] Fernández-Carrocera 2014 42 75 44 75 9.5% 0.95 [0.72, 1.26] Hariharan 2016 9 93 16 103 3.3% 0.62 [0.29, 1.34] Sangtawesin 2014 2 31 1 20 0.3% 1.29 [0.13, 13.31] Samanta 2009 13 91 28 95 5.9% 0.48 [0.27, 0.88] Shashidhar 2017 6 49 7 49 1.5% 0.86 [0.31, 2.37] Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Viekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Viekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Viekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Viekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Viekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Viekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Viekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Viekerk 2014 15 90 10 0.9% 0.75 [0.17, 0.94] Total (95% Cl) 2716 263 100.0% 0.81 [0.72, 0.91] Fotal events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); i² = 0% Test for overall effect: Z = 3.49 (P = 0.0005) Feyeurus probibities Favours control	Matin 2022	0	26	3	26			•
Sari 2011	Oncel 2014	13	200	25	200	5.4%	0.52 [0.27, 0.99]	
Serice 2013 19 104 25 104 5.4% 0.76 [0.45, 1.29] Shadkam 2015 0 30 0 30 Not estimable Tewari 2015 8 123 11 121 2.4% 0.72 [0.30, 1.72] Xu 2016 4 65 6 60 1.4% 0.62 [0.18, 2.08] Subtotal (95% CI) 1009 1003 30.0% 0.79 [0.63, 1.00] Total events 110 138 Heterogeneity: Chi² = 10.22, df = 10 (P = 0.42); l² = 2% Test for overall effect: Z = 1.96 (P = 0.05) 2.3.2 Multiple strains Praga 2011 40 119 42 112 9.4% 0.90 [0.63, 1.27] Chandrashekar 2018 15 70 13 70 2.8% 1.15 [0.59, 2.24] Duta 2015 10 114 6 35 2.0% 0.51 [0.20, 1.31] Fernández-Carrocera 2014 42 75 44 75 9.5% 0.95 [0.72, 1.26] Hariharan 2016 9 93 16 103 3.3% 0.62 [0.29, 1.34] Roy 2014 31 56 42 56 9.1% 0.74 [0.56, 0.98] Saengtawesin 2014 2 31 1 20 0.3% 1.29 [0.13, 1.31] Samanta 2009 13 91 28 95 5.9% 0.48 [0.27, 0.88] Shashidhar 2017 6 49 7 49 1.5% 0.86 [0.31, 2.37] Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Van Niekerk 2014 15 91 10 91 10 100 100 100 100 100 100 100	Sari 2011	29	110	26	111	5.6%		
Shadkam 2015	Serce 2013	19	104	25	104	5.4%		
Tewari 2015	Shadkam 2015	0	30	0	30			
Xu 2016 4 65 6 60 1.4% 0.62 [0.18, 2.08] Subtotal (95% Cl) 1009 1003 30.0% 0.79 [0.63, 1.00] Total events 110 138 Heterogeneity: Chi² = 10.22, df = 10 (P = 0.42); l² = 2% Test for overall effect: Z = 1.96 (P = 0.05) 2.3.2 Multiple strains Braga 2011 40 119 42 112 9.4% 0.90 [0.63, 1.27] Chandrashekar 2018 15 70 13 70 2.8% 1.15 [0.59, 2.24] Duta 2015 10 114 6 35 2.0% 0.51 [0.20, 1.31] ————————————————————————————————————	Tewari 2015	8	123	11	121	2.4%		
Total events 110 138 Heterogeneity: Chi² = 10.22, df = 10 (P = 0.42); l² = 2% Test for overall effect: Z = 1.96 (P = 0.05) 2.3.2 Multiple strains Braga 2011 40 119 42 112 9.4% 0.90 [0.63, 1.27] Chandrashekar 2018 15 70 13 70 2.8% 1.15 [0.59, 2.24] Duta 2015 10 114 6 35 2.0% 0.51 [0.20, 1.31] Fernández-Carrocera 2014 42 75 44 75 9.5% 0.95 [0.72, 1.26] Hariharan 2016 9 93 16 103 3.3% 0.62 [0.29, 1.34] Roy 2014 31 56 42 56 9.1% 0.74 [0.56, 0.98] Saengtawesin 2014 2 31 1 20 0.3% 1.29 [0.13, 13.31] Samanta 2009 13 91 28 95 5.9% 0.48 [0.27, 0.88] Shashidhar 2017 6 49 7 49 1.5% 0.86 [0.31, 2.37] Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% Cl) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); l² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005)		4		6		1.4%		
Heterogeneity: Chi² = 10.22, df = 10 (P = 0.42); l² = 2% Test for overall effect: Z = 1.96 (P = 0.05) 2.3.2 Multiple strains Braga 2011	Subtotal (95% CI)				1003			
2.3.2 Multiple strains Braga 2011	Total events	110		138				
2.3.2 Multiple strains Braga 2011	Heterogeneity: $Chi^2 = 10.22$,	df = 10	(P = 0.	42); $I^2 =$	2%			
2.3.2 Multiple strains Braga 2011				,,				
Braga 2011		·						
Chandrashekar 2018 15 70 13 70 2.8% 1.15 [0.59, 2.24] Duta 2015 10 114 6 35 2.0% 0.51 [0.20, 1.31] Fernández-Carrocera 2014 42 75 44 75 9.5% 0.95 [0.72, 1.26] Hariharan 2016 9 93 16 103 3.3% 0.62 [0.29, 1.34] Roy 2014 31 56 42 56 9.1% 0.74 [0.56, 0.98] Saengtawesin 2014 2 31 1 20 0.3% 1.29 [0.13, 13.31] Samanta 2009 13 91 28 95 5.9% 0.48 [0.27, 0.88] Shashidhar 2017 6 49 7 49 1.5% 0.86 [0.31, 2.37] Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); l² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005)	2.3.2 Multiple strains							
Chandrashekar 2018 15 70 13 70 2.8% 1.15 [0.59, 2.24] Duta 2015 10 114 6 35 2.0% 0.51 [0.20, 1.31] Fernández-Carrocera 2014 42 75 44 75 9.5% 0.95 [0.72, 1.26] Hariharan 2016 9 93 16 103 3.3% 0.62 [0.29, 1.34] Roy 2014 31 56 42 56 9.1% 0.74 [0.56, 0.98] Saengtawesin 2014 2 31 1 20 0.3% 1.29 [0.13, 13.31] Samanta 2009 13 91 28 95 5.9% 0.48 [0.27, 0.88] Shashidhar 2017 6 49 7 49 1.5% 0.86 [0.31, 2.37] Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); l² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005)	Braga 2011	40	119	42	112	9.4%	0.90 [0.63, 1.27]	-
Duta 2015 10 114 6 35 2.0% 0.51 [0.20, 1.31] Fernández-Carrocera 2014 42 75 44 75 9.5% 0.95 [0.72, 1.26] Hariharan 2016 9 93 16 103 3.3% 0.62 [0.29, 1.34] Roy 2014 31 56 42 56 9.1% 0.74 [0.56, 0.98] Saengtawesin 2014 2 31 1 20 0.3% 1.29 [0.13, 13.31] Samanta 2009 13 91 28 95 5.9% 0.48 [0.27, 0.88] Shashidhar 2017 6 49 7 49 1.5% 0.86 [0.31, 2.37] Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); l² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005)	_							
Fernández-Carrocera 2014	Duta 2015	10	114	6	35			
Hariharan 2016 9 93 16 103 3.3% 0.62 [0.29, 1.34] Roy 2014 31 56 42 56 9.1% 0.74 [0.56, 0.98] Saengtawesin 2014 2 31 1 20 0.3% 1.29 [0.13, 13.31] Samanta 2009 13 91 28 95 5.9% 0.48 [0.27, 0.88] Shashidhar 2017 6 49 7 49 1.5% 0.86 [0.31, 2.37] Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); l² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005)	Fernández-Carrocera 2014	42	75	44	75	9.5%	0.95 [0.72, 1.26]	+
Roy 2014 31 56 42 56 9.1% 0.74 [0.56, 0.98] Saengtawesin 2014 2 31 1 20 0.3% 1.29 [0.13, 13.31] Samanta 2009 13 91 28 95 5.9% 0.48 [0.27, 0.88] Shashidhar 2017 6 49 7 49 1.5% 0.86 [0.31, 2.37] Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); l² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005)	Hariharan 2016	9	93	16	103	3.3%		
Saengtawesin 2014 2 31 1 20 0.3% 1.29 [0.13, 13.31] Samanta 2009 13 91 28 95 5.9% 0.48 [0.27, 0.88] Shashidhar 2017 6 49 7 49 1.5% 0.86 [0.31, 2.37] Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); l² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005)	Roy 2014	31	56	42	56	9.1%		
Samanta 2009 13 91 28 95 5.9% 0.48 [0.27, 0.88] Shashidhar 2017 6 49 7 49 1.5% 0.86 [0.31, 2.37] Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); l² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005) Test for overall effect: Z = 3.49 (P = 0.0005)		2	31	1	20			
Shashidhar 2017 6 49 7 49 1.5% 0.86 [0.31, 2.37] Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); I² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); I² = 0% Test for overall effect: Z = 3.49 (P = 0.0005) Test for overall effect: Z = 3.49 (P = 0.0005)	Samanta 2009	13	91	28	95			
Sinha 2015 84 668 107 672 23.1% 0.79 [0.61, 1.03] Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); I² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); I² = 0% Test for overall effect: Z = 3.49 (P = 0.0005) Test for overall effect: Z = 3.49 (P = 0.0005)	Shashidhar 2017	6	49					
Van Niekerk 2014 15 91 10 93 2.1% 1.53 [0.73, 3.23] Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); l² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005) Test for overall effect: Z = 3.49 (P = 0.0005)		84	668	107	672	23.1%		
Wu 2020 3 250 4 250 0.9% 0.75 [0.17, 3.32] Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94] Total events 270 320 Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); I² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total (95% CI) 2716 2633 100.0% 0.81 [0.72, 0.91] Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); I² = 0% 0.01 0.1 100 Test for overall effect: Z = 3.49 (P = 0.0005) Eavours probiotics Eavours control		15	91	10	93			l l
Subtotal (95% CI) 1707 1630 70.0% 0.82 [0.71, 0.94]								
Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); l² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total (95% CI)	Subtotal (95% CI)		1707		1630			
Heterogeneity: Chi² = 10.42, df = 11 (P = 0.49); l² = 0% Test for overall effect: Z = 2.89 (P = 0.004) Total (95% CI)	Total events	270		320				
Test for overall effect: Z = 2.89 (P = 0.004) Total (95% CI) Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005) Test for overall effect: Z = 3.49 (P = 0.0005)		df = 11	(P = 0.	49); $I^2 =$	0%			
Total (95% CI) 2716 2633 100.0% 0.81 [0.72, 0.91] Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005)								
Total events 380 458 Heterogeneity: Chi² = 20.67, df = 22 (P = 0.54); l² = 0% Test for overall effect: Z = 3.49 (P = 0.0005) Test for overall effect: Z = 3.49 (P = 0.0005)		•	•					
Heterogeneity: $Chi^2 = 20.67$, $df = 22$ (P = 0.54); $I^2 = 0\%$ Test for overall effect: Z = 3.49 (P = 0.0005) Test for overall effect: Z = 3.49 (P = 0.0005)	Total (95% CI)		2716		2633	100.0%	0.81 [0.72, 0.91]	♦
Test for overall effect: $Z = 3.49$ (P = 0.0005) Test for overall effect: $Z = 3.49$ (P = 0.0005)	Total events	380		458				
Test for overall effect: $Z = 3.49$ (P = 0.0005) Test for overall effect: $Z = 3.49$ (P = 0.0005)	Heterogeneity: $Chi^2 = 20.67$,		(P = 0.	54); $I^2 =$	0%			
					= 0.82)), $I^2 = 0\%$		ravours probletics ravours control

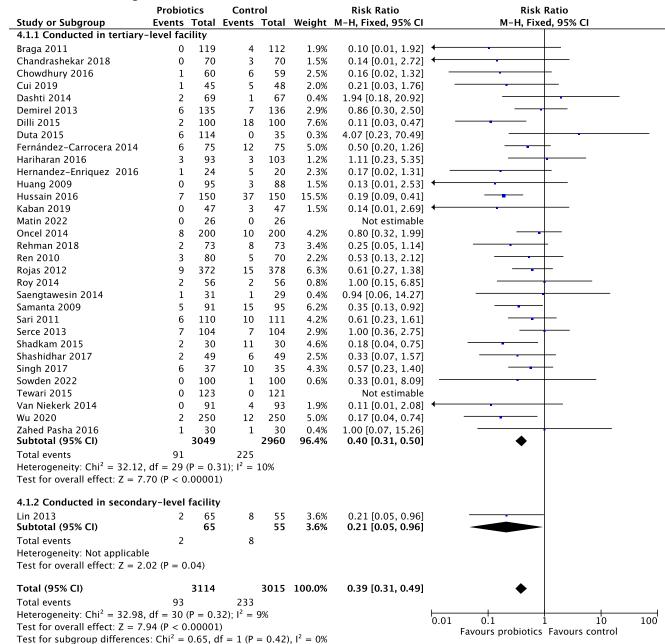
Comparison: Probiotics versus control in preterm newborns by feeding type

Outcome: Necrotizing enterocolitis

Probiotics Control Risk Ratio Risk Ratio

	Probio	tics	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.1.1 Human milk only							
Matin 2022	0	26	0	26		Not estimable	
Roy 2014	2	56	2	56	0.8%	1.00 [0.15, 6.85]	
Samanta 2009	5	91	15	95	6.2%	0.35 [0.13, 0.92]	
Shadkam 2015	2	30	11	30	4.6%	0.18 [0.04, 0.75]	
Shashidhar 2017	2	49	6	49	2.5%	0.33 [0.07, 1.57]	
Singh 2017	6	37	10	35	4.3%	0.57 [0.23, 1.40]	
Tewari 2015	0	123	0	121		Not estimable	
Van Niekerk 2014	0	91	4	93	1.9%	0.11 [0.01, 2.08]	•
Zahed Pasha 2016	1	30	1	30	0.4%	1.00 [0.07, 15.26]	
Subtotal (95% CI)		533		535	20.8%	0.37 [0.23, 0.62]	◆
Total events	18		49				
Heterogeneity: $Chi^2 = 4.01$, of	df = 6 (P =	= 0.68	$I^2 = 0\%$				
Test for overall effect: $Z = 3$.	81 (P = 0)	.0001)					
3.1.2 Mixed-human milk or	formula	or bot	h				
Braga 2011	0	119	4	112	1.9%	0.10 [0.01, 1.92]	-
Chandrashekar 2018	0	70	3	70	1.5%	0.14 [0.01, 2.72]	•
Chowdhury 2016	1	60	6	59	2.5%	0.16 [0.02, 1.32]	
Dashti 2014	2	69	1	67	0.4%	1.94 [0.18, 20.92]	
Demirel 2013	6	135	7	136	2.9%	0.86 [0.30, 2.50]	
Dilli 2015	2	100	18	100	7.6%	0.11 [0.03, 0.47]	
Duta 2015	6	114	0	35	0.3%	4.07 [0.23, 70.49]	
Fernández-Carrocera 2014	6	75	12	75	5.0%	0.50 [0.20, 1.26]	
Hariharan 2016	3	93	3	103	1.2%	1.11 [0.23, 5.35]	
Hernandez-Enriquez 2016	1	24	5	20	2.3%	0.17 [0.02, 1.31]	<u> </u>
Huang 2009	0	95	3	88	1.5%	0.13 [0.01, 2.53]	
Kaban 2019	0	47	3	47	1.5%	0.14 [0.01, 2.69]	-
Lin 2013	2	65	8	55	3.6%	0.21 [0.05, 0.96]	
Oncel 2014	8	200	10	200	4.2%	0.80 [0.32, 1.99]	
Rehman 2018	2	73	8	73	3.4%	0.25 [0.05, 1.14]	
Ren 2010	3	80	5	70	2.2%	0.53 [0.13, 2.12]	
Rojas 2012	9	372	15	378	6.3%	0.61 [0.27, 1.38]	
Saengtawesin 2014	1	31	1	29	0.4%	0.94 [0.06, 14.27]	
Sari 2011	6	110	10	111	4.2%	0.61 [0.23, 1.61]	
Serce 2013	7	104	7	104	2.9%	1.00 [0.36, 2.75]	
Sowden 2022	0	100	1	100	0.6%	0.33 [0.01, 8.09]	
Subtotal (95% CI)	U	2136	1	2032	56.6%	0.48 [0.36, 0.64]	▲
Total events	65		130		30.070	0.10 [0.50, 0.01]	~
Heterogeneity: $Chi^2 = 20.83$,		(P = 0 .		19/			
Test for overall effect: $Z = 5$.				4/0			
rest for overall effect. Z = 3.	00 (1 < 0	.00001	.)				
3.1.3 Formula only							
Cui 2019	1	45	5	48	2.0%	0.21 [0.02 1.76]	
Hussain 2016	7	150	37	150	15.5%	0.21 [0.03, 1.76] 0.19 [0.09, 0.41]	
Wu 2020	2		12				
Subtotal (95% CI)	2	250 445	12	250 448	5.0% 22.6%	0.17 [0.04, 0.74] 0.19 [0.10, 0.36]	
·	10	773	E 4	770	22.0/0	0.19 [0.10, 0.30]	
Total events	10 st = 2 (B	0.00	54 1 ² – 09/				
Heterogeneity: $Chi^2 = 0.04$, or Test for overall effect: $Z = 5$.							
Total (95% CI)		3114		3015	100.0%	0.39 [0.31, 0.49]	•
Total events	93		233			,,	*
Heterogeneity: $Chi^2 = 32.98$,		(P = 0)		9%			
Test for overall effect: $Z = 7$.				J/0			0.01 0.1 1 10 100
							Favours probiotics Favours control

Prevention and Treatment of Neonatal Infections in LMICs Outcome: All-cause neonatal mortality


	Probio		Contr			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.2.1 Human milk only							
Matin 2022	0	26	0	26		Not estimable	
Roy 2014	7	56	8	56	4.1%	0.88 [0.34, 2.25]	
Samanta 2009	4	91	14	95	7.0%	0.30 [0.10, 0.87]	-
Shadkam 2015	1	30	2	30	1.0%	0.50 [0.05, 5.22]	•
Shashidhar 2017	1	49	3	49	1.5%	0.33 [0.04, 3.09]	
Singh 2017	3	37	3	35	1.6%	0.95 [0.20, 4.38]	
Sinha 2015	1	668	2	672	1.0%	0.50 [0.05, 5.53]	
Tewari 2015	12	123	14	121	7.2%	0.84 [0.41, 1.75]	
Van Niekerk 2014	5	91	6	93	3.0%	0.85 [0.27, 2.69]	
Zahed Pasha 2016 Subtotal (95% CI)	2	30 1201	0	30 1207	0.3% 26.8%	5.00 [0.25, 99.95] 0.70 [0.46, 1.04]	•
Total events	36		52				
Heterogeneity: $Chi^2 = 5.39$, of	df = 8 (P =	= 0.72); $I^2 = 0\%$				
Test for overall effect: $Z = 1$.							
3.2.2 Mixed-human milk or	formula	or bot	:h				
Braga 2011	26	119	27	112	14.2%	0.91 [0.56, 1.45]	-
Chandrashekar 2018	1	70	4	70	2.0%	0.25 [0.03, 2.18]	· ·
Chowdhury 2016	5	60	7	59	3.6%	0.70 [0.24, 2.09]	
Dashti 2014	8	69	4	67	2.1%	1.94 [0.61, 6.15]	
Demirel 2013	5	135	5	136	2.5%	1.01 [0.30, 3.40]	
Dilli 2015	3	100	12	100	6.1%	0.25 [0.07, 0.86]	
Duta 2015	8	114	2	35	1.6%	1.23 [0.27, 5.52]	
Fernández-Carrocera 2014	1	75	7	75	3.6%	0.14 [0.02, 1.13]	
Hariharan 2016	4	93	5	103	2.4%	0.89 [0.25, 3.20]	
Hernandez-Enriquez 2016	2	24	0	20	0.3%	4.20 [0.21, 82.72]	
Kaban 2019	1	47	4	47	2.0%	0.25 [0.03, 2.15]	<u> </u>
Li 2019	0	16	1	14	0.8%	0.29 [0.01, 6.69]	
Oncel 2014	15	200	20	200	10.2%	0.75 [0.40, 1.42]	
Rehman 2018	4	73	6	73	3.1%	0.67 [0.20, 2.26]	
Rojas 2012	22	372	28	378	14.2%	0.80 [0.47, 1.37]	
Saengtawesin 2014	0	31	0	29	17.270	Not estimable	
Sari 2011	3	110	3	111	1.5%	1.01 [0.21, 4.89]	
Serce 2013	5	104	4	104	2.0%	1.25 [0.35, 4.52]	
Sowden 2022	0	100	1	100	0.8%	0.33 [0.01, 8.09]	
Subtotal (95% CI)	U	1912		1833	73.2%	0.76 [0.60, 0.97]	•
Total events	113		140		. 5.27	o o [o.oo, o.o.,	•
Heterogeneity: Chi ² = 14.02,		D - 0		1 0⁄			
Test for overall effect: $Z = 2$.			07), 1 = 1	070			
3.2.3 Formula only							
Wu 2020	0	250	0	250		Not estimable	
Subtotal (95% CI)		250		250		Not estimable	
Total events	0		0				
Heterogeneity: Not applicabl Test for overall effect: Not ap							
Total (95% CI)		3363		3290	100.0%	0.75 [0.61, 0.92]	•
Total events	149		192				
Heterogeneity: $Chi^2 = 19.62$, Test for overall effect: $Z = 2$. Test for subgroup difference	df = 26 80 (P = 0	.005)	81); $I^2 = 0$		12 - 004		0.01 0.1 1 10 Favours probiotics Favours control

Outcome: *Invasive infection*

Sander on Colombia	Probio		Conti		14/a : la 4	Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.3.1 Human milk only							
Matin 2022	0	26	3	26	0.8%	0.14 [0.01, 2.63]	-
Roy 2014	31	56	42	56	9.1%	0.74 [0.56, 0.98]	<u></u>
Samanta 2009	13	91	28	95	5.9%	0.48 [0.27, 0.88]	
Shadkam 2015	0	30	0	30		Not estimable	
Shashidhar 2017	6	49	7	49	1.5%	0.86 [0.31, 2.37]	
Sinha 2015	84	668	107	672	23.1%	0.79 [0.61, 1.03]	
Tewari 2015	8	123	11	121	2.4%	0.72 [0.30, 1.72]	•
Van Niekerk 2014	15	91	10	93	2.1%	1.53 [0.73, 3.23]	<u> </u>
Subtotal (95% CI)	1.53	1134	200	1142	45.0%	0.76 [0.64, 0.91]	▼
Total events	157	0.24\	208	2.4			
Heterogeneity: Chi² = 7.08, c Test for overall effect: Z = 2.	•		; 1 = 15	%			
3.3.2 Mixed-human milk or	formula	or bot	h				
Braga 2011	40	119	42	112	9.4%	0.90 [0.63, 1.27]	-
Chandrashekar 2018	15	70	13	70	2.8%	1.15 [0.59, 2.24]	- - -
Demirel 2013	20	135	21	136	4.5%	0.96 [0.55, 1.69]	
Dilli 2015	8	100	13	100	2.8%	0.62 [0.27, 1.42]	
Duta 2015	10	114	6	35	2.0%	0.51 [0.20, 1.31]	
Fernández-Carrocera 2014	42	75	44	75	9.5%	0.95 [0.72, 1.26]	+
Hariharan 2016	9	93	16	103	3.3%	0.62 [0.29, 1.34]	
Hernandez-Enriquez 2016	6	24	1	20	0.2%	5.00 [0.66, 38.15]	
Kaban 2019	1	47	3	47	0.7%	0.33 [0.04, 3.09]	
Oncel 2014	13	200	25	200	5.4%	0.52 [0.27, 0.99]	
Saengtawesin 2014	2	31	1	20	0.3%	1.29 [0.13, 13.31]	
Sari 2011	29	110	26	111	5.6%	1.13 [0.71, 1.78]	
Serce 2013	19	104	25	104	5.4%	0.76 [0.45, 1.29]	
Subtotal (95% CI)		1222		1133	52.0%	0.86 [0.74, 1.01]	♦
Total events	214		236				
Heterogeneity: Chi² = 11.52, Test for overall effect: Z = 1.			$18); I^2 =$	0%			
3.3.3 Formula only	o_ (,	,					
Cui 2019	2	45	4	48	0.8%	0 52 [0 10 2 77]	
Wu 2020	3	250		250		0.53 [0.10, 2.77]	
wu 2020 Xu 2016	3 4	65	4 6	60	0.9% 1.4%	0.75 [0.17, 3.32] 0.62 [0.18, 2.08]	
Subtotal (95% CI)	4	3 60	б	358	3.1%	0.62 [0.18, 2.08] 0.63 [0.28, 1.43]	
Total events	9		14		,	[
Heterogeneity: $Chi^2 = 0.09$, c Test for overall effect: $Z = 1$.	lf = 2 (P =						
Total (95% CI)		2716		2633	100.0%	0.81 [0.72, 0.91]	•
Total events	380		458				
Heterogeneity: $Chi^2 = 20.67$,	df = 22 (P = 0.5	$(54); I^2 = $	0%			0.01 0.1 1 10 1
Test for overall effect: $Z = 3$.	40 /B 0	0005)					O.O1 O.1 I IO J

Comparison: Probiotics versus control in preterm newborns by facility level

Outcome: Necrotizing enterocolitis

Prevention and Treatment of Neonatal Infections in LMICs Outcome: All-cause neonatal mortality

	Probio		Conti			Risk Ratio	Risk Ratio
Study or Subgroup			Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
4.2.1 Conducted in tertiary-		•					
Braga 2011	26	119	27	112	14.2%	0.91 [0.56, 1.45]	_ -
Chandrashekar 2018	1	70	4	70	2.0%	0.25 [0.03, 2.18]	•
Chowdhury 2016	5	60	7	59	3.6%	0.70 [0.24, 2.09]	
Dashti 2014	8	69	4	67	2.1%	1.94 [0.61, 6.15]	
Demirel 2013	5	135	5	136	2.5%	1.01 [0.30, 3.40]	
Dilli 2015	3	100	12	100	6.1%	0.25 [0.07, 0.86]	
Duta 2015	8	114	2	35	1.6%	1.23 [0.27, 5.52]	
Fernández-Carrocera 2014	1	75	7	75	3.6%	0.14 [0.02, 1.13]	
Hariharan 2016	4	93	5	103	2.4%	0.89 [0.25, 3.20]	
Hernandez-Enriquez 2016	2	24	0	20	0.3%	4.20 [0.21, 82.72]	
Kaban 2019	1	47	4	47	2.0%	0.25 [0.03, 2.15]	
Matin 2022	0	26	0	26		Not estimable	
Oncel 2014	15	200	20	200	10.2%	0.75 [0.40, 1.42]	
Rehman 2018	4	73	6	73	3.1%	0.67 [0.20, 2.26]	
Rojas 2012	22	372	28	378	14.2%	0.80 [0.47, 1.37]	
Roy 2014	7	56	8	56	4.1%	0.88 [0.34, 2.25]	
Saengtawesin 2014	0	31	0	29		Not estimable	
Samanta 2009	4	91	14	95	7.0%	0.30 [0.10, 0.87]	
Sari 2011	3	110	3	111	1.5%	1.01 [0.21, 4.89]	
Serce 2013	5	104	4	104	2.0%	1.25 [0.35, 4.52]	
Shadkam 2015	1	30	2	30	1.0%	0.50 [0.05, 5.22]	· · ·
Shashidhar 2017	1	49	3	49	1.5%	0.33 [0.04, 3.09]	
Singh 2017	3	37	3	35	1.6%	0.95 [0.20, 4.38]	
Sinha 2015	1	668	2	672	1.0%	0.50 [0.05, 5.53]	-
Sowden 2022	0	100	1	100	0.8%	0.33 [0.01, 8.09]	
Tewari 2015	12	123	14	121	7.2%	0.84 [0.41, 1.75]	
Van Niekerk 2014	5	91	6	93	3.0%	0.85 [0.27, 2.69]	
Wu 2020	0	250	0	250	3.070	Not estimable	
Zahed Pasha 2016	2	30	0	30	0.3%	5.00 [0.25, 99.95]	
Subtotal (95% CI)	_	3347	ŭ	3276	99.2%	0.75 [0.61, 0.92]	♦
Total events	149		191				·
Heterogeneity: Chi ² = 19.25, Test for overall effect: Z = 2.			79); I ² =	0%			
4.2.2 Conducted in seconda	-	facility					
Li 2019	0	16	1	14	0.8%	0.29 [0.01, 6.69]	•
Subtotal (95% CI)		16		14	0.8%	0.29 [0.01, 6.69]	
Total events	0		1				
Heterogeneity: Not applicable Test for overall effect: Z = 0.		.44)					
Total (95% CI)		3363		3290	100.0%	0.75 [0.61, 0.92]	•
Total events	149		192				
Heterogeneity: $Chi^2 = 19.62$,	df = 26	(P = 0.8)	(31) : $I^2 = \frac{1}{2}$	0%			
Test for overall effect: $Z = 2$.							0.01 0.1 1 10 1

Outcome: *Invasive infection*

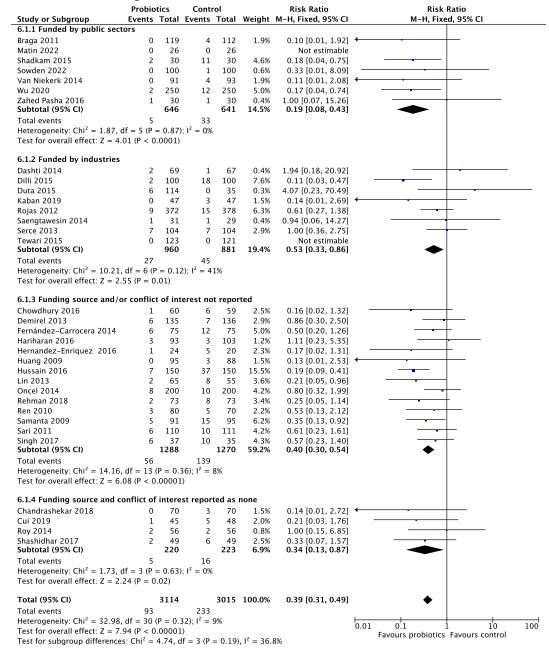
	Probio	tics	Cont	ol		Risk Ratio	Risk Ratio
Study or Subgroup			Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
4.3.1 Conducted in tertiary-	-level fac	ility					
Braga 2011	40	119	42	112	9.4%	0.90 [0.63, 1.27]	
Chandrashekar 2018	15	70	13	70	2.8%	1.15 [0.59, 2.24]	-
Cui 2019	2	45	4	48	0.8%	0.53 [0.10, 2.77]	
Demirel 2013	20	135	21	136	4.5%	0.96 [0.55, 1.69]	
Dilli 2015	8	100	13	100	2.8%	0.62 [0.27, 1.42]	
Duta 2015	10	114	6	35	2.0%	0.51 [0.20, 1.31]	
Fernández-Carrocera 2014	42	75	44	75	9.5%	0.95 [0.72, 1.26]	+
Hariharan 2016	9	93	16	103	3.3%	0.62 [0.29, 1.34]	
Hernandez-Enriquez 2016	6	24	1	20	0.2%	5.00 [0.66, 38.15]	
Kaban 2019	1	47	3	47	0.7%	0.33 [0.04, 3.09]	
Matin 2022	0	26	3	26	0.8%	0.14 [0.01, 2.63]	•
Oncel 2014	13	200	25	200	5.4%	0.52 [0.27, 0.99]	
Roy 2014	31	56	42	56	9.1%	0.74 [0.56, 0.98]	
Saengtawesin 2014	2	31	1	20	0.3%	1.29 [0.13, 13.31]	
Samanta 2009	13	91	28	95	5.9%	0.48 [0.27, 0.88]	
Sari 2011	29	110	26	111	5.6%	1.13 [0.71, 1.78]	-
Serce 2013	19	104	25	104	5.4%	0.76 [0.45, 1.29]	
Shadkam 2015	0	30	0	30		Not estimable	
Shashidhar 2017	6	49	7	49	1.5%	0.86 [0.31, 2.37]	
Sinha 2015	84	668	107	672	23.1%	0.79 [0.61, 1.03]	
Tewari 2015	8	123	11	121	2.4%	0.72 [0.30, 1.72]	
Van Niekerk 2014	15	91	10	93	2.1%	1.53 [0.73, 3.23]	 • •
Wu 2020	3	250	4	250	0.9%	0.75 [0.17, 3.32]	
Xu 2016	4	65	6	60	1.4%	0.62 [0.18, 2.08]	
Subtotal (95% CI)		2716		2633	100.0%	0.81 [0.72, 0.91]	♦
Total events	380		458				
Heterogeneity: $Chi^2 = 20.67$,	df = 22	(P = 0.1)	54); $I^2 =$	0%			
Test for overall effect: $Z = 3$.							
		,					
4.3.2 Conducted in seconda	ry-level	facility	y				
Subtotal (95% CI)		0		0		Not estimable	
Total events	0		0				
Heterogeneity: Not applicable							
Test for overall effect: Not ap							
T - 1 (05% CI)		2716		2622	100.00/	0.01 [0.72 0.01]	
Total (95% CI)		2716	=	2633	100.0%	0.81 [0.72, 0.91]	•
Total events	380	, <u> </u>	458				
Heterogeneity: $Chi^2 = 20.67$,				0%			0.01 0.1 1 10 10
Test for overall effect: $Z = 3$.							Favours probiotics Favours control
Test for subgroup difference	s: Not ap _l	plicable	2				,

Comparison: Probiotics versus control in preterm newborns by duration of intervention

Outcome: Necrotizing enterocolitis

tudy or Subgroup	Probiot Events		Contr Events		Weight	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M-H, Fixed, 95% CI
i.1.1 For 1 week	_		-		1.50	0.13 (0.01. 3.55)	
uang 2009 en 2010	0	95 80	3 5	88 70	1.5% 2.2%	0.13 [0.01, 2.53]	•
ubtotal (95% CI)	3	175	3	158	3.8%	0.53 [0.13, 2.12] 0.37 [0.11, 1.25]	
otal events	3	173	8	130	3.070	0.57 [0.11, 1.25]	
leterogeneity: Chi² = 0.71, c		0.40)					
est for overall effect: $Z = 1$.			1 - 0/0				
.1.2 For 10-14 days							
handrashekar 2018	0	70	3	70	1.5%	0.14 [0.01, 2.72]	
in 2013	2	65	8	55	3.6%	0.21 [0.05, 0.96]	
hadkam 2015	2	30	11	30	4.6%	0.18 [0.04, 0.75]	
Subtotal (95% CI)		165		155	9.7%	0.19 [0.07, 0.50]	•
otal events	4		22				
Heterogeneity: Chi² = 0.06, o Test for overall effect: Z = 3.	df = 2 (P = .37 (P = 0.	: 0.97); 0008)	I ² = 0%				
i.1.3 For 3 weeks							
Outa 2015	6	114	0	35	0.3%	4.07 [0.23, 70.49]	
Hernandez-Enriquez 2016	1	24	5	20	2.3%	0.17 [0.02, 1.31]	
iubtotal (95% CI)		138		55	2.6%	0.64 [0.18, 2.30]	-
otal events	7		5				
Heterogeneity: Chi ² = 3.25, o			$I^2 = 699$	6			
est for overall effect: Z = 0.		oU)					
.1.4 For 4 weeks or till dis raga 2011	charge 0	119	4	112	1.9%	0.10 [0.01, 1.92]	
Matin 2022	0	26	0	26	2.3/0	Not estimable	
iowden 2022	0	100	1	100	0.6%	0.33 [0.01, 8.09]	
an Niekerk 2014	o	91	4	93	1.9%	0.11 [0.01, 2.08]	+
ubtotal (95% CI)		336		331	4.4%	0.14 [0.03, 0.77]	
otal events	0		9				
Heterogeneity: Chi ² = 0.34, o Test for overall effect: Z = 2.	df = 2 (P =	0.84);	$I^2 = 0\%$				
5.1.5 For 6 weeks or till dis		/					
1.1.5 For 6 weeks or till dis Hariharan 2016	scnarge 3	93	3	103	1.2%	1.11 [0.23, 5.35]	
Rov 2014	2	56	2	56	0.8%	1.00 [0.15, 6.85]	
iaengtawesin 2014	1	31	1	29	0.4%	0.94 [0.06, 14.27]	
ewari 2015	ō	123	ō	121		Not estimable	
iubtotal (95% CI)		303		309	2.5%	1.04 [0.34, 3.17]	-
otal events Heterogeneity: Chi² = 0.01, o Test for overall effect: Z = 0.	6 df = 2 (P = .07 (P = 0.	0.99); 94)	$I^2 = 0\%$				
Heterogeneity: $Chi^2 = 0.01$, of Test for overall effect: $Z = 0$.	df = 2 (P = .07 (P = 0.	0.99); 94)					
Heterogeneity: Chi ² = 0.01, of Test for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis	df = 2 (P = .07 (P = 0. scharge	94)	I ² = 0%	100	7.6V	0.11 [0.02 0.47]	
Heterogeneity: $Chi^2 = 0.01$, of est for overall effect: $Z = 0$. 5.1.6 For 8 weeks or till displication of the contraction	df = 2 (P = .07 (P = 0.	0.99); 94) 100 100		100 100	7.6% 7.6 %	0.11 [0.03, 0.47] 0.11 [0.03, 0.47]	_
deterogeneity: Chi ² = 0.01, of cest for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis billi 2015 billi 2015 bibtotal (95% CI)	df = 2 (P = 0.07 (P = 0.05)	94)	I ² = 0%			0.11 [0.03, 0.47] 0.11 [0.03, 0.47]	-
leterogeneity: Chi ² = 0.01, c Test for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis billi 2015 subtotal (95% CI) Total events leterogeneity: Not applicable	df = 2 (P = .07 (P = 0. scharge 2	94) 100 100	I ² = 0%			0.11 [0.03, 0.47] 0.11 [0.03, 0.47]	-
leterogeneity: Chi ² = 0.01, c Test for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis billi 2015 subtotal (95% CI) Total events leterogeneity: Not applicable Test for overall effect: Z = 3.	df = 2 (P = .07 (P = 0. scharge 2	94) 100 100	I ² = 0%			0.11 [0.03, 0.47] 0.11 [0.03, 0.47]	-
deterogeneity: Chi ² = 0.01, of est for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis billi 2015 bibtotal (95% CI) Total events deterogeneity: Not applicable est for overall effect: Z = 3. 5.1.7 Till discharge	df = 2 (P = 0.07 (P = 0.07 (P = 0.000	100 100 003)	18 18	100	7.6%	0.11 [0.03, 0.47]	
eterogeneity: Chi ² = 0.01, c Fest for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis billi 2015 bibtotal (95% Cl) fotal events eterogeneity: Not applicable Fest for overall effect: Z = 3. 5.1.7 Till discharge chowdhury 2016	df = 2 (P = 0.07 (P = 0.07 (P = 0.000	100 100 003)	18 18	1 00	7.6% 2.5%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32]	
eleterogeneity: Chi ² = 0.01, c rest for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis pilli 2015 ubtotal (95% CI) otal events leterogeneity: Not applicable est for overall effect: Z = 3. 5.1.7 Till discharge chowdhury 2016 cui 2019	df = 2 (P = 0.07 (P = 0.07 (P = 0.000 (P = 0	100 100 003)	18 18 18	100 59 48	7.6% 2.5% 2.0%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.21 [0.03, 1.76]	
eleterogeneity: Chi ² = 0.01, c Fest for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis billi 2015 bibtotal (95% Ch) Total events eleterogeneity: Not applicabli- rest for overall effect: Z = 3. 5.1.7 Till discharge chowdhury 2016 bi 2019 asshti 2014	df = 2 (P = 0.07 (P = 0.07 (P = 0.000)) scharge	100 100 003) 60 45 69	18 18 18	59 48 67	7.6% 2.5% 2.0% 0.4%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92]	
eleterogeneity: Chi ² = 0.01, c rest for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis billi 2015 total events: teterogeneity: Not applicable rest for overall effect: Z = 3. 5.1.7 Till discharge chowdhury 2016 Lui 2019 Dashti 2014 Demirel 2013	df = 2 (P = 0.07 (P = 0.00	100 100 003)	18 18 18	100 59 48	7.6% 2.5% 2.0%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50]	
eleterogeneity: Chi ² = 0.01, c Fest for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis billi 2015 bibtotal (95% Ch) Total events eleterogeneity: Not applicabli- rest for overall effect: Z = 3. 5.1.7 Till discharge chowdhury 2016 bi 2019 asshti 2014	df = 2 (P = 0.07 (P = 0.07 (P = 0.000)) scharge	100 100 100 003) 60 45 69 135	18 18 18 7	59 48 67 136	2.5% 2.0% 0.4% 2.9%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.69]	
eleterogeneity: Chi² = 0.01, c rest for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis billi 2015. billi 2015. fotal events: teterogeneity: Not applicable rest for overall effect: Z = 3. 5.1.7 Till discharge chowdhury 2016 buil 2019 pashti 2014 permirel 2013 saban 2019 nocel 2014	df = 2 (P = 0.07	100 100 100 003) 60 45 69 135 47	18 18 18 6 5 1 7	59 48 67 136 47	2.5% 2.0% 0.4% 2.9% 1.5%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.69] 0.80 [0.32, 1.99]	
eleterogeneity: Chi² = 0.01, crest for overall effect: Z = 0.5.1.6 For 8 weeks or till dis illili 2015 (biblio 2015) (biblio 2015) (biblio 2015) (biblio 2016) (biblio 201	df = 2 (P = 0.07 (P = 0.00	100 100 003) 60 45 69 135 47 200	18 18 18 6 5 1 7 3	59 48 67 136 47 200	2.5% 2.0% 0.4% 2.9% 1.5% 4.2%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.69]	
eleterogeneity: Chi² = 0.01, crest for overall effect: Z = 0.5.1.6 For 8 weeks or till dis illil 2015 (2016) (2016	df = 2 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.00	94) 100 100 003) 60 45 69 135 47 200 73 372 91	18 18 18 6 5 1 7 3 10 8 15	59 48 67 136 47 200 73 378 95	7.6% 2.5% 2.0% 0.4% 2.9% 4.2% 3.4% 6.3% 6.2%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.69] 0.80 [0.32, 1.99] 0.25 [0.05, 1.14] 0.61 [0.27, 1.38] 0.35 [0.13, 0.92]	
eleterogeneity: Chi² = 0.01, crest for overall effect: Z = 0.5.1.6 For 8 weeks or till dis illil 2015 (2016) (2016	df = 2 (P = 0.07 (P = 0.00	94) 100 100 003) 60 45 69 135 47 200 73 372	18 18 18 6 5 1 7 3 10 8 15	59 48 67 136 47 200 73 378	2.5% 2.0% 0.4% 2.9% 1.5% 4.2% 4.2%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.69] 0.80 [0.32, 1.99] 0.25 [0.05, 1.14] 0.61 [0.27, 1.38]	
eleterogeneity: Chi² = 0.01, crest for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.2 For 8 weeks or till dis 5.1.2 For 8 weeks or till dis 6.1.3 For 8 weeks or till dis 6.1.4 For 8 weeks or till dis 6.1.5 For 8 weeks or till dis	df = 2 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.00	94) 100 100 003) 60 45 69 135 47 200 73 372 91 110 104	18 18 18 6 5 1 7 3 10 8 15 10 7	59 48 67 136 47 200 73 378 95 111 104	7.6% 2.5% 2.0% 0.4% 2.9% 4.2% 3.4% 6.3% 6.2% 4.2% 2.9%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.69] 0.25 [0.05, 1.14] 0.61 [0.27, 1.38] 0.35 [0.13, 0.92] 0.61 [0.23, 1.61] 1.00 [0.36, 2.75]	
eleterogeneity: Chi² = 0.01, c rest for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis billi 2015 billi 2015 billi 2015 control of the control of the control control of the control control of the control con	df = 2 (P = 0.07	94) 100 100 003) 60 45 69 135 47 200 73 372 91 110 104 49	18 18 18 6 5 1 7 3 10 8 15 15	59 48 67 136 47 200 73 378 95 111 104 49	7.6% 2.5% 2.0% 0.4% 2.9% 1.5% 4.2% 4.2% 4.2% 2.5%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 2.50] 0.80 [0.32, 2.50] 0.14 [0.01, 2.69] 0.25 [0.05, 1.14] 0.16 [0.27, 1.38] 0.35 [0.13, 0.92] 0.16 [0.23, 1.61] 1.00 [0.36, 2.75]	
eleterogeneity: Chi² = 0.01, c'est for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis 5.1.6 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.2 For 8 weeks or till dis 6.1.2 For 8 weeks or till dis	df = 2 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.00	94) 100 100 003) 60 45 69 135 47 200 73 372 91 110 104	18 18 18 6 5 1 7 3 10 8 15 10 7 6	59 48 67 136 47 200 73 378 95 111 104	7.6% 2.5% 2.0% 0.4% 2.9% 4.2% 3.4% 6.3% 6.2% 4.2% 2.9%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.69] 0.25 [0.05, 1.14] 0.61 [0.27, 1.38] 0.35 [0.13, 0.92] 0.61 [0.23, 1.61] 1.00 [0.36, 2.75]	
eleterogeneity: Chi ² = 0.01, c fest for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis billi 2015 bibtotal (95% Ch) fotal events feterogeneity: Not applicable feterogeneity: Not applicable fest for overall effect: Z = 3. 5.1.7 Till discharge Chowdhury 2016 billi 2019 chashti 2014 bemirel 2013 ckaban 2019 briel 2014 behman 2018 bojas 2012 amanta 2009 ari 2011 erce 2013 hashidar 2017 bibtotal (95% Ch) fotal events	df = 2 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.00	100 100 003) 60 45 69 135 47 200 73 372 91 110 104 49 1355	18 18 18 6 5 1 7 3 10 0 8 15 15 10 7 6	59 48 67 136 47 200 73 378 95 111 104 49 1367	7.6% 2.5% 2.0% 0.4% 2.9% 1.5% 4.2% 4.2% 4.2% 2.5%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 2.50] 0.80 [0.32, 2.50] 0.14 [0.01, 2.69] 0.25 [0.05, 1.14] 0.16 [0.27, 1.38] 0.35 [0.13, 0.92] 0.16 [0.23, 1.61] 1.00 [0.36, 2.75]	
leterogeneity. Chi² = 0.01, cest for overall effect: Z = 0. 3.1.6 For 8 weeks or till disolilli 2015 ubtotal (95% CI) otal events icterogeneity: Not applicable sets for overall effect: Z = 3. 3.1.7 Till discharge chowdhury 2016 tui 2019 basht 2014 bemirel 2013 aban 2019 breel 2014 behman 2018 tojas 2012 amanta 2009 ari 2011 erce 2013 hashidhar 2017 ubtotal (95% CI) otal events feterogeneity: Chi² = 9.11, cest for overall effect: Z = 0.11, cest for overall effect: Z = 0.01, cest for overall effect: Z = 0.11, cest for overall effect: Z = 0.11, cest for overall effect: Z = 0.11, cest for overall effect: Z = 0.01, cest for	df = 2 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.00	100 100 003) 60 45 69 135 47 200 73 372 91 110 104 49 1355 = 0.61	18 18 18 6 5 1 7 3 10 0 8 15 15 10 7 6	59 48 67 136 47 200 73 378 95 111 104 49 1367	7.6% 2.5% 2.0% 0.4% 2.9% 1.5% 4.2% 4.2% 4.2% 2.5%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 2.50] 0.80 [0.32, 2.50] 0.14 [0.01, 2.69] 0.25 [0.05, 1.14] 0.16 [0.27, 1.38] 0.35 [0.13, 0.92] 0.16 [0.23, 1.61] 1.00 [0.36, 2.75]	
leterogeneity: Chi² = 0.01, cest for overall effect: Z = 0. 1.1.6 For 8 weeks or till diswill 2015 withotal (95% CI) otal events otal events leterogeneity: Not applicable sets for overall effect: Z = 3. 1.1.7 Till discharge howdhury 2016 win 2019 sasht 2014 bemirel 2013 aban 2019 shoel 2014 ehman 2018 ojaan tata 2009 ari 2011 erce 2013 hashidhar 2017 ubtotal (95% CI) otal events leterogeneity: Chi² = 9.11, cest for overall effect: Z = 3.	df = 2 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.00	100 100 003) 60 45 69 135 47 200 73 372 91 110 104 49 1355 = 0.61	18 18 18 6 5 1 7 3 10 0 8 15 15 10 7 6	59 48 67 136 47 200 73 378 95 111 104 49 1367	7.6% 2.5% 2.0% 0.4% 2.9% 1.5% 4.2% 4.2% 4.2% 2.5%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 2.50] 0.80 [0.32, 2.50] 0.14 [0.01, 2.69] 0.25 [0.05, 1.14] 0.16 [0.27, 1.38] 0.35 [0.13, 0.92] 0.16 [0.23, 1.61] 1.00 [0.36, 2.75]	
ideterogeneity: Chi² = 0.01, ciest for overall effect: Z = 0. 2.1.6 For 8 weeks or till dis 3.1.1 For 8 weeks or till dis 3.1.1 For 8 weeks or till dis 3.1.1 For 10 F	df = 2 (P = 0.07 (P = 0.00	100 100 003) 60 45 69 135 47 200 73 372 91 110 104 49 1355 = 0.61	18 18 18 6 5 1 7 3 10 0 7 6 9 9 3 9 3 10 10 11 11 11 11 11 11 11 11 11 11 11	59 48 67 136 47 200 73 378 95 111 104 49 1367	2.5% 2.0% 0.4% 2.9% 1.5% 4.2% 3.4% 6.3% 4.2% 2.9% 3.5% 3.9.0%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.50] 0.14 [0.01, 2.50] 0.25 [0.05, 1.14] 0.61 [0.27, 1.38] 0.35 [0.13, 0.27] 0.61 [0.23, 1.61] 1.00 [0.36, 2.75] 0.33 [0.07, 1.57]	
eleterogeneity: Chi² = 0.01, c'est for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.2 For 8 weeks or till dis 5.1.2 For 8 weeks or till dis 5.1.3 For 8 weeks or till dis 5.1.4 Till discharge 6.5.1 Till discharge 6.5.1 Till discharge 6.5.1 Till discharge 6.5.2 For 9 weeks 6.5.3 For 9 weeks 6.5.3 For 9 weeks 6.5.4 Till discharge 6.5.4 Till discharge 6.5.5 For 9 weeks 6.5.5 For 9 weeks 6.5.6 For 9 weeks 6.5.7 Till discharge 6.5.6 For 9 weeks 6.5.7 Till discharge 6.5.7 Till dis	df = 2 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.00	100 100 003) 60 45 69 135 47 200 73 372 21 110 104 49 1355 = 0.61	18 18 18 6 5 1 7 7 3 3 100 8 8 15 5 15 10 7 7 6 6 93 93 93 12	599 488 675 675 675 675 675 675 675 675 675 675	7.6% 2.5% 2.0% 0.4% 2.9% 1.5% 4.2% 3.4% 6.2% 4.29% 2.5% 39.0%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 2.50] 0.80 [0.30, 2.50] 0.14 [0.01, 2.50] 0.14 [0.01, 2.50] 0.15 [0.05, 1.14] 0.16 [0.27, 1.38] 0.35 [0.13, 0.92] 0.16 [0.23, 1.61] 1.00 [0.36, 2.75] 0.36 [0.75]	
eleterogeneity: Chi² = 0.01, c'est for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis 5.1.6 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.2 For 8 weeks or till dis 6.1.2 For 8 weeks or till dis	df = 2 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.07 (P = 0.00	100 100 003) 60 45 69 135 47 200 73 372 91 110 104 49 1355 = 0.61 0003)	18 18 18 6 5 1 7 3 10 0 7 6 9 9 3 9 3 10 10 11 11 11 11 11 11 11 11 11 11 11	59 48 67 1366 47 200 73 378 95 111 104 49 1367	2.5% 2.0% 0.4% 2.9% 1.5% 4.2% 3.4% 6.3% 4.2% 2.9% 3.5% 3.9.0%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.50] 0.14 [0.01, 2.50] 0.25 [0.05, 1.14] 0.61 [0.27, 1.38] 0.35 [0.13, 0.27] 0.61 [0.23, 1.61] 1.00 [0.36, 2.75] 0.33 [0.07, 1.57]	
eleterogeneity: Chi² = 0.01, crest for overall effect: Z = 0.5.1.6 For 8 weeks or till dis illili 2015 subtotal (95% Cl) cital events to total events teterogeneity: Not applicable est for overall effect: Z = 3.5.1.7 Till discharge chowdhury 2016 illililililililililililililililililili	df = 2 (P = 0.07 (P = 0.00	100 100 003) 60 45 69 135 47 200 73 372 201 110 104 49 1355 = 0.61 0003)	18 18 18 6 5 1 7 7 3 3 10 10 8 8 15 15 10 7 6 6 93 37 12 37 37 37 12 37 37 37 37 37 37 37 37 37 37 37 37 37	59 48 67 136 47 200 73 378 95 111 104 49 1367	7.6% 2.5% 2.0% 0.4% 2.9% 1.5% 6.3% 4.2% 4.2% 2.5% 39.0%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 2.092] 0.86 [0.30, 2.50] 0.14 [0.01, 2.50] 0.80 [0.32, 1.99] 0.25 [0.05, 1.14] 0.61 [0.27, 1.38] 0.35 [0.13, 0.27] 0.31 [0.23, 1.61] 1.00 [0.36, 2.75] 0.33 [0.07, 1.57] 0.54 [0.38, 0.75]	
eleterogeneity: Chi² = 0.01, c'est for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis jilli 2013; bubtotal (95% CI) total events leterogeneity: Not applicable 'est for overall effect: Z = 3. 5.1.7 Till discharge Chowdhury 2016 'Lui 2019 Jashti 2014 Joemirel 2013 (aban 2019 Joed! 2014 Joedle 2014 Joedle 2014 Joedle 2014 Joedle 2014 Joedle 2015 Joedle 2014 Joedle 2015 Joedle 2016 Joedle 2017 Joedle 2017 Joedle 2018 Joedle 2018 Joedle 2018 Joedle 2019 J	df = 2 (P = 0.07 (P = 0.00	100 100 003) 60 45 69 135 47 200 73 377 291 110 104 49 1355 = 0.61 0003)	18 18 18 6 6 5 1 7 3 3 10 0 8 15 10 7 6 6 2 3 7 10 12 2 3 7 10 10	599 488 677 1366 477 2000 733 3788 95 111 1044 49 1367 6	7.6% 2.5% 2.0% 0.4% 2.9% 4.2% 3.4% 6.3% 6.2% 2.9% 2.55% 39.0%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.50] 0.14 [0.01, 2.50] 0.15 [0.05, 1.14] 0.15 [0.27, 1.38] 0.35 [0.13, 0.92] 0.16 [0.23, 1.61] 1.00 [0.36, 2.75] 0.54 [0.38, 0.75]	
eleterogeneity: Chi² = 0.01, c'est for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.2 For 8 weeks or till dis 5.1.3 For 8 weeks or till dis 5.1.4 For 8 weeks or till dis 6.1.5 For 8 weeks or till dis 6.1.5 For 8 weeks or till dis 6.1.6 For 8 weeks or till dis 6.1.6 For 8 weeks or till dis 6.1.6 For 9 weeks 6.1.6 For 9 weeks 6.1.6 For 9 weeks 6.1.7 For 9 weeks 6.1.8 For 9 weeks 6	df = 2 (P = 0.07 (P = 0.3 ccharge 2 2 e 0.00 (P = 0.3 6 0.00 (100 100 003) 60 45 69 135 47 200 73 372 91 110 104 49 1355 = 0.61 0003)	18 18 18 6 5 1 7 3 3 10 0 8 15 10 7 6 6 9 3 7 10 12 3 7 10 12 1	599 488 67 1366 477 200 73 3788 95 111 104 49 1367	7.6% 2.5% 2.0% 0.4% 2.9% 4.2% 4.2% 6.3% 6.2% 39.0%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 2.092] 0.86 [0.30, 2.50] 0.14 [0.01, 2.50] 0.80 [0.32, 1.99] 0.25 [0.05, 1.14] 0.61 [0.27, 1.38] 0.35 [0.13, 0.27] 0.31 [0.23, 1.61] 1.00 [0.36, 2.75] 0.33 [0.07, 1.57] 0.54 [0.38, 0.75]	
eleterogeneity: Chi² = 0.01, (*est for overall effect: Z = 0.5.1.6 For 8 weeks or till dis Jilli 2015. Unitational (95% CI) otal events leterogeneity: Not applicable est for overall effect: Z = 3.5.1.7 Till discharge (*est for overall effect: Z = 3.5.1.7 Till discharge (*est for overall effect: Z = 3.5.1.7 Till discharge (*est for overall effect: Z = 3.5.1.7 Till discharge (*est for overall effect: Z = 3.5.1.7 Till discharge (*est for overall effect: Z = 3.5.1.7 Till discharge (*est for overall effect: Z = 3.5.1.7 Till discharge (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 tussain 2016 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 tussain 2016 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or unclear ernández-Carrocera 2014 (*est for overall effect: Z = 3.5.1.8 Not stated or uncle	df = 2 (P - P - O) (P = 0) (P	94) 100 100 003) 60 45 69 135 47 73 372 91 110 104 49 1355 = 0.61 0003) 75 150 37 250 30 542	18 18 18 18 6 5 5 1 7 7 3 10 8 8 15 15 10 7 6 6 93 37 10 12 1 1 7 7 2	59 48 67 136 47 200 73 378 95 111 104 49 1367 6	7.6% 2.5% 2.0% 0.4% 2.9% 4.2% 3.4% 6.3% 6.2% 2.9% 2.55% 39.0%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.50] 0.14 [0.01, 2.50] 0.15 [0.05, 1.14] 0.15 [0.27, 1.38] 0.35 [0.13, 0.92] 0.16 [0.23, 1.61] 1.00 [0.36, 2.75] 0.54 [0.38, 0.75]	
leterogeneity. Chi² = 0.01, cest for overall effect: Z = 0. 3.1.6 For 8 weeks or till disolilli 2015 3.1.1.6 For 8 weeks or till disolilli 2015 3.1.1.6 For 8 weeks or till disolilli 2015 3.1.7 Till discharge 3.1.7 Till discharge 3.1.7 Till discharge 3.1.8 T	$ \begin{aligned} & \text{df} = 2 \ (P - \alpha) \\ & \text{or} \ (P = 0, 0) \\ & \text{or} \ (P = 0, 0) \\ & \text{e} \end{aligned} $	94) 100 100 003) 60 45 69 135 47 200 73 377 210 104 49 1355 = 0.61 0003) 75 150 30 542 € 0.22);	18 18 18 6 5 1 7 3 3 10 0 8 15 15 10 7 6 6 12 37 10 12 1 7 10 12 17 2 31 9 31 9	59 48 67 136 47 200 73 378 95 111 104 49 1367 6	7.6% 2.5% 2.0% 0.4% 2.9% 4.2% 3.4% 6.3% 6.2% 2.9% 2.55% 39.0%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.50] 0.14 [0.01, 2.50] 0.15 [0.05, 1.14] 0.15 [0.27, 1.38] 0.35 [0.13, 0.92] 0.16 [0.23, 1.61] 1.00 [0.36, 2.75] 0.54 [0.38, 0.75]	
leterogeneity: Chi² = 0.01, cest for overall effect: Z = 0. 1.1.6 For 8 weeks or till dis will 2015 uibtotal (95% Ct) otal events leterogeneity: Not applicable est for overall effect: Z = 3. 1.1.7 Till discharge (howdhury 2016 to 10 to 1	$\begin{aligned} & \text{df} = 2 \ (P - \alpha) \\ & \text{or} \ (P = 0, 0) \\ & \text{or} \ (P = 0, 0) \\ & \text{e} \end{aligned}$	94) 100 100 003) 60 45 69 135 47 200 73 377 210 104 49 1355 = 0.61 0003) 75 150 30 542 € 0.22);	18 18 18 6 5 1 7 3 3 10 0 8 15 15 10 7 6 6 12 37 10 12 1 7 10 12 17 2 31 9 31 9	59 48 67 136 47 200 73 378 9111 104 49 1367	7.6% 2.5% 2.0% 0.4% 2.9% 4.2% 3.4% 6.3% 6.2% 2.9% 2.55% 39.0%	0.16 [0.02, 1.32] 0.21 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.14 [0.01, 2.50] 0.14 [0.01, 2.50] 0.15 [0.05, 1.14] 0.15 [0.27, 1.38] 0.35 [0.13, 0.92] 0.16 [0.23, 1.61] 1.00 [0.36, 2.75] 0.54 [0.38, 0.75]	
eleterogeneity: Chi² = 0.01, c'est for overall effect: Z = 0. 5.1.6 For 8 weeks or till dis 5.1.6 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.1 For 8 weeks or till dis 5.1.2 For 8 weeks or till dis 5.1.2 For 8 weeks or till dis 6.1.2 For 8 weeks or till dis 6.1.3 For 8 weeks or till dis 6.1.4 For 8 weeks or till dis 6.1.5 For 8 weeks or till dis 6.1.5 For 8 weeks or till dis 6.1.5 For 9 weeks 6.1.5 Fo	$ \begin{aligned} & \text{df} = 2 \ (P - \alpha) \\ & \text{or} \ (P = 0, 0) \\ & \text{or} \ (P = 0, 0) \\ & \text{e} \end{aligned} $	94) 100 100 003) 60 45 69 135 47 200 1100 1355 = 0.61 0003) 75 150 30 542 0.22); 000001)	$ ^2 = 0\%$ 18 18 6 5 1 7 7 3 10 7 6 93 10 12 37 10 12 17 10 12 17 10 12 17 10 12 23 7 23 23 23 233	599 488 667 1366 477 2000 73 3788 755 1111 1044 499 1367 66 3015	7.6% 2.5% 2.0% 2.9% 1.5% 4.2% 3.4% 6.2% 4.28 3.99.0% 5.0% 3.0.4%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.19 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.80 [0.32, 1.99] 0.25 [0.05, 1.14] 0.61 [0.27, 1.38] 0.35 [0.13, 0.25] 0.35 [0.13, 0.25] 0.36 [0.13, 1.61] 1.00 [0.36, 7.57] 0.34 [0.38, 0.75] 0.50 [0.20, 1.26] 0.19 [0.09, 0.41] 0.57 [0.23, 1.40] 0.57 [0.23, 1.40] 0.57 [0.23, 1.40] 0.57 [0.23, 1.40] 0.58 [0.20, 1.26] 0.17 [0.04, 0.74] 1.00 [0.07, 15.26] 0.30 [0.19, 0.48]	
leterogeneity. Chi² = 0.01, cest for overall effect: Z = 0. 3.1.6 For 8 weeks or till dis 3.1.2 Silli 2015 Jet 10 Silli 2015 Jet 201	df = 2 (P - Q) $ df = 2 (P - Q) $ $ e = 0.00 (P = 0) $ $ e = 0.00 ($	94) 100 100 003) 60 45 69 135 47 200 73 377 291 110 104 49 1355 = 0.61 0003) 75 150 30 37 250 30 250 3114 P = 0.3	$ ^2 = 0\%$ 18 18 6 6 5 17 7 3 10 0 7 6 93 10 12 37 10 12 12 23 73 10 12 23 73 10 12 23 73 10 12 12 23 73 10 12 12 12 12 12 12 13 13 14 15 15 15 16 17 18 18 18 18 18 18 18 18 18	599 488 667 1366 477 2000 73 3788 755 1111 1044 499 1367 66 3015	7.6% 2.5% 2.0% 2.9% 1.5% 4.2% 3.4% 6.2% 4.28 3.99.0% 5.0% 3.0.4%	0.11 [0.03, 0.47] 0.16 [0.02, 1.32] 0.19 [0.03, 1.76] 1.94 [0.18, 20.92] 0.86 [0.30, 2.50] 0.80 [0.32, 1.99] 0.25 [0.05, 1.14] 0.61 [0.27, 1.38] 0.35 [0.13, 0.25] 0.35 [0.13, 0.25] 0.36 [0.13, 1.61] 1.00 [0.36, 7.57] 0.34 [0.38, 0.75] 0.50 [0.20, 1.26] 0.19 [0.09, 0.41] 0.57 [0.23, 1.40] 0.57 [0.23, 1.40] 0.57 [0.23, 1.40] 0.57 [0.23, 1.40] 0.58 [0.20, 1.26] 0.17 [0.04, 0.74] 1.00 [0.07, 15.26] 0.30 [0.19, 0.48]	• • • • • • • • • • • • • • • • • • •

Prevention and Treatment of Neonatal Infections in LMICs Outcome: All-cause neonatal mortality


	Probio		Conti			Risk Ratio	Risk Ratio
Study or Subgroup 5.2.1 For 1 week	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Subtotal (95% CI)		0		0		Not estimable	
Total events	0		0				
Heterogeneity: Not applicable							
Test for overall effect: Not ap	plicable						
5.2.2 For 10-14 days							
Chandrashekar 2018	1	70	4	70	2.0%	0.25 [0.03, 2.18]	
Duta 2015	8 2	114 24	2	35 20	1.6%	1.23 [0.27, 5.52]	
Hernandez-Enriquez 2016 Shadkam 2015	1	30	2	30	0.3% 1.0%	4.20 [0.21, 82.72] 0.50 [0.05, 5.22]	
Subtotal (95% CI)		238		155	4.9%	0.84 [0.33, 2.12]	*
Total events	12		8				
Heterogeneity: Chi ² = 2.76, d Test for overall effect: Z = 0.	IT = 3 (P 37 (P = 0	= 0.43).71)); 1" = 0%				
5.2.3 For 3 weeks							
Subtotal (95% CI)		0		0		Not estimable	
Total events	0		0				
Heterogeneity: Not applicable							
Test for overall effect: Not ap	plicable						
5.2.4 For 4 weeks or till disc	charge						
Braga 2011	26	119	27	112	14.2%	0.91 [0.56, 1.45]	+
Li 2019	0	16	1	14	0.8%	0.29 [0.01, 6.69]	·
Matin 2022 Sinha 2015	0	26 668	0	26 672	1.0%	Not estimable	
Sowden 2022	0	100	1	100	0.8%	0.50 [0.05, 5.53] 0.33 [0.01, 8.09]	
Van Niekerk 2014	5	91	6	93	3.0%	0.85 [0.27, 2.69]	
Subtotal (95% CI)		1020		1017	19.9%	0.83 [0.54, 1.27]	◆
Total events	32		37				
Heterogeneity: Chi ² = 1.04, d Test for overall effect: Z = 0.3); I ⁻ = 0%				
5.2.5 For 6 weeks or till disc	charge						
Hariharan 2016	4	93	5	103	2.4%	0.89 [0.25, 3.20]	
Roy 2014	7	56	8	56	4.1%	0.88 [0.34, 2.25]	
Saengtawesin 2014	0	31	0	29		Not estimable	
Tewari 2015 Subtotal (95% CI)	12	123 303	14	121 309	7.2% 13.7%	0.84 [0.41, 1.75] 0.86 [0.51, 1.46]	
Total events	23	303	27	303	13.770	0.00 [0.51, 1.40]	T
Heterogeneity: Chi ² = 0.01, d		= 1.00					
Test for overall effect: $Z = 0$.	56 (P = 0).58)					
5.2.6 For 8 weeks or till dise							
Dilli 2015	3	100	12	100	6.1%	0.25 [0.07, 0.86]	
Subtotal (95% CI) Total events	3	100	12	100	6.1%	0.25 [0.07, 0.86]	
Heterogeneity: Not applicable			12				
Test for overall effect: $Z = 2.2$		0.03)					
5.2.7 Till discharge							
Chowdhury 2016	5	60	7	59	3.6%	0.70 [0.24, 2.09]	
Dashti 2014	8	69	4	67	2.1%	1.94 [0.61, 6.15]	
Demirel 2013 Kaban 2019	5 1	135 47	5 4	136 47	2.5%	1.01 [0.30, 3.40]	
Oncel 2014	15	200	20	200	10.2%	0.25 [0.03, 2.15] 0.75 [0.40, 1.42]	·
Rehman 2018	4	73	6	73	3.1%	0.67 [0.20, 2.26]	
Rojas 2012	22	372	28	378	14.2%	0.80 [0.47, 1.37]	 -
Samanta 2009	4	91	14	95	7.0%	0.30 [0.10, 0.87]	
Sari 2011 Serce 2013	3 5	110 104	3	111 104	1.5%	1.01 [0.21, 4.89] 1.25 [0.35, 4.52]	
Shashidhar 2017	1	49	3	49	1.5%	0.33 [0.04, 3.09]	
Subtotal (95% CI)		1310	_	1319	49.9%	0.75 [0.56, 1.00]	◆
Total events	73		98				
Heterogeneity: Chi ² = 8.03, d Test for overall effect: Z = 1.9			3); I ² = 0	%			
5.2.8 Not stated or unclear							
Fernández-Carrocera 2014	1	75	7	75	3.6%	0.14 [0.02, 1.13]	
Singh 2017	3	37	3	35	1.6%	0.95 [0.20, 4.38]	
Wu 2020	0	250	0	250		Not estimable	
Zahed Pasha 2016 Subtotal (95% CI)	2	30 392	0	30 390	0.3% 5.4%	5.00 [0.25, 99.95]	
Total events	6	392	10	590	5.4%	0.61 [0.23, 1.58]	
Heterogeneity: $Chi^2 = 4.10$, d	If = 2 (P			%			
Test for overall effect: Z = 1.0	02 (P = 0).31)					
Total (95% CI)		3363		3290	100.0%	0.75 [0.61, 0.92]	◆
Total events Heterogeneity: Chi ² = 19.62,	149 df = 26	(P = 0	192 81): I ² =	N%			
Test for overall effect: Z = 2.3			O1), I =	U/II			0.01 0.1 1 10 100
Test for subgroup differences			df = 5 (P	= 0.58)), $I^2 = 0\%$		Favours probiotics Favours control

Outcome: *Invasive infection*

Study or Subgroup	Probio Events		Conti Events		Weight	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M-H, Fixed, 95% CI
5.3.1 For 1 week Subtotal (95% CI)		0		0		Not estimable	
Fotal events	0	U	0	U		Not estimable	
leterogeneity: Not applicable			Ü				
est for overall effect: Not ap							
i.3.2 For 10-14 days							
Chandrashekar 2018	15	70	13	70	2.8%	1.15 [0.59, 2.24]	
Hernandez-Enriquez 2016	6	24	1	20	0.2%	5.00 [0.66, 38.15]	+
hadkam 2015	0	30	0	30	2 401	Not estimable	_
Subtotal (95% CI)		124		120	3.1%	1.45 [0.78, 2.70]	—
otal events Heterogeneity: Chi² = 1.88, c	21	0.17)	. 12 47	0/			
Fest for overall effect: $Z = 1$.			,1 = 47	70			
5.3.3 For 3 weeks							
Subtotal (95% CI)		0		0		Not estimable	
Total events	0		0				
Heterogeneity: Not applicable							
Test for overall effect: Not ap	plicable						
5.3.4 For 4 weeks or till dis							
raga 2011	40	119	42	112	9.4%	0.90 [0.63, 1.27]	
Matin 2022 Inha 2015	0 84	26 668	3 107	26 672	0.8%	0.14 [0.01, 2.63]	
Jan Niekerk 2014	84 15	91	107	93	23.1%	0.79 [0.61, 1.03] 1.53 [0.73, 3.23]	<u> </u>
(u 2016	4	65	6	60	1.4%	0.62 [0.18, 2.08]	
Subtotal (95% CI)	,	969	3	963	36.8%	0.84 [0.69, 1.03]	♦
Total events	143		168				
Heterogeneity: $Chi^2 = 4.51$, of Fest for overall effect: $Z = 1$.			$ I^2 = 11$	%			
5.3.5 For 6 weeks or till dis							
Hariharan 2016	9	93	16	103	3.3%	0.62 [0.29, 1.34]	+
Roy 2014	31	56	42	56	9.1%	0.74 [0.56, 0.98]	
Saengtawesin 2014	2	31	1	20	0.3%	1.29 [0.13, 13.31]	
Tewari 2015	8	123	11	121	2.4%	0.72 [0.30, 1.72]	
Subtotal (95% CI)		303		300	15.1%	0.72 [0.55, 0.95]	•
Total events	50	0.04	70				
Heterogeneity: Chi² = 0.41, o Test for overall effect: Z = 2.:			; 1 = 0%				
5.3.6 For 8 weeks or till dis	charge						
Dilli 2015	8	100	13	100	2.8%	0.62 [0.27, 1.42]	
Subtotal (95% CI)		100		100	2.8%	0.62 [0.27, 1.42]	→
Total events	8		13				
Heterogeneity: Not applicable Test for overall effect: Z = 1.:		.26)					
5.3.7 Till discharge							
Cui 2019	2	45	4	48	0.8%	0.53 [0.10, 2.77]	
Demirel 2013	20	135	21	136	4.5%	0.96 [0.55, 1.69]	+
Outa 2015	10	114	6	35	2.0%	0.51 [0.20, 1.31]	
Kaban 2019	1	47	3	47	0.7%	0.33 [0.04, 3.09]	
Oncel 2014 Samanta 2009	13 13	200 91	25 28	200 95	5.4% 5.9%	0.52 [0.27, 0.99] 0.48 [0.27, 0.88]	
Sari 2011	29	110	28 26	111	5.6%	1.13 [0.71, 1.78]	<u></u>
Serce 2013	19	104	25	104	5.4%	0.76 [0.45, 1.29]	-+
Shashidhar 2017	6	49	7	49	1.5%	0.86 [0.31, 2.37]	
Subtotal (95% CI) Fotal events	113	895	145	825	31.9%	0.74 [0.59, 0.92]	•
Heterogeneity: Chi ² = 8.49, d	If = 8 (P						
Test for overall effect: Z = 2.0	อช (P = 0	.007)					
5.3.8 Not stated or unclear					0 ==:	0.0510 = 2.55	
Fernández–Carrocera 2014 Vu 2020	42	75 250	44 4	75 250	9.5% 0.9%	0.95 [0.72, 1.26]	
Nu 2020 Subtotal (95% CI)	3	250 325	4	250 325	0.9% 10.4%	0.75 [0.17, 3.32] 0.94 [0.71, 1.24]	
Fotal events	45	3.3	48	323	10.170	5.54 [0.7 1, 1.24]	T
Heterogeneity: Chi² = 0.10, c Test for overall effect: Z = 0.4	If = 1 (P						
Fotal (95% CI)	, -	2716		2633	100.0%	0.81 [0.72, 0.91]	•
Total events	380		458			,,	•
i otai events							
rotal events Heterogeneity: Chi² = 20.67,		(P = 0.5)	$(54); I^2 = (54);$	0%			0.01 0.1 1 10

Comparison: Probiotics versus control in preterm newborns by funding source

Outcome: Necrotizing enterocolitis

	Probio	tics	Contr	ol		Risk Ratio	Risk Ratio
tudy or Subgroup		Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
5.2.1 Funded by public sec	tors						
raga 2011	26	119	27	112	14.2%	0.91 [0.56, 1.45]	-
1atin 2022	0	26	0	26		Not estimable	
hadkam 2015	1	30	2	30	1.0%	0.50 [0.05, 5.22]	
owden 2022	0	100	1	100	0.8%	0.33 [0.01, 8.09]	· · ·
an Niekerk 2014	5	91	6	93	3.0%	0.85 [0.27, 2.69]	
Vu 2020	0	250	0	250		Not estimable	
ahed Pasha 2016	2	30	0	30	0.3%	5.00 [0.25, 99.95]	-
ubtotal (95% CI)		646		641	19.3%	0.91 [0.60, 1.38]	•
otal events	34		36				
Heterogeneity: Chi ² = 1.89, eest for overall effect: Z = 0.			$I^2 = 0\%$				
i.2.2 Funded by industries							
Dashti 2014	8	69	4	67	2.1%	1.94 [0.61, 6.15]	+
Dilli 2015	3	100	12	100	6.1%	0.25 [0.07, 0.86]	
Outa 2015	8	114	2	35	1.6%	1.23 [0.27, 5.52]	- -
aban 2019	1	47	4	47	2.0%	0.25 [0.03, 2.15]	•
lojas 2012	22	372	28	378	14.2%	0.80 [0.47, 1.37]	+
aengtawesin 2014	0	31	0	29		Not estimable	
erce 2013	5	104	4	104	2.0%	1.25 [0.35, 4.52]	- -
inha 2015	1	668	2	672	1.0%	0.50 [0.05, 5.53]	
ewari 2015	12	123	14	121	7.2%	0.84 [0.41, 1.75]	
ubtotal (95% CI)		1628		1553	36.3%	0.78 [0.56, 1.10]	•
otal events	60		70				
5.2.3 Funding source and/o				-			
Chowdhury 2016	5	60	7	59	3.6%	0.70 [0.24, 2.09]	
Demirel 2013	5	135	5	136	2.5%	1.01 [0.30, 3.40]	
ernández-Carrocera 2014	1	75	7	75	3.6%	0.14 [0.02, 1.13]	-
lariharan 2016	4	93 24	5	103	2.4%	0.89 [0.25, 3.20]	
Hernandez-Enriquez 2016	2			20	0.3%		
	•		0			4.20 [0.21, 82.72]	
i 2019	0	16	1	14	0.8%	0.29 [0.01, 6.69]	<u> </u>
Oncel 2014	15	16 200	1 20	14 200	0.8% 10.2%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42]	
Oncel 2014 Lehman 2018	15 4	16 200 73	1 20 6	14 200 73	0.8% 10.2% 3.1%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26]	
Oncel 2014 Rehman 2018 amanta 2009	15 4 4	16 200 73 91	1 20 6 14	14 200 73 95	0.8% 10.2% 3.1% 7.0%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87]	
Oncel 2014 Sehman 2018 amanta 2009 ari 2011	15 4 4 3	16 200 73 91 110	1 20 6 14 3	14 200 73 95 111	0.8% 10.2% 3.1% 7.0% 1.5%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89]	
Oncel 2014 Sehman 2018 amanta 2009 ari 2011 ingh 2017	15 4 4	16 200 73 91 110 37	1 20 6 14	14 200 73 95 111 35	0.8% 10.2% 3.1% 7.0% 1.5% 1.6%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89] 0.95 [0.20, 4.38]	
Oncel 2014 Sehman 2018 amanta 2009 ari 2011	15 4 4 3	16 200 73 91 110	1 20 6 14 3	14 200 73 95 111	0.8% 10.2% 3.1% 7.0% 1.5%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89]	•
Oncel 2014 Lehman 2018 amanta 2009 ari 2011 ingh 2017 Lubtotal (95% CI)	15 4 4 3 3 46 df = 10 (P	16 200 73 91 110 37 914	1 20 6 14 3 3	14 200 73 95 111 35 921	0.8% 10.2% 3.1% 7.0% 1.5% 1.6%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89] 0.95 [0.20, 4.38]	•
Oncel 2014 Lehman 2018 amanta 2009 ari 2011 Lingh 2017 Lubtotal (95% CI) Lotal events Leterogeneity: Chi ² = 7.28, i	15 4 4 3 3 46 df = 10 (P .33 (P = 0	16 200 73 91 110 37 914 = 0.70	1 20 6 14 3 3 71); I ² = 09	14 200 73 95 111 35 921	0.8% 10.2% 3.1% 7.0% 1.5% 1.6% 36.7%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89] 0.95 [0.20, 4.38]	•
Oncel 2014 John 2018 John 2018 John 2019 John 2017	15 4 4 3 3 46 df = 10 (P .33 (P = 0	16 200 73 91 110 37 914 = 0.70	1 20 6 14 3 3 71); I ² = 09	14 200 73 95 111 35 921	0.8% 10.2% 3.1% 7.0% 1.5% 1.6% 36.7%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89] 0.95 [0.20, 4.38]	•
oncel 2014 John 2018 John 2018 John 2019 John 2017 John	15 4 4 3 3 46 df = 10 (P .33 (P = 0	16 200 73 91 110 37 914 = 0.70	20 6 14 3 3 71 71 st report	14 200 73 95 111 35 921	0.8% 10.2% 3.1% 7.0% 1.5% 1.6% 36.7%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89] 0.95 [0.20, 4.38] 0.65 [0.46, 0.93]	•
oncel 2014 lehman 2018 amanta 2009 ari 2011 lingh 2017 lubtotal (95% CI) lotal events leterogeneity: Chi ² = 7.28, leter for overall effect: Z = 2. lotal chandrashekar 2018	15 4 4 3 3 3 46 df = 10 (P .33 (P = 0	16 200 73 91 110 37 914 = 0.70 .02)	1 20 6 14 3 3 3 71 71 $1^2 = 0$ 5 st report 4	14 200 73 95 111 35 921 %	0.8% 10.2% 3.1% 7.0% 1.5% 1.6% 36.7%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89] 0.95 [0.20, 4.38] 0.65 [0.46, 0.93]	•
chcel 2014 lehman 2018 amanta 2009 ari 2011 ingh 2017 ubtotal (95% CI) lotal events leterogeneity: Chi² = 7.28, if est for overall effect: Z = 2. 6.2.4 Funding source and chandrashekar 2018 loy 2014	15 4 4 3 3 46 df = 10 (P 33 (P = 0)	16 200 73 91 110 37 914 = 0.70 .02) interes	1 20 6 14 3 3 71 $ $	14 200 73 95 111 35 921 %	0.8% 10.2% 3.1% 7.0% 1.5% 36.7%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89] 0.95 [0.20, 4.38] 0.65 [0.46, 0.93] 0.25 [0.03, 2.18] 0.88 [0.34, 2.25]	•
Oncel 2014 Lehman 2018 Lamanta 2009 Lari 2011 Lingh 2017 Lotal (95% CI) Lotal events Leterogeneity: Chi ² = 7.28, L	15 4 4 3 3 46 df = 10 (P 33 (P = 0)	16 200 73 91 110 37 914 2 = 0.70 .02) interes 70 56 49	1 20 6 14 3 3 71 $ $	14 200 73 95 111 35 921 %	0.8% 10.2% 3.1% 7.0% 1.5% 36.7%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89] 0.95 [0.20, 4.38] 0.65 [0.46, 0.93] 0.25 [0.03, 2.18] 0.88 [0.34, 2.25] 0.33 [0.04, 3.09]	•
Oncel 2014 Lehman 2018 Lehman 2018 Lehman 2019 Lehman 2017 Lehman 2017 Lehman 2017 Lehman 2017 Lehman 2018 Leterogeneity: Chi² = 7.28, 1 Leterogeneity: Chi²	15 4 4 3 3 3 46 df = 10 (P .33 (P = 0 onflict of 1 7 1	16 200 73 91 110 37 914 2 = 0.70 .02) interes 70 56 49 175	1 20 6 14 3 3 3 71 $I^2 = 0$ 5 st report 4 8 3 3 15	14 200 73 95 111 35 921 %	0.8% 10.2% 3.1% 7.0% 1.5% 36.7%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89] 0.95 [0.20, 4.38] 0.65 [0.46, 0.93] 0.25 [0.03, 2.18] 0.88 [0.34, 2.25] 0.33 [0.04, 3.09]	•
check 2014 cehman 2018 amanta 2009 ari 2011 ingh 2017 ubtotal (95% CI) Total events leterogeneity: Chi² = 7.28, if the constant of the constant of the constant of the check of the constant o	15 4 4 3 3 3 46 df = 10 (P .33 (P = 0 onflict of 1 7 1	16 200 73 91 110 37 914 2 = 0.70 .02) interes 70 56 49 175	1 20 6 14 3 3 3 71 $I^2 = 0$ 5 st report 4 8 3 3 15	14 200 73 95 111 35 921 % seed as 70 56 49 175	0.8% 10.2% 3.1% 7.0% 1.5% 36.7%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89] 0.95 [0.20, 4.38] 0.65 [0.46, 0.93] 0.25 [0.03, 2.18] 0.88 [0.34, 2.25] 0.33 [0.04, 3.09]	•
oncel 2014 tehman 2018 tehman 2018 tamanta 2009 ari 2011 ingh 2017 ubtotal (95% CI) otal events deterogeneity: Chi² = 7.28, test for overall effect: Z = 2. 6.2.4 Funding source and control of the con	15 4 4 3 3 3 46 df = 10 (P .33 (P = 0 onflict of 1 7 1	16 200 73 91 110 37 914 = 0.70 .02) interes 70 56 49 175 = 0.47);	1 20 6 14 3 3 3 71 $I^2 = 0$ 5 st report 4 8 3 3 15	14 200 73 95 111 35 921 % seed as 70 56 49 175	0.8% 10.2% 3.1% 7.0% 1.5% 1.6% 36.7%	0.29 [0.01, 6.69] 0.75 [0.40, 1.42] 0.67 [0.20, 2.26] 0.30 [0.10, 0.87] 1.01 [0.21, 4.89] 0.95 [0.20, 4.38] 0.65 [0.46, 0.93] 0.25 [0.03, 2.18] 0.88 [0.34, 2.25] 0.33 [0.04, 3.09] 0.60 [0.27, 1.32]	•

${\it Prevention \ and \ Treatment \ of \ Neonatal \ Infections \ in \ LMICs}$

Outcome: *Invasive infection*

Study or Subgroup	Probio:		Cont		Weight	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M–H, Fixed, 95% Cl
6.3.1 Funded by public sec		1 Otal	LVCIICS	i otal	Teignt	11, 11xeu, 33/6 Cl	11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
Braga 2011	40	119	42	112	9.4%	0.90 [0.63, 1.27]	
Matin 2022	0	26	3	26	0.8%	0.14 [0.01, 2.63]	-
Shadkam 2015	0	30	0	30	0.070	Not estimable	
Van Niekerk 2014	15	91	10	93	2.1%	1.53 [0.73, 3.23]	
Wu 2020	3	250	4	250	0.9%	0.75 [0.17, 3.32]	
Subtotal (95% CI)	•	516		511	13.1%	0.95 [0.70, 1.29]	*
Total events	58		59				
Heterogeneity: $Chi^2 = 3.41$, Test for overall effect: $Z = 0$.); $I^2 = 12$	%			
6.3.2 Funded by industries							
Dilli 2015	8	100	13	100	2.8%	0.62 [0.27, 1.42]	
Duta 2015	10	114	6	35	2.0%	0.51 [0.20, 1.31]	
Kaban 2019	1	47	3	47	0.7%	0.33 [0.04, 3.09]	
Saengtawesin 2014	2	31	1	20	0.3%	1.29 [0.13, 13.31]	
Serce 2013	19	104	25	104	5.4%	0.76 [0.45, 1.29]	
Sinha 2015	84	668	107	672	23.1%	0.79 [0.61, 1.03]	
Tewari 2015	8	123	11	121	2.4%	0.72 [0.30, 1.72]	•
Xu 2016	4	65	6	60	1.4%	0.62 [0.18, 2.08]	
Subtotal (95% CI) Total events	136	1252	172	1159	38.0%	0.74 [0.60, 0.92]	◆
Heterogeneity: $Chi^2 = 1.82$, Test for overall effect: $Z = 2$.	.78 ($P = 0$	005)					
6.3.3 Funding source and/o				•			
Demirel 2013	20	135	21	136	4.5%	0.96 [0.55, 1.69]	
Fernández-Carrocera 2014	42	75	44	75	9.5%	0.95 [0.72, 1.26]	T
Hariharan 2016	9	93	16	103	3.3%	0.62 [0.29, 1.34]	<u> </u>
Hernandez-Enriquez 2016 Oncel 2014	6 13	24 200	1 25	20 200	0.2% 5.4%	5.00 [0.66, 38.15]	
Samanta 2009	13	91	25 28	95	5.4%	0.52 [0.27, 0.99] 0.48 [0.27, 0.88]	
Sari 2011	29	110	26	111	5.6%	1.13 [0.71, 1.78]	
Subtotal (95% CI)	23	728	20	740	34.6%	0.83 [0.68, 1.01]	•
Total events	132		161				Ť
Heterogeneity: $Chi^2 = 11.68$		= 0.0		9%			
Test for overall effect: $Z = 1$.87 ($P = 0$	06)					
6.3.4 Funding source and c			•				
Chandrashekar 2018	15	70	13	70	2.8%	1.15 [0.59, 2.24]	
Cui 2019	2	45	4	48	0.8%	0.53 [0.10, 2.77]	-
Roy 2014	31	56	42	56	9.1%	0.74 [0.56, 0.98]	•
Shashidhar 2017 Subtotal (95% CI)	6	49 220	7	49 223	1.5% 14.3%	0.86 [0.31, 2.37] 0.82 [0.63, 1.07]	•
Total events Heterogeneity: Chi² = 1.83, Test for overall effect: Z = 1.			66); $I^2 = 0\%$	i			
Total (95% CI)		2716		2633	100.0%	0.81 [0.72, 0.91]	•
Total events	380		458				
Heterogeneity: Chi ² = 20.67 Test for overall effect: Z = 3.	.49 (P = 0.1)	0005)			$I_{1}^{2} = 0\%$		0.01 0.1 1 10 Favours probiotics Favours control

Comparison: Probiotics versus control in preterm newborns by risk of bias

Outcome: Necrotizing enterocolitis

Probio	tics	Contr	വ		Risk Ratio	Risk Ratio
				Weight		M-H, Fixed, 95% CI
2	100	18	100	7.6%	0.11 [0.03, 0.47]	
-		-		4 2%		
				0.070		
				1 00/		
_	968		974	20.7%	0.44 [0.27, 0.72]	•
); I ² = 469	%			
0	119	4	112	1.9%	0.10 [0.01, 1.92]	
1	45	5	48	2.0%	0.21 [0.03, 1.76]	· ·
2	69	1	67	0.4%	1.94 [0.18, 20.92]	
6	114	0	35			-
6	75	12	75			
		-				
-						
2		12				
	1213	100	1131	43.2/0	0.30 [0.23, 0.32]	~
			30%			
		_		. =0/	0.4.4.50.04.0.703	
						•
						•
						•
-						
-			47	1.5%	0.14 [0.01, 2.69]	•
2	150	9	150	3.8%	0.22 [0.05, 1.01]	-
2	73	8	73	3.4%	0.25 [0.05, 1.14]	
3	80	5	70	2.2%	0.53 [0.13, 2.12]	
1	31	1	29	0.4%	0.94 [0.06, 14.27]	-
5	91	15	95	6.2%	0.35 [0.13, 0.92]	
6	37	10	35	4.3%	0.57 [0.23, 1.40]	
1	30	1	30	0.4%	1.00 [0.07, 15.26]	
	1016		1005	34.1%	0.40 [0.27, 0.59]	◆
			%			
	3199		3110	100.0%	0.39 [0.31, 0.49]	◆
93		234			_	·
	D – Ω		Ω%			
ar = 300	$_{i}r = v$.	33), I =	J/0			0.01 0.1 1 10
	2 0 8 8 9 2 0 0 0 0 1 1 2 2 6 6 6 7 7 6 6 7 7 2 2 2 0 0 2 2 3 3 1 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 100 0 26 8 200 9 372 2 56 0 123 0 91 968 21 If = 4 (P = 0.12) 26 (P = 0.001) 0 119 1 45 2 69 6 114 6 75 7 150 6 110 7 104 2 30 2 49 0 100 2 250 1215 41 df = 11 (P = 0. 59 (P < 0.00001) 0 70 1 60 6 135 3 93 1 24 0 47 2 150 2 73 3 80 1 24 0 47 2 150 2 73 3 80 1 31 5 91 6 37 1 30 1016 31 If = 13 (P = 0.7' 62 (P < 0.00001)	Events Total Events	Total Events Total	Events Total Events Total Weight	Events Total Events Total Weight M-H, Fixed, 95% CI 2 100 18 100 7.6% 0.11 [0.03, 0.47] 0 26 0 26 Not estimable 8 200 10 200 4.2% 0.80 [0.32, 1.99] 9 372 15 378 6.2% 0.61 [0.27, 1.38] 0 123 0 121 Not estimable 0 91 4 93 1.9% 0.11 [0.01, 2.08] 968 974 20.7% 0.44 [0.27, 0.72] 21 4 93 1.9% 0.11 [0.01, 2.08] 4ff = 4 (P = 0.12); I² = 46% 20 0.21 [0.03, 1.76] 0.26 (P = 0.001) 21 4 93 1.9% 0.10 [0.01, 1.92] 1 45 5 48 2.0% 0.21 [0.03, 1.76] 2 6 (P = 0.001) 1 10 0.33 [0.01, 2.0] 0.0 6 1 14 0 35 0.33 [0.01, 2.0] 0.0 0.01 [0.02, 1.26]

Prevention and Treatment of Neonatal Infections in LMICs Outcome: All-cause neonatal mortality

6. 1. 6.1	Probio		Conti			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
9.2.1 Low	_						
Dilli 2015	3	100	12	100	6.1%	0.25 [0.07, 0.86]	
Matin 2022	0	26	0	26	40.00	Not estimable	
Oncel 2014	15	200	20	200	10.2%	0.75 [0.40, 1.42]	
Rojas 2012	22	372	28	378	14.2%	0.80 [0.47, 1.37]	
Roy 2014	7	56	8	56	4.1%	0.88 [0.34, 2.25]	
Sinha 2015	1	668	2	672	1.0%	0.50 [0.05, 5.53]	-
Tewari 2015	12	123	14	121	7.2%	0.84 [0.41, 1.75]	
Van Niekerk 2014 Subtotal (95% CI)	5	91 1636	6	93 1646	3.0% 46.0%	0.85 [0.27, 2.69] 0.73 [0.53, 0.98]	
Total events	65	1030	90	10.10	10.070	0.75 [0.55, 0.50]	~
Heterogeneity: Chi ² = 3.47, (0.75					
Test for overall effect: $Z = 2$.), I = U%				
	•	,					
9.2.2 Unclear Braga 2011	26	110	27	112	1/1 20/	0.01 [0.56 1.45]	
•		119	27	112	14.2%	0.91 [0.56, 1.45]	
Dashti 2014	8	69	4	67	2.1%	1.94 [0.61, 6.15]	
Duta 2015	8	114 75	2 7	35 75	1.6%	1.23 [0.27, 5.52]	
Fernández-Carrocera 2014	1				3.6%	0.14 [0.02, 1.13]	<u> </u>
Sari 2011	3	110	3	111	1.5%	1.01 [0.21, 4.89]	
Serce 2013	5	104	4	104	2.0%	1.25 [0.35, 4.52]	
Shadkam 2015	1	30	2	30	1.0%	0.50 [0.05, 5.22]	
Shashidhar 2017	1	49	3	49	1.5%	0.33 [0.04, 3.09]	<u></u>
Sowden 2022	0	100	1	100	0.8%	0.33 [0.01, 8.09]	•
Wu 2020 Subtotal (95% CI)	0	250 1020	0	250 933	28.4%	Not estimable 0.87 [0.61, 1.25]	•
Total events Heterogeneity: Chi² = 6.62, (Test for overall effect: Z = 0.			53); $I^2 = 0\%$				
9.2.3 High							
		70		70	2.00/	0.25 [0.02.2.10]	
Chandrashekar 2018	1	70	4	70	2.0%	0.25 [0.03, 2.18]	<u> </u>
Chowdhury 2016	5	60	7	59	3.6%	0.70 [0.24, 2.09]	
Demirel 2013	5	135	5	136	2.5%	1.01 [0.30, 3.40]	
Hariharan 2016	4	93	5	103	2.4%	0.89 [0.25, 3.20]	
Hernandez-Enriquez 2016	2	24	0	20	0.3%	4.20 [0.21, 82.72]	
Kaban 2019	1	47	4	47	2.0%	0.25 [0.03, 2.15]	<u> </u>
_i 2019	0	16	1	14	0.8%	0.29 [0.01, 6.69]	•
Rehman 2018	4	73	6	73	3.1%	0.67 [0.20, 2.26]	
Saengtawesin 2014	0	31	0	29		Not estimable	
Samanta 2009	4	91	14	95	7.0%	0.30 [0.10, 0.87]	-
Singh 2017	3	37	3	35	1.6%	0.95 [0.20, 4.38]	
Zahed Pasha 2016 Subtotal (95% CI)	2	30 707	0	30 711	0.3% 25.7%	5.00 [0.25, 99.95] 0.65 [0.42, 0.99]	•
Total events	31		49			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-
Heterogeneity: Chi² = 8.04, o Fest for overall effect: Z = 2.			3); $I^2 = 0$	%			
Fotal (95% CI)		3363		3290	100.0%	0.75 [0.61, 0.92]	•
Total events	149		192	55		[3.02, 0.3 2]	•
Heterogeneity: Chi ² = 19.62,		D _ 0		Λ%			0.01 0.1 1 10
Test for overall effect: Z = 2. Test for subgroup difference	.80 (P = 0)	.005)			$ \cdot ^2 = 0\%$		0.01 0.1 1 10 Favours probiotics Favours control

Outcome: *Invasive infection*

Study or Subgroup	Probio Events		Contr		Weight	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M-H, Fixed, 95% CI
9.3.1 Low	LVCIIIS	iotai	Lvents	i otal	weight	11, 11xeu, 33/6 Cl	Wi-11, 11Xeu, 93% Ci
	0	100	10	100	2 00/	0.62 [0.27 1.42]	
Dilli 2015 Matin 2022	8	100 26	13 3	100 26	2.8%	0.62 [0.27, 1.42]	
					0.8%	0.14 [0.01, 2.63]	`
Oncel 2014	13 31	200	25	200	5.4%	0.52 [0.27, 0.99]	<u></u>
Roy 2014		56	42	56	9.1%	0.74 [0.56, 0.98]	<u>- 1</u>
Sinha 2015	84	668	107	672	23.1%	0.79 [0.61, 1.03]	
Tewari 2015	8	123	11	121	2.4%	0.72 [0.30, 1.72]	<u></u>
Van Niekerk 2014 Subtotal (95% CI)	15	91 1264	10	93 1268	2.1% 45.8%	1.53 [0.73, 3.23] 0.76 [0.63, 0.91]	•
Total events	159		211		,	[,,	•
Heterogeneity: $Chi^2 = 6.39$,	df = 6 (P :	= 0.38)	$I^2 = 6\%$				
Test for overall effect: $Z = 3$.			,				
9.3.2 Unclear							
Braga 2011	40	119	42	112	9.4%	0.90 [0.63, 1.27]	+
Cui 2019	2	45	4	48	0.8%	0.53 [0.10, 2.77]	•
Duta 2015	10	114	6	35	2.0%	0.51 [0.20, 1.31]	
Fernández-Carrocera 2014	42	75	44	75	9.5%	0.95 [0.72, 1.26]	-
Sari 2011	29	110	26	111	5.6%	1.13 [0.71, 1.78]	
Serce 2013	19	104	25	104	5.4%	0.76 [0.45, 1.29]	
Shadkam 2015	0	30	0	30		Not estimable	
Shashidhar 2017	6	49	7	49	1.5%	0.86 [0.31, 2.37]	
Wu 2020 Subtotal (95% CI)	3	250 896	4	250 814	0.9% 35.2%	0.75 [0.17, 3.32] 0.89 [0.74, 1.07]	
Total events	151		158				•
Heterogeneity: $Chi^2 = 3.35$, (= 0.85)					
Test for overall effect: $Z = 1$.			, 1 0/0				
9.3.3 High							
Chandrashekar 2018	15	70	13	70	2.8%	1.15 [0.59, 2.24]	- - -
Demirel 2013	20	135	21	136	4.5%	0.96 [0.55, 1.69]	
Hariharan 2016	9	93	16	103	3.3%	0.62 [0.29, 1.34]	 -
Hernandez-Enriquez 2016	6	24	1	20	0.2%	5.00 [0.66, 38.15]	+
Kaban 2019	1	47	3	47	0.7%	0.33 [0.04, 3.09]	· · · · · · · · · · · · · · · · · · ·
Saengtawesin 2014	2	31	1	20	0.3%	1.29 [0.13, 13.31]	
Samanta 2009	13	91	28	95	5.9%	0.48 [0.27, 0.88]	
Xu 2016	4	65	6	60	1.4%	0.62 [0.18, 2.08]	
Subtotal (95% CI)		556		551	19.1%	0.79 [0.59, 1.06]	◆
Total events	70		89				
Heterogeneity: $Chi^2 = 8.77$, (Test for overall effect: $Z = 1$.	•		$I^2 = 20$	%			
Total (95% CI)		2716		2633	100.0%	0.81 [0.72, 0.91]	•
Total events	380		458				
Heterogeneity: $Chi^2 = 20.67$,	df = 22	(P = 0.9)		0%			0.01 0.1 1 10
Test for overall effect: $Z = 3$.							
Test for subgroup difference			lf = 2 (P	= 0.44)	$1^2 = 0\%$		Favours probiotics Favours control

Comparison: Probiotics versus control in extremely preterm or ELBW newborns by probiotic type

Outcome: Necrotizing enterocolitis

	Probio	tics	Conti	rol		Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI		
1.1.1 Lactobacillus s	pp.								
Oncel 2014 Subtotal (95% CI)	5	93 93	9	103 103	89.5% 89.5%	0.62 [0.21, 1.77] 0.62 [0.21, 1.77]			
Total events	5		9						
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.90	P = 0).37)						
1.1.2 Bacillus clausii									
Tewari 2015 Subtotal (95% CI)	0	61 61	0	59 59		Not estimable Not estimable			
·	0	61	0	39		Not estimable			
Total events	0 Disable		0						
Heterogeneity: Not ap Test for overall effect:	•	licablo							
rest for overall effect.	. Νοι αρρ	псарте							
1.1.3 Bifidobacteriun	n spp. pl	us Lact	obacillu	s spp.					
Roy 2014	1	11	1	11	10.5%	1.00 [0.07, 14.05]			
Subtotal (95% CI)		11		11	10.5%	1.00 [0.07, 14.05]			
Total events	1		1						
Heterogeneity: Not ap	•								
Test for overall effect:	Z = 0.00	P = 1	L.00)						
Total (95% CI)		165		173	100.0%	0.66 [0.25, 1.74]			
Total events	6		10						
Heterogeneity: $Chi^2 = 0.11$, $df = 1$ (P = 0.74); $I^2 = 0\%$									
Test for overall effect:						_	Favours probiotics Favours control		
Test for subgroup differences: $Chi^2 = 0.11$, $df = 1$ (P = 0.74), $I^2 = 0\%$									

Prevention and Treatment of Neonatal Infections in LMICs Outcome: All-cause mortality

	Probio	tics	Conti	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1.2.1 Lactobacillus s	pp.						
Oncel 2014 Subtotal (95% CI)	11	93 93	17	103 103	63.8% 63.8%		
Total events	11		17				
Heterogeneity: Not ap	plicable						
Test for overall effect	Z = 0.93	3 (P = 0)).35)				
1.2.2 Bacillus clausii							
Tewari 2015 Subtotal (95% CI)	8	61 61	9	59 59	36.2% 36.2%	- , -	
Total events	8		9				
Heterogeneity: Not ap	plicable						
Test for overall effect	Z = 0.34	4 (P = 0)).74)				
Total (95% CI)		154		162	100.0%	0.77 [0.44, 1.33]	•
Total events	19		26				
Heterogeneity: Chi ² =	0.10, df	= 1 (P	= 0.75);	$I^2 = 0\%$	ó		0.01 0.1 1 10 100
Test for overall effect:	Z = 0.94	4 (P = 0)).35)				Favours probiotics Favours control
Test for subgroup dif	ferences:	Chi ² =	0.10, df	= 1 (P	= 0.75), I	$1^2 = 0\%$. a. cars producted Tarours control

Outcome: *Invasive infection*

•	Probio	tics	Conti	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1.3.1 Bacillus clausii							
Tewari 2015 Subtotal (95% CI)	14	61 61	17	59 59	100.0% 100.0%	0.80 [0.43, 1.47] 0.80 [0.43, 1.47]	
Total events	14		17				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.73	B (P = 0)).46)				
Total (95% CI)		61		59	100.0%	0.80 [0.43, 1.47]	•
Total events	14		17				
Heterogeneity: Not ap	plicable						0.01 0.1 1 10 100
Test for overall effect:	Z = 0.73	3 (P = 0)).46)				0.01 0.1 1 10 100 Favours probiotics Favours control
Test for subgroup diff	ferences:	Not ap	plicable				ravours problemes ravours control

Comparison: Probiotics versus control in extremely preterm or ELBW newborns by feeding type

Outcome: *Necrotizing enterocolitis*

	Probio	tics	Conti	rol		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
7.1.1 Human milk on	ly							
Roy 2014	1	11	1	11	10.5%	1.00 [0.07, 14.05]		
Tewari 2015	0	61	0	59		Not estimable	2	
Subtotal (95% CI)		72		70	10.5%	1.00 [0.07, 14.05]		
Total events	1		1					
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z = 0.00	P = 2	1.00)					
7.1.2 Mixed- human	milk or f	formul	a or botl	h				
Oncel 2014	5	93	9	103	89.5%	0.62 [0.21, 1.77]	ı 	
Subtotal (95% CI)		93		103	89.5%	0.62 [0.21, 1.77]		
Total events	5		9					
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z = 0.90	P = 0).37)					
Total (95% CI)		165		173	100.0%	0.66 [0.25, 1.74]		
Total events	6		10					
Heterogeneity: Chi ² =	0.11, df	= 1 (P	= 0.74);	$I^2 = 0\%$	I			\exists
Test for overall effect:							0.01 0.1 1 10 10 Favours probiotics Favours control	IU
Test for subgroup diff	_						ravouis Diodioues Favouis Control	

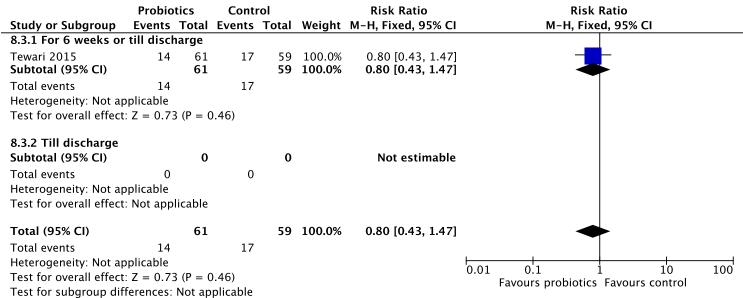
Outcome: All-cause neonatal mortality

	Probiot	tics	Conti	ol		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95%	CI	
7.2.1 Human milk o	nly									
Tewari 2015	8	61	9	59	36.2%	0.86 [0.36, 2.08]				
Subtotal (95% CI)		61		59	36.2%	0.86 [0.36, 2.08]				
Total events	8		9							
Heterogeneity: Not ap	pplicable									
Test for overall effect	t: $Z = 0.34$	(P = 0)).74)							
7.2.2 Mixed- human	ı milk or f	ormul	a or botl	1						
Oncel 2014	11	93	17	103	63.8%	0.72 [0.35, 1.45]				
Subtotal (95% CI)		93		103	63.8%	0.72 [0.35, 1.45]				
Total events	11		17							
Heterogeneity: Not ap	pplicable									
Test for overall effect	t: $Z = 0.93$	(P = 0)).35)							
Total (95% CI)		154		162	100.0%	0.77 [0.44, 1.33]		•		
Total events	19		26							
Heterogeneity: Chi ² =	= 0.10, df	= 1 (P)	= 0.75);	$I^2 = 0\%$	ó		0.01	0.1	10	100
Test for overall effect	t: Z = 0.94	(P = 0	0.35)					ours probiotics Favou		100
Test for subgroup dif	fferences:	Chi ² =	0.10, df	= 1 (P	= 0.75),	$1^2 = 0\%$	iavo	ais problotics ravou	13 CONTROL	

Outcome: *Invasive infection*

	Probio	tics	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
7.3.1 Human milk o	nly						
Tewari 2015 Subtotal (95% CI)	14	61 61	17	59 59	100.0% 100.0%	,	
Total events	14		17				
Heterogeneity: Not a	pplicable						
Test for overall effect	t: $Z = 0.7$	3 (P = 0)).46)				
Total (95% CI)		61		59	100.0%	0.80 [0.43, 1.47]	
Total events	14		17				
Heterogeneity: Not a	pplicable						
Test for overall effect: $Z = 0.73$ (P = 0.46)							0.01 0.1 1 10 100 Favours probiotics Favours control
Test for subgroup dif	fferences:	Not ap	plicable				1 avours probletics Tavours control

Comparison: Probiotics versus control in extremely preterm or ELBW newborns by duration of intervention


Outcome: Necrotizing enterocolitis

outcome: Weer ouzmig			<u> </u>			D: 1 D .:			D' D .:		
	Probio		Conti			Risk Ratio			Risk Ratio		
			Events	Total	Weight	M-H, Fixed, 95% CI		M-	H, Fixed, 95	% CI	
8.1.1 For 6 weeks or	r till discl	narge									
Roy 2014	1	11	1	11	10.5%	1.00 [0.07, 14.05]		-	+	-	
Tewari 2015	0	61	0	59		Not estimable					
Subtotal (95% CI)		72		70	10.5%	1.00 [0.07, 14.05]					
Total events	1		1								
Heterogeneity: Not a	pplicable										
Test for overall effect	t: $Z = 0.00$	O(P = 1)	1.00)								
8.1.2 Till discharge											
Oncel 2014	5	93	9	103	89.5%	0.62 [0.21, 1.77]		_	_		
Subtotal (95% CI)		93		103	89.5%	0.62 [0.21, 1.77]		•			
Total events	5		9								
Heterogeneity: Not a	pplicable										
Test for overall effect	t: $Z = 0.90$	O(P = 0)	0.37)								
Total (95% CI)		165		173	100.0%	0.66 [0.25, 1.74]		-			
Total events	6		10								
Heterogeneity: Chi ² =	= 0.11, df	= 1 (P	= 0.74);	$I^2 = 0\%$	ó		0.01			10	100
Test for overall effect	5 (P = 0	0.40)		0.01	0.1	l Niotics Favo	10	100			
Test for subgroup dif	fferences:	Chi ² =	0.11. df	= 1 (P	= 0.74).	$I^2 = 0\%$	Г	avours proi	oiotics Favo	urs control	

Outcome: All-cause neonatal mortality

	Probioti	ics	Contr	ol		Risk Ratio			Risk Ratio		
Study or Subgroup	Events -	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-F	I, Fixed, 95%	CI	
8.2.1 For 6 weeks or	till discha	arge									
Tewari 2015 Subtotal (95% CI)	8	61 61	9	59 59	36.2% 36.2%	. , .					
Total events	8		9								
Heterogeneity: Not ap	plicable										
Test for overall effect:	Z = 0.34	(P = 0)).74)								
8.2.2 Till discharge											
Oncel 2014 Subtotal (95% CI)	11	93 93	17	103 103	63.8% 63.8%	. , .					
Total events	11		17								
Heterogeneity: Not ap	plicable										
Test for overall effect:	Z = 0.93	(P = 0)).35)								
Total (95% CI)		154		162	100.0%	0.77 [0.44, 1.33]					
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subgroup diff	Z = 0.94	(P = 0)).35)			$1^2 = 0\%$	0.01 Fa	0.1 vours prob	1 iotics Favou	10 rs control	100

Outcome: Invasive infection

Comparison: Combined probiotics or synbiotics versus control (i.e., probiotics with or without prebiotics versus control) in preterm/LBW and extremely preterm/ELBW newborns

Outcome: All-cause neonatal mortality

	Probiotics or syn	biotics	Conti	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% CI
4.2.1 Probiotics							
Braga 2011	26	119	27	112	11.6%	0.91 [0.56, 1.45]	
Chandrashekar 2018	1	70	4	70	1.7%	0.25 [0.03, 2.18]	
Chowdhury 2016	5	60	7	59	2.9%	0.70 [0.24, 2.09]	
Dashti 2014	8	69	4	67	1.7%	1.94 [0.61, 6.15]	
Demirel 2013	5	135	5	136	2.1%	1.01 [0.30, 3.40]	
Dilli 2015	3	100	12	100	5.0%	0.25 [0.07, 0.86]	
Duta 2015	8	114	2	35	1.3%	1.23 [0.27, 5.52]	
Fernández-Carrocera 2014	1	75	7	75	2.9%	0.14 [0.02, 1.13]	· ·
Hariharan 2016	4	93	5	103	2.0%	0.89 [0.25, 3.20]	
Hernandez-Enriquez 2016	2	24	0	20	0.2%	4.20 [0.21, 82.72]	-
Kaban 2019	1	47	4	47	1.7%	0.25 [0.03, 2.15]	
Matin 2022	0	26	0	26	, 0	Not estimable	
Oncel 2014	15	200	20	200	8.4%	0.75 [0.40, 1.42]	
Rehman 2018	4	73	6	73	2.5%	0.67 [0.20, 2.26]	
Rojas 2012	22	372	28	378	11.6%	0.80 [0.47, 1.37]	
Roy 2014	7	56	8	56	3.3%	0.88 [0.34, 2.25]	
Saengtawesin 2014	0	31	0	29	3.3 /0	Not estimable	
Saerigiawesiii 2014 Samanta 2009		91	14	95	E 70/		
	4		3		5.7% 1.2%	0.30 [0.10, 0.87]	
Sari 2011	3	110		111		1.01 [0.21, 4.89]	
Serce 2013	5	104	4	104	1.7%	1.25 [0.35, 4.52]	
Shadkam 2015	1	30	2	30	0.8%	0.50 [0.05, 5.22]	
Shashidhar 2017	1	49	3	49	1.3%	0.33 [0.04, 3.09]	<u> </u>
Singh 2017	3	37	3	35	1.3%	0.95 [0.20, 4.38]	
Sinha 2015	1	668	2	672	0.8%	0.50 [0.05, 5.53]	•
Sowden 2022	0	100	1	100	0.6%	0.33 [0.01, 8.09]	
Tewari 2015	12	123	14	121	5.9%	0.84 [0.41, 1.75]	
√an Niekerk 2014	5	91	6	93	2.5%	0.85 [0.27, 2.69]	•
Wu 2020	0	250	0	250		Not estimable	
Zahed Pasha 2016	2	30	0	30	0.2%	5.00 [0.25, 99.95]	
Subtotal (95% CI)		3347		3276	81.0%	0.75 [0.61, 0.92]	•
Total events	149		191				
Heterogeneity: Chi² = 19.25, Fest for overall effect: Z = 2.7		= 0%					
I.2.2 Synbiotics							
Dilli D 2015	3	100	12	100	5.0%	0.25 [0.07, 0.86]	
El 2017	5	52	4	46	1.8%	1.11 [0.32, 3.87]	
Guney-Varal 2017	7	76	12	43	6.4%	0.33 [0.14, 0.78]	
.i 2019	0	16	1	14	0.7%	0.29 [0.01, 6.69]	•
Vandhini 2016	10	108	9	110	3.7%	1.13 [0.48, 2.68]	
Sreenivasa 2015	0	100	3	100	1.5%	0.14 [0.01, 2.73]	· ·
Subtotal (95% CI)	-	452		413	19.0%	0.52 [0.33, 0.83]	•
Total events	25		41				·
Heterogeneity: Chi² = 7.83, d Fest for overall effect: Z = 2.7	f = 5 (P = 0.17); I ² =	36%					
Total (95% CI)		3799		3689	100.0%	0.71 [0.59, 0.85]	◆
Total events	174		232			- /	' [
Heterogeneity: Chi ² = 28.78, Test for overall effect: Z = 3.6 Test for subgroup differences	df = 31 (P = 0.58); I ² 64 (P = 0.0003)			3%			0.01 0.1 1 10 Favours pro or synbiotics Favours control

4.1.5. Synbiotics Supplementation

Comparison: Synbiotics versus control in preterm or LBW infants by the duration of intervention

Outcome: Necrotizing enterocolitis

_	Synbio	tics	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1.1.1 Till discharge							
Guney-Varal 2017 Subtotal (95% CI)	0	70 70	4	40 40	8.7% 8.7%	0.06 [0.00, 1.16] 0.06 [0.00, 1.16]	
Total events	0		4				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 1.86	5 (P = 0)).06)				
1.1.2 For 8 weeks or	till discl	narge					
Dilli 2015	4	100	18	100	27.6%	0.22 [0.08, 0.63]	
Subtotal (95% CI)		100		100	27.6%	0.22 [0.08, 0.63]	
Total events	4		18				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 2.83	L(P=0)).005)				
1.1.3 For 7-10 days							
Amini 2017	10	60	28	60	42.9%	0.36 [0.19, 0.67]	-
El 2017	0	47	2	42	4.0%	0.18 [0.01, 3.63]	
Nandhini 2016	0	108	3		5.3%	0.15 [0.01, 2.78]	•
Subtotal (95% CI)		215		212	52.2%	0.32 [0.18, 0.59]	•
Total events	10		33				
Heterogeneity: $Chi^2 =$				$I^2 = 0\%$	ó		
Test for overall effect:	Z = 3.68	8 (P = 0)).0002)				
1.1.4 Till full enteral	feeds						
Sreenivasa 2015	0	100	7		11.5%		
Subtotal (95% CI)		100		100	11.5%	0.07 [0.00, 1.15]	
Total events	0		7				
Heterogeneity: Not ap							
Test for overall effect:	Z = 1.86	5 (P = 0)	0.06)				
Total (95% CI)		485		452	100.0%	0.24 [0.15, 0.40]	•
Total events	14		62				
Heterogeneity: Chi ² =					Ó		0.01 0.1 1 10 100
Test for overall effect:							Favours synbiotics Favours control
Test for subgroup diff	ferences:	Chi ² =	2.33, df	r = 3 (P)	= 0.51),	$I^2 = 0\%$. a. out of the out of

Prevention and Treatment of Neonatal Infections in LMICs Outcome: All-cause mortality till discharge

	Synbio	tics	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1.2.1 Till discharge							
Guney-Varal 2017	7	76	12	43	34.8%		
Subtotal (95% CI)		76		43	34.8%	0.33 [0.14, 0.78]	
Total events	. 7		12				
Heterogeneity: Not ap	•	4 (5)	. 01)				
Test for overall effect	Z = 2.54	+ (P = C)).01)				
1.2.2 For 8 weeks or	till disch	narge					
Dilli 2015	3	100	12	100	27.3%	0.25 [0.07, 0.86]	
Subtotal (95% CI)	_	100		100	27.3%		
Total events	3		12				
Heterogeneity: Not ap	plicable						
Test for overall effect	Z = 2.20	P = 0).03)				
1.2.3 For 7-10 days							
= = = = = = = = = = = = = = = = = = =	_	F-2	4	4.0	0.00/	1 11 [0 22 2 07]	
El 2017 Nandhini 2016	5 10	52	4	46 110	9.6% 20.3%	- / -	
Subtotal (95% CI)	10	108 160	9	156	20.3% 29.9%	- , -	
Total events	15	100	13	130	23.370	1.12 [0.55, 2.20]	
Heterogeneity: Chi ² =		= 1 (P		$I^2 = 0\%$)		
Test for overall effect				-			
1.2.4 Till full enteral	feeds						
Sreenivasa 2015	0	100	3	100	8.0%		
Subtotal (95% CI)	_	100	_	100	8.0%	0.14 [0.01, 2.73]	
Total events	0		3				
Heterogeneity: Not ap	•) (D (. 20)				
Test for overall effect	Z = 1.29	$\theta (P = 0)$).20)				
Total (95% CI)		436		399	100.0%	0.53 [0.33, 0.85]	•
Total events	25		40				
Heterogeneity: Chi ² =				$I^2 = 48$	%		0.01 0.1 1 10 100
Test for overall effect		,	,				Favours synbiotics Favours control
Test for subgroup diff	ferences:	Chi ² =	7.63, df	= 3 (P)	= 0.05),	$I^2 = 60.7\%$. a. care symptotics rations control

${\it Prevention \ and \ Treatment \ of \ Neonatal \ Infections \ in \ LMICs}$

Outcome: *Invasive infection*

,	Synbio	tics	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1.3.1 Till discharge							
Guney-Varal 2017 Subtotal (95% CI)	12	70 70	14	40 40	41.2% 41.2%	- , -	
Total events Heterogeneity: Not ap	12 policable		14				
Test for overall effect:	•	P = 0).04)				
1.3.2 For 8 weeks or	till disch	narge					
Dilli 2015 Subtotal (95% CI)	8	100 100	13	100 100	30.1% 30.1%		
Total events	8		13				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 1.14	1 (P = 0)).26)				
1.3.3 For 7-10 days							
El 2017	17	47	8	42	19.5%	1.90 [0.92, 3.94]	 •
Nandhini 2016	4	108	4	110	9.2%	1.02 [0.26, 3.97]	
Subtotal (95% CI)		155		152	28.7%	1.62 [0.85, 3.07]	•
Total events	21		12				
Heterogeneity: $Chi^2 =$				$I^2 = 0\%$)		
Test for overall effect:	Z = 1.48	B (P = 0)).14)				
1.3.4 Till full enteral	feeds						
Subtotal (95% CI)		0		0		Not estimable	
Total events	0		0				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Not app	licable					
Total (95% CI)		325		292	100.0%	0.85 [0.58, 1.26]	•
Total events	41		39				
Heterogeneity: Chi ² =	7.93, df	= 3 (P	= 0.05);	$I^2 = 62$	%		0.01 0.1 1 10 100
Test for overall effect:							Favours synbiotics Favours control
Test for subgroup diff	ferences:	Chi ² =	7.09, df	= 2 (P)	= 0.03),	$I^2 = 71.8\%$	Tavours symbiotics Tavours control

Comparison: Synbiotics versus control in preterm or LBW infants by funding source

Outcome: Necrotizing enterocolitis

	Synbio	tics	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.1.1 Not stated or r	eported a	as non	e				
Dilli 2015	4	100	18	100	27.6%	0.22 [0.08, 0.63]	
El 2017	0	47	2	42	4.0%	0.18 [0.01, 3.63]	•
Guney-Varal 2017	0	70	4	40	8.7%	0.06 [0.00, 1.16]	•
Nandhini 2016	0	108	3	110	5.3%		
Sreenivasa 2015	0	100	7	100	11.5%	. , .	
Subtotal (95% CI)		425		392	57.1%	0.16 [0.07, 0.36]	
Total events	4		34				
Heterogeneity: Chi ² =				$I^2 = 0\%$, i		
Test for overall effect	Z = 4.33	3 (P < 0).0001)				
3.1.2 Funded by pub	lic sector	rs or u	niversiti	es			
Amini 2017	10	60	28	60	42.9%		-
Subtotal (95% CI)		60		60	42.9%	0.36 [0.19, 0.67]	
Total events	10		28				
Heterogeneity: Not ap							
Test for overall effect	Z = 3.22	P = 0).001)				
Total (95% CI)		485		452	100.0%	0.24 [0.15, 0.40]	•
Total events	14		62				
Heterogeneity: Chi ² =	3.24, df	= 5 (P	= 0.66);	$I^2 = 0\%$)		0.01 0.1 1 10 100
Test for overall effect	Z = 5.50	P < 0	0.00001)				Favours synbiotics Favours control
Test for subgroup dif	ferences:	Chi ² =	2.38, df	= 1 (P	= 0.12),	$I^2 = 58.0\%$	Tavours symplotics Tavours control

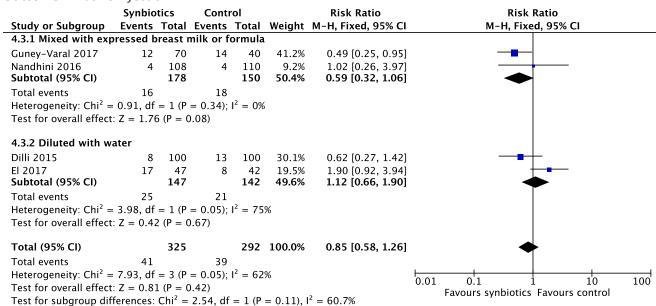
Outcome: All-cause neonatal mortality

	Synbio	tics	Conti	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.2.1 Not stated or r	eported a	ıs non	е				
Dilli 2015	3	100	12	100	27.3%	0.25 [0.07, 0.86]	
El 2017	5	52	4	46	9.6%	1.11 [0.32, 3.87]	
Guney-Varal 2017	7	76	12	43	34.8%	0.33 [0.14, 0.78]	
Nandhini 2016	10	108	9	110	20.3%	1.13 [0.48, 2.68]	
Sreenivasa 2015	0	100	3	100	8.0%	0.14 [0.01, 2.73]	-
Subtotal (95% CI)		436		399	100.0%	0.53 [0.33, 0.85]	•
Total events	25		40				
Heterogeneity: Chi ² =	7.67, df	= 4 (P)	= 0.10);	$I^2 = 48$	%		
Test for overall effect	Z = 2.66	S(P=0)	(800.0				
Total (95% CI)		436		200	100.0%	0.53 [0.33, 0.85]	
	2.5	436	40	399	100.0%	0.55 [0.55, 0.65]	
Total events	25		40				
Heterogeneity: Chi ² =				$I^2 = 48$	%		0.01 0.1 1 10 100
Test for overall effect	Z = 2.66	S(P=0)).008)				Favours synbiotics Favours control
Test for subgroup dif	ferences:	Not ap	plicable				,

Outcome: *Invasive infection*

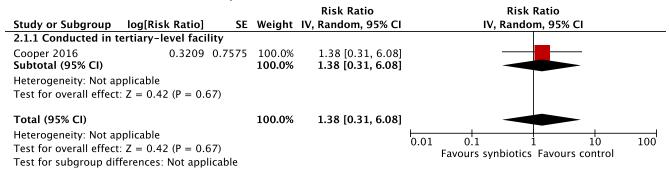
	Synbio	tics	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.3.1 Not stated or r	eported a	as non	e				
Dilli 2015	8	100	13	100	30.1%	0.62 [0.27, 1.42]	
El 2017	17	47	8	42	19.5%	1.90 [0.92, 3.94]	 •
Guney-Varal 2017	12	70	14	40	41.2%	0.49 [0.25, 0.95]	
Nandhini 2016	4	108	4	110	9.2%	1.02 [0.26, 3.97]	
Subtotal (95% CI)		325		292	100.0%	0.85 [0.58, 1.26]	•
Total events	41		39				
Heterogeneity: Chi ² =	7.93, df	= 3 (P)	= 0.05);	$I^2 = 62$	%		
Test for overall effect	Z = 0.8	1 (P = 0)).42)				
Total (95% CI)		325		292	100.0%	0.85 [0.58, 1.26]	•
Total events	41		39				
Heterogeneity: Chi ² =	7.93, df	= 3 (P)	= 0.05);	$I^2 = 62$	%		
Test for overall effect	Z = 0.8	1 (P = 0)).42)				0.01 0.1 1 10 100 Favours synbiotics Favours control
Test for subgroup dif	ferences:	Not ap	plicable				ravours symbiotics ravours control

Comparison: Synbiotics versus control in preterm or LBW infants by synbiotics' volume


Outcome: Necrotizing enterocolitis

	Synbio	tics	Conti	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
4.1.1 Mixed with exp	ressed b	reast i	nilk or f	ormula	l		
Amini 2017	10	60	28	60	42.9%	0.36 [0.19, 0.67]	-
Guney-Varal 2017	0	70	4	40	8.7%	0.06 [0.00, 1.16]	•
Nandhini 2016	0	108	3	110	5.3%	0.15 [0.01, 2.78]	-
Sreenivasa 2015	0	100	7	100	11.5%	0.07 [0.00, 1.15]	•
Subtotal (95% CI)		338		310	68.4%	0.25 [0.14, 0.46]	•
Total events	10		42				
Heterogeneity: Chi ² =	= 2.98, df	= 3 (P)	= 0.40);	$I^2 = 0\%$			
Test for overall effect	z = 4.59	(P < 0).00001)				
4.1.2 Diluted with w	ater						
Dilli 2015	4	100	18	100	27.6%	0.22 [0.08, 0.63]	
El 2017	0	47	2		4.0%		
Subtotal (95% CI)	Ů	147	_	142	31.6%		
Total events	4		20			- , -	
Heterogeneity: Chi ² =	= 0.02. df	= 1 (P	= 0.89):	$I^2 = 0\%$,)		
Test for overall effect				. •,			
Total (95% CI)		485		452	100.0%	0.24 [0.15, 0.40]	•
Total events	14		62				
Heterogeneity: Chi ² =		= 5 (P	= 0.66):	$I^2 = 0\%$,)		
Test for overall effect							0.01 0.1 1 10 100
Test for subgroup dif					= 0.78)	$I^2 = 0\%$	Favours synbiotics Favours control

Outcome: All-cause neonatal mortality


	Synbiot	ics	Conti	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
4.2.1 Mixed with exp	ressed b	reast r	nilk or f	ormula			
Guney-Varal 2017	7	76	12	43	34.8%	0.33 [0.14, 0.78]	
Nandhini 2016	10	108	9	110	20.3%	1.13 [0.48, 2.68]	
Sreenivasa 2015 Subtotal (95% CI)	0	100 284	3	100 253	8.0% 63.1%		•
Total events	17		24				
Heterogeneity: Chi ² =	4.86, df	= 2 (P	= 0.09);	$I^2 = 59$	%		
Test for overall effect:	Z = 1.99	(P = 0)).05)				
4.2.2 Diluted with wa	ater						
Dilli 2015	3	100	12	100	27.3%	0.25 [0.07, 0.86]	
El 2017	5	52	4	46	9.6%	1.11 [0.32, 3.87]	
Subtotal (95% CI)		152		146	36.9%	0.47 [0.21, 1.09]	
Total events	8		16				
Heterogeneity: Chi ² =	2.79, df	= 1 (P	= 0.10);	$I^2 = 64$	%		
Test for overall effect:	Z = 1.76	(P = 0)	0.08)				
Total (95% CI)		436		399	100.0%	0.53 [0.33, 0.85]	•
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subgroup diff	Z = 2.66	(P = 0)	.008)			$I^2 = 0\%$	0.01 0.1 1 10 100 Favours synbiotics Favours control

Outcome: *Invasive infection*

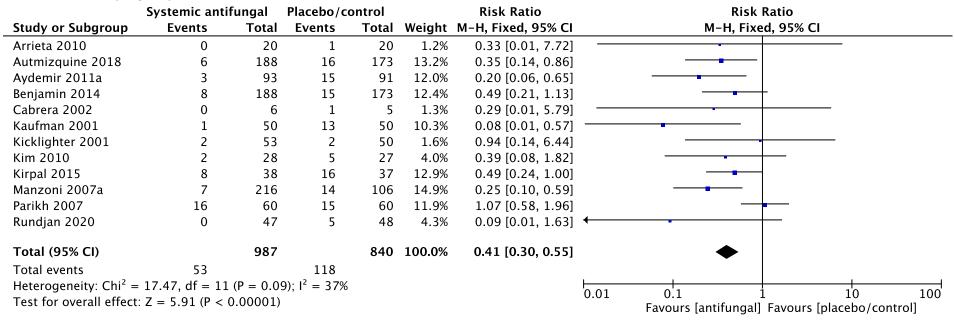
Comparison: Synbiotics versus control in term newborns by facility level

Outcome: All-cause neonatal mortality

Comparison: Synbiotics versus control in term newborns by the duration of intervention

Outcome: All-cause neonatal mortality

				Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
5.1.1 For 6 months					
Cooper 2016 Subtotal (95% CI)	0.3209	0.7575	100.0% 100.0%	1.38 [0.31, 6.08] 1.38 [0.31, 6.08]	
Heterogeneity: Not ap Test for overall effect:		67)			
Total (95% CI) Heterogeneity: Not ap Test for overall effect: Test for subgroup diff	Z = 0.42 (P = 0.6)	•	100.0%	1.38 [0.31, 6.08]	0.01 0.1 1 10 100 Favours synbiotics Favours control


Comparison: Synbiotics versus control in term newborns by funding source

Outcome: All-cause neonatal mortality

Study or Subgroup	log[Risk Ratio]	SE Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI	
6.1.1 Funded by indu	ustry				
Cooper 2016 Subtotal (95% CI)	0.3209 0.75	75 100.0% 100.0%			
Heterogeneity: Not ap Test for overall effect	•				
Total (95% CI) Heterogeneity: Not ap Test for overall effect Test for subgroup dif	•	100.0%	1.38 [0.31, 6.08]	0.01 0.1 1 10 Favours synbiotics Favours control	100

4.1.6. Prophylactic Systemic Antifungal Agents

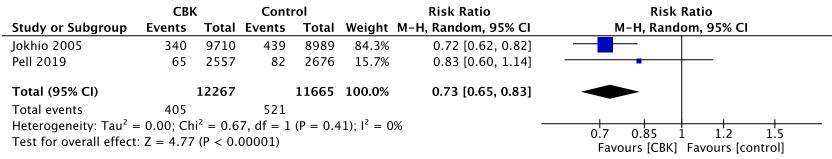
Outcome: *Invasive fungal infections (Total)*

Outcome: *Invasive fungal infections (LMICs only)*

	Systemic anti	fungal	Placebo/c	ontrol		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95%	CI	
Aydemir 2011a	3	93	15	91	29.3%	0.20 [0.06, 0.65]				
Kirpal 2015	8	38	16	37	31.3%	0.49 [0.24, 1.00]		-		
Parikh 2007	16	60	15	60	28.9%	1.07 [0.58, 1.96]				
Rundjan 2020	0	47	5	48	10.5%	0.09 [0.01, 1.63]		•		
Total (95% CI)		238		236	100.0%	0.53 [0.35, 0.80]		•		
Total events	27		51							
Heterogeneity: Chi ² =	= 9.22, df = 3 (P)	= 0.03);	$I^2 = 67\%$				0.01		10	100
Test for overall effect	t: $Z = 3.03 (P =$	0.002)					0.01	0.1 I Favours [antifungal] Favour	s [placebo/con	100 itrol]

Prevention and Treatment of Neonatal Infections in LMICs
Outcome: Neonatal mortality prior to hospital discharge (Total)

	Systemic anti	fungal	Placebo/c	ontrol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Arrieta 2010	1	20	1	20	0.7%	1.00 [0.07, 14.90]	
Aydemir 2011a	8	93	11	91	8.3%	0.71 [0.30, 1.69]	
Benjamin 2014	34	188	33	173	25.7%	0.95 [0.62, 1.46]	
Jannatdoust 2015	9	43	15	50	10.4%	0.70 [0.34, 1.43]	
Kaufman 2001	4	50	10	50	7.5%	0.40 [0.13, 1.19]	
Kicklighter 2001	5	53	10	53	7.5%	0.50 [0.18, 1.36]	
Kim 2010	2	28	2	27	1.5%	0.96 [0.15, 6.37]	
Kirpal 2015	7	38	12	37	9.1%	0.57 [0.25, 1.28]	-
Manzoni 2007a	18	216	10	106	10.0%	0.88 [0.42, 1.85]	
Parikh 2007	17	60	17	60	12.7%	1.00 [0.57, 1.77]	
Rundjan 2020	7	47	9	48	6.7%	0.79 [0.32, 1.96]	
Total (95% CI)		836		715	100.0%	0.78 [0.62, 0.99]	•
Total events	112		130				
Heterogeneity: Chi ² =	4.61, df = 10 (P = 0.92); $I^2 = 0\%$				0.1 0.2 0.5 1 2 5 10
Test for overall effect	Z = 2.06 (P = 0)	0.04)					0.1 0.2 0.5 1 2 5 10 Favours [antifungal] Favours [placebo/control]


Outcome: Neonatal mortality prior to hospital discharge (LMICs only)

	, ,	,										
	Systemic anti	fungal	Placebo/c	ontrol		Risk Ratio			Risk Rati	O		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI			M-H, Fixed, 9	5% CI		
Aydemir 2011a	8	93	11	91	17.6%	0.71 [0.30, 1.69]			•			
Jannatdoust 2015	9	43	15	50	22.0%	0.70 [0.34, 1.43]			-	-		
Kirpal 2015	7	38	12	37	19.3%	0.57 [0.25, 1.28]			-			
Parikh 2007	17	60	17	60	27.0%	1.00 [0.57, 1.77]						
Rundjan 2020	7	47	9	48	14.1%	0.79 [0.32, 1.96]			•			
Total (95% CI)		281		286	100.0%	0.77 [0.55, 1.07]						
Total events	48		64									
Heterogeneity: Chi ² =	= 1.45, df = 4 (P	= 0.83);	$I^2 = 0\%$				 	0 2	 			
Test for overall effect	z = 1.55 (P = 1.55)	0.12)					0.1	0.2	0.5 1 antifungall Fav	Z Zoure Inlace	bo/contr	.01]
								ravours la	antinunudii FdV	ours place	:DO/CONT	UII


4.2 Mixed Level Forest Plots

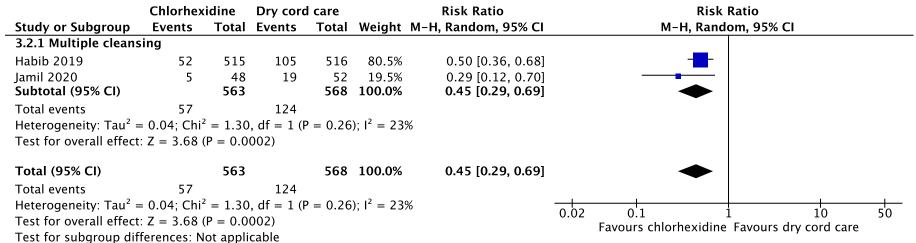
4.2.1. Clean Birth Kits

Outcome: Neonatal mortality

Outcome: Any omphalitis

4.2.2. Chlorhexidine Cleansing

Comparison: Chlorhexidine umbilical cord cleansing versus dry cord care


Outcome: Neonatal mortality

	Chlorhe	kidine	Dry core	d care		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H,	Random, 95%	6 CI	
Habib 2019	17	515	19	516	100.0%	0.90 [0.47, 1.70]		_			
Total (95% CI)		515		516	100.0%	0.90 [0.47, 1.70]		-			
Total events	17		19								
Heterogeneity: Not ap	plicable						0.05	0.2	1	<u> </u>	20
Test for overall effect	z = 0.33	(P = 0.7)	4)				0.03	Favours chlorhe	xidine Favour	s dry cord ca	

Outcome: Omphalitis

	Chlorhex	idine	Dry core	d care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Habib 2019	52	515	105	516	80.5%	0.50 [0.36, 0.68]	-
Jamil 2020	5	48	19	52	19.5%	0.29 [0.12, 0.70]	
Total (95% CI)		563		568	100.0%	0.45 [0.29, 0.69]	•
Total events	57		124				
Heterogeneity: Tau ² = Test for overall effect				P = 0.26); $I^2 = 23$	%	0.01 0.1 1 10 100 Favours chlorhexidine Favours dry cord care

Outcome: Omphalitis by cleansing frequency

Outcome: Bloodstream infection/sepsis

	Chlorhex	cidine .	Dry cord	l care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Habib 2019	90	515	135	516	100.0%	0.67 [0.53, 0.85]	-
Total (95% CI)		515		516	100.0%	0.67 [0.53, 0.85]	•
Total events	90		135				
Heterogeneity: Not ap	plicable					•	0.1 0.2 0.5 1 2 5 10
Test for overall effect	Z = 3.34	(P = 0.0)	009)				Favours chlorhexidine Favours dry cord care

4.2.3. Topical Emollients

Comparison: Topical oil versus routine skin care in preterm neonates

Outcome: Rate of weight gain (g/kg/day)

	Topical oil			Routine skin care				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Arora 2005	10.9	4.4	20	8.5	4.7	42	20.8%	2.40 [0.00, 4.80]	
Kumar 2013	11.6	5.6	25	8.4	5.5	23	12.1%	3.20 [0.06, 6.34]	
Sankaranarayanan 2005	11	2.6	32	8.5	2.8	31	67.1%	2.50 [1.16, 3.84]	-
Total (95% CI)			77			96	100.0%	2.56 [1.47, 3.66]	•
Heterogeneity: $Chi^2 = 0.1$.8, df =	2 (P =	= 0.91);	-	-10 -5 0 5 10				
Test for overall effect: Z =	= 4.60 (F	P < 0.	.00001)	-10 -5 0 5 10 Favours routine skin care Favours topical oil					

Outcome: Change in crown-heel length (mm/week)

9		_		•							
	Top	ical (oil	Routine	e skin	care		Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI		
Arora 2005	7.5	2.1	20	6.4	7.6	42	41.5%	1.10 [-1.38, 3.58]	- •		
Kumar 2013	6.5	2.3	25	5.8	5.6	23	42.0%	0.70 [-1.76, 3.16]	- 		
Sankaranarayanan 2005	6.3	6.8	32	5.6	8.9	31	16.5%	0.70 [-3.22, 4.62]			
Total (95% CI)			77			96	100.0%	0.87 [-0.73, 2.46]	•		
Heterogeneity: $Chi^2 = 0.0$	6, df =	2 (P =	= 0.97);	_	10 5 10						
Test for overall effect: Z =	= 1.06 (F	P = 0	.29)						-10 -5 0 5 10 Favours routine skin care Favours topical oil		

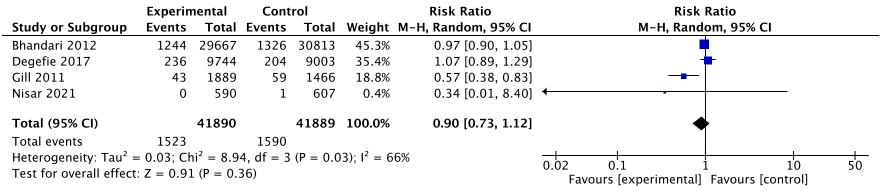
Outcome: Change in circumference (mm/week)

	Top	ical (oil	Routine	e skin	care		Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI	
Arora 2005	7.2	6.3	20	6.12	9.1	42	17.3%	1.08 [-2.82, 4.98]		
Kumar 2013	6	7	25	6	6.7	23	17.5%	0.00 [-3.88, 3.88]		
Sankaranarayanan 2005	4.9	2.8	32	4.7	5	31	65.2%	0.20 [-1.81, 2.21]		
Total (95% CI)			77			96	100.0%	0.32 [-1.30, 1.94]		
Heterogeneity: $Chi^2 = 0.1$ Test for overall effect: Z =				$I^2 = 0\%$					-10 -5 0 5 10 Favours routine skin care Favours topical oil	_

Outcome: Change in triceps skinfold thickness (mm/week)

	Тор	oical	oil	Routin	e skin	care		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Arora 2005	0.1	0.1	20	0.05	0.15	19	100.0%	0.05 [-0.03, 0.13]	
Total (95% CI)			20			19	100.0%	0.05 [-0.03, 0.13]	
Heterogeneity: Not ap Test for overall effect			= 0.22))					-0.5 -0.25 0 0.25 0.5 Favours routine skin care Favours topical oil

Comparison: One topical oil (or combination) versus another oil (or combination)


Outcome: *Growth*

	Coco	onut (oil	Min	eral (oil		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
4.1.1 Rate of weight gain	(g/kg/	'day)							
Sankaranarayanan 2005 Subtotal (95% CI)	11	2.6	32 32	9	2.1	32 32	4.5% 4.5%		
Heterogeneity: Not applica Test for overall effect: Z =		= 0.0	0007)						
4.1.2 Change in crown-h	eel leng	gth (n	nm/we	ek)					
Sankaranarayanan 2005 Subtotal (95% CI)	6.3	1.2	32 32	5.9	1.6	32 32		0.40 [-0.29, 1.09] 0.40 [-0.29, 1.09]	
Heterogeneity: Not applica Test for overall effect: Z =		= 0.2	26)						
4.1.3 Change in head circ	cumfere	nce ((mm/w	eek)					
Sankaranarayanan 2005 Subtotal (95% CI)	4.9	0.5	32 32	4.8	0.6	32 32		0.10 [-0.17, 0.37] 0.10 [-0.17, 0.37]	*
Heterogeneity: Not applica Test for overall effect: Z =		= 0.4	47)						
Total (95% CI) Heterogeneity: Chi ² = 10.0				6); I ² =	80%	96	100.0%	0.22 [-0.02, 0.47]	-4 -2 0 2 4
Test for overall effect: Z = Test for subgroup differen				df = 2 (F	P = 0	.006), I	² = 80.2%	,)	Favours mineral oil Favours coconut oil

4.2.4. Mixed Setting Antibiotic Delivery for PSBIs

Comparison: Home-based & primary facility-based antibiotic delivery versus standard care (i.e., hospital referral)

Outcome: All-cause neonatal mortality

Outcome: Early neonatal mortality

	Experim	nental	Conti	rol		Risk Ratio			Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI			M-H, Rande	om, 95% CI		
Gill 2011	35	1923	46	1508	100.0%	0.60 [0.39, 0.92]						
Total (95% CI)		1923		1508	100.0%	0.60 [0.39, 0.92]						
Total events	35		46									
Heterogeneity: Not ap	oplicable						+	- 				10
Test for overall effect	Z = 2.33	(P = 0.0)	02)				U.1	0.∠ avours [e	ر د.ه [xperimental		o trol]	10

Outcome: Late neonatal mortality

	Experim	ental	Conti	rol		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95	% CI
Gill 2011	8	1854	13	1420	100.0%	0.47 [0.20, 1.13]		
Total (95% CI)		1854		1420	100.0%	0.47 [0.20, 1.13]		
Total events	8		13					
Heterogeneity: Not ap	oplicable						002 01 1	10 50
Test for overall effect	:: Z = 1.68	(P = 0.	09)				0.02 0.1 1 Favours [experimental] Favou	

${\it Prevention \ and \ Treatment \ of \ Neonatal \ Infections \ in \ LMICs}$

Outcome: Sepsis-specific neonatal mortality

	Experimental Control			ol		Risk Ratio	Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI			
Gill 2011	16	1899	17	1466	100.0%	0.73 [0.37, 1.43]	-			
Total (95% CI)		1899		1466	100.0%	0.73 [0.37, 1.43]				
Total events	16		17							
Heterogeneity: Not ap Test for overall effect	•	(P = 0.	36)				0.02 0.1 1 10 50 Favours [experimental] Favours [control]			

Comparison: Simplified antibiotic regimens versus standard antibiotic regimens

Outcome: All-cause neonatal mortality

	Simplified re	Simplified regimen Standard regimen				Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% CI
AFRINEST(1) 2015	32	1325	9	446	41.5%	1.20 [0.58, 2.49]	-
Baqui 2015	8	329	9	157	30.4%	0.42 [0.17, 1.08]	
Mir 2017	11	814	6	405	28.1%	0.91 [0.34, 2.45]	
Total (95% CI)		2468		1008	100.0%	0.81 [0.44, 1.50]	
Total events	51		24				
Heterogeneity: Tau ² =	= 0.10; Chi ² $= 2$	2.99, df =	= 2 (P = 0.22)	$I^2 = 339$	%		0.02 0.1 1 10 50
Test for overall effect	Z = 0.67 (P = 0.67)	0.50)					Favours [simplified] Favours [standard]

Outcome: *Treatment failure*

	Simplified reg	gimen	Standard re	gimen		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
AFRINEST(1) 2015	52	1325	23	446	27.5%	0.76 [0.47, 1.23]	
Baqui 2015	22	329	12	157	13.8%	0.87 [0.44, 1.72]	
Mir 2017	89	814	49	405	58.8%	0.90 [0.65, 1.25]	-
Total (95% CI)		2468		1008	100.0%	0.86 [0.67, 1.10]	•
Total events	163		84				
Heterogeneity: Tau ² =	= 0.00; Chi ² $= 0$.34, df =	= 2 (P = 0.84)	$I^2 = 0\%$			0.05 0.2 1 5 20
Test for overall effect	Z = 1.19 (P = 1.19)	0.23)					Favours [simplified] Favours [standard]

Outcome: Adverse effects

	Simplified re	implified regimen Standard regimen				Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
AFRINEST(1) 2015	0	1325	0	446		Not estimable	
Baqui 2015	35	329	10	157	68.1%	1.67 [0.85, 3.29]	+
Mir 2017	11	814	6	405	31.9%	0.91 [0.34, 2.45]	
Total (95% CI)		2468		1008	100.0%	1.38 [0.79, 2.41]	
Total events	46		16				
Heterogeneity: Tau² = Test for overall effect			= 1 (P = 0.32)	$I^2 = 0\%$			0.05 0.2 1 5 20 Favours [simplified] Favours [standard]

4.3 Community Level Forest Plots

4.3.1. Chlorhexidine Cleansing

Comparison: Chlorhexidine umbilical cord cleansing versus dry cord care

Outcome: Neonatal mortality

	Chlorhexidine cl	Dry cor	d care		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% CI
Arifeen 2012	275	10329	283	10008	23.1%	0.94 [0.80, 1.11]	
Mullany 2006	72	4924	98	5082	15.7%	0.76 [0.56, 1.03]	
Sazawal 2016	189	18015	221	18896	21.4%	0.90 [0.74, 1.09]	
Semrau 2016	282	18510	263	19346	22.9%	1.12 [0.95, 1.32]	+-
Soofi 2012	79	3476	126	3481	16.9%	0.63 [0.48, 0.83]	
Total (95% CI)		55254		56813	100.0%	0.88 [0.73, 1.05]	•
Total events	897		991				
Heterogeneity: Tau ² =	= 0.03; Chi ² = 14.3	8, df = 4 (P = 0.006	$(5); I^2 = 7$	2%	0.2	0.5 1 2 5
Test for overall effect	Z = 1.47 (P = 0.14)	4)				0.2	Favours [chlorhexidine] Favours [dry cord care]

Subgroup Analysis: Chlorhexidine alone versus chlorhexidine in clean birth kits

Outcome: Neonatal mortality

	Chlorhexidine cl	eansing	Dry cor	d care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
4.2.1 Chlorhexidine in	n birthing kit						
Arifeen 2012	275	10329	283	10008	23.1%	0.94 [0.80, 1.11]	
Mullany 2006	72	4924	98	5082	15.7%	0.76 [0.56, 1.03]	
Semrau 2016	282	18510	263	19346	22.9%	1.12 [0.95, 1.32]	+•-
Soofi 2012	79	3476	126	3481	16.9%	0.63 [0.48, 0.83]	 -
Subtotal (95% CI)		37239		37917	78.6%	0.86 [0.68, 1.09]	
Total events	708		770				
Heterogeneity: Tau ² =	0.04 ; $Chi^2 = 14.2$	9, df = 3 (P = 0.003	3); $I^2 = 7$	9%		
Test for overall effect:	Z = 1.24 (P = 0.2)	2)					
4.2.2 Chlorhexidine a	lone						
Sazawal 2016	189	18015	221	18896	21.4%	0.90 [0.74, 1.09]	
Subtotal (95% CI)		18015		18896	21.4%	0.90 [0.74, 1.09]	
Total events	189		221				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 1.10 (P = 0.2)	7)					
Total (95% CI)		55254		56813	100.0%	0.88 [0.73, 1.05]	
Total events	897		991				
Heterogeneity: Tau ² =	0.03 ; $Chi^2 = 14.3$	8, df = 4	P = 0.006	5); $I^2 = 7$	2%		.2 0.5 1 2 5
Test for overall effect:						0.	.2 0.5 1 2 5 Favours [chlorhexidine] Favours [dry cord care]
Test for subgroup diff	erences: $Chi^2 = 0$.	07, df = 1	(P = 0.80)	$(1), I^2 = 0$	6		ravours (ciliornexiume) ravours (ury cord care)

Outcome: Omphalitis

	Chlorhexidine cl	leansing	Dry cor	d care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Arifeen 2012	16	10254	42	9924	18.8%	0.37 [0.21, 0.66]	
Mekonnen 2020	1	107	5	89	3.5%	0.17 [0.02, 1.40]	•
Mullany 2006	13	4930	52	5076	18.1%	0.26 [0.14, 0.47]	
Sazawal 2016	2	18015	33	18896	6.7%	0.06 [0.02, 0.26]	
Semrau 2016	82	18510	118	19346	25.6%	0.73 [0.55, 0.96]	
Soofi 2012	166	4867	309	4874	27.3%	0.54 [0.45, 0.65]	-
Total (95% CI)		56683		58205	100.0%	0.39 [0.26, 0.60]	•
Total events	280		559				
Heterogeneity: Tau ² =	= 0.16; Chi ² = 21.8	84, df = 5	P = 0.000	$(6); I^2 = 1$	77%	-	2 0.1 1 10 50
Test for overall effect	t: $Z = 4.32 (P < 0.0)$	001)				0.07	2 0.1 1 10 50 Favours [chlorhexidine] Favours [dry cord care]

Prevention and Treatment of Neonatal Infections in LMICs Outcome: Omphalitis by cleansing frequency

	Chlorhexidine cle	eansing	Dry core	d care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% CI
4.4.1 Single cleansir	ng						
Arifeen 2012	31	9354	42	9924	18.1%	0.78 [0.49, 1.24]	
Subtotal (95% CI)		9354		9924	18.1%	0.78 [0.49, 1.24]	
Total events	31		42				
Heterogeneity: Not a	pplicable						
Test for overall effect	t: $Z = 1.03 (P = 0.30)$))					
4.4.2 Multiple cleans	sing						
Arifeen 2012	16	10254	42	9924	15.7%	0.37 [0.21, 0.66]	
Mullany 2006	13	4930	52	5076	15.1%	0.26 [0.14, 0.47]	
Sazawal 2016	2	18015	33	18896	5.4%	0.06 [0.02, 0.26]	
Semrau 2016	82	18510	118	19346	22.0%	0.73 [0.55, 0.96]	-
Soofi 2012	166	4867	309	4874	23.7%	0.54 [0.45, 0.65]	*
Subtotal (95% CI)		56576		58116	81.9%	0.41 [0.26, 0.62]	•
Total events	279		554				
Heterogeneity: Tau ² :	·		P = 0.000	$(14); I^2 = 3$	81%		
Test for overall effect	t: $Z = 4.10 (P < 0.00)$	001)					
Total (95% CI)		65930		68040	100.0%	0.46 [0.32, 0.67]	•
Total events	310		596				
Heterogeneity: Tau ² :	= 0.14; Chi ² = 23.06	6, df = 5 (1)	P = 0.000	$(3); I^2 = 1$	78%	<u> </u>	01 0.1 1 10 100
Test for overall effect	t: $Z = 4.06 (P < 0.00)$	001)				0.	01 0.1 1 10 100 Favours [chlorhexidine] Favours [dry cord care]
Test for subgroup di	fferences: $Chi^2 = 4.1$	14, df = 1	(P = 0.04)	$(1)^2 = 75$	5.9%		ravours [cinornexionie] ravours [ury cord care]
Э.		•	,				

Outcome: Omphalitis by severity

	Chlorhexidine c	_	Dry co		Wainba	Risk Ratio	Risk Ratio
tudy or Subgroup	Events		Events	ı otal	weignt	M-H, Random, 95% CI	M-H, Random, 95% CI
1.5.1 Redness extendir	-			0.55		0.00/10.00	
Arifeen 2012	1406	10254	1545	9924	10.0%	0.88 [0.82, 0.94]	*
Mekonnen 2020	1	107	5	89	0.3%	0.17 [0.02, 1.40]	· · · · · · · · · · · · · · · · · · ·
Sazawal 2016	1413	18015	2183	18896	10.1%	0.68 [0.64, 0.72]	
Subtotal (95% CI)	2020	28376	2722	28909	20.4%	0.76 [0.58, 0.98]	
otal events	2820	-0 15 2 /5	3733	201) 12	0.40/		
Heterogeneity: Tau² = 0 Test for overall effect: Z	,		, < 0.000)(1); I ² =	94%		
I.5.2 Moderate or seve	re redness						
Arifeen 2012	327	10254	403	9924	9.1%	0.79 [0.68, 0.91]	-
Mekonnen 2020	4	107	32	89	1.4%	0.10 [0.04, 0.28]	
Mullany 2006	438	4703	638	4859	9.5%	0.71 [0.63, 0.80]	*
Sazawal 2016	1051	18015	1427	18896	9.9%	0.77 [0.72, 0.83]	-
Soofi 2012	161	4867	290	4874	8.4%	0.56 [0.46, 0.67]	-
Subtotal (95% CI)		37946		38642	38.3%	0.67 [0.56, 0.80]	◆
Total events	1981		2790	. 5			
Heterogeneity: $Tau^2 = 0$			o.000	$(11); I^2 = 8$	5%		
Test for overall effect: Z	t = 4.52 (P < 0.0)	00001)					
l.5.3 Moderate or seve	ere redness, wit	h pus, or s	evere re	dness alo	ne		
Arifeen 2012	151	10254	258	9924	8.2%	0.57 [0.46, 0.69]	-
Mekonnen 2020	4	107	9	89	1.1%	0.37 [0.12, 1.16]	•
Mullany 2006	147	4883	315	5021	8.3%	0.48 [0.40, 0.58]	-
Sazawal 2016	166	18015	286	18896	8.3%	0.61 [0.50, 0.74]	-
Soofi 2012	63	4867	116	4874	6.4%	0.54 [0.40, 0.74]	
Subtotal (95% CI)		38126		38804	32.3%	0.55 [0.49, 0.61]	•
Total events	531		984	2			
Heterogeneity: Tau² = 0 Test for overall effect: Z			= 0.47);	$I^2 = 0\%$			
1.5.4 Severe redness w	ith pus						
Arifeen 2012	16	10254	42	9924	3.2%	0.37 [0.21, 0.66]	
Mullany 2006	13	4930	52	5076	3.0%	0.26 [0.14, 0.47]	
Sazawal 2016	2	18015	33	18896	0.7%	0.06 [0.02, 0.26]	•
Soofi 2012 Subtotal (95% CI)	9	4867 38066	18	4874 38770	2.0% 8.9%	0.50 [0.23, 1.11] 0.29 [0.16, 0.52]	•
Total events	40		145				
Heterogeneity: Tau² = 0 Fest for overall effect: Z			= 0.07);	$I^2 = 58\%$			
Total (95% CI)		142514		145125	100.0%	0.59 [0.52, 0.67]	◆
Total events	5372		7652				
Heterogeneity: $Tau^2 = 0$	0.04; Chi ² = 125	.42, df = 16	5 (P < 0.0)	00001); I ²	= 87%		0.02 0.1 1 10 5
Test for overall effect: Z				***			
Test for subgroup differ	ences Chi ² – 1	3.37 df = 3	(P = 0.0)	$(0.04) I^2 = $	77 6%		Favours [chlorhexidine] Favours [dry cord care]

Comparison: Chlorhexidine whole-body cleansing versus water/saline

Outcome: Neonatal mortality

	Chlorhex	cidine	Water/S	aline		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Teilsch 2007	264	8650	263	8880	100.0%	1.03 [0.87, 1.22]	-
Total (95% CI)		8650		8880	100.0%	1.03 [0.87, 1.22]	
Total events	264		263				
Heterogeneity: Not ap	•						0.5 0.7 1 1.5 2
Test for overall effect	Z = 0.35	(P = 0.7)	3)				Favours [chlorhexidine] Favours [water/saline]

4.3.2. Topical Emollients

Comparison: Topical emollient versus routine skin care in term neonates

Outcome: Atopic dermatitis

·	Topical emo	llient	Contr	ol		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI	
Techasatian 2021	16	74	39	72	90.1%	0.40 [0.25, 0.65]		-	
Thitthiwong 2020	0	25	4	27	9.9%	0.12 [0.01, 2.12]	•	-	
Total (95% CI)		99		99	100.0%	0.37 [0.23, 0.60]		•	
Total events	16		43						
Heterogeneity: Chi ² = Test for overall effect				%			0.01	0.1 1 10 Favours emollient Favours cont	100 rol

Comparison: Topical oil versus routine skin care in preterm neonates

Outcome: *Invasive infection (any organism)*

	Topica	l oil	Routine ski	n care		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-	H, Fixed, 95% C		
Konar 2019	12	1146	16	1148	100.0%	0.75 [0.36, 1.58]					
Total (95% CI)		1146		1148	100.0%	0.75 [0.36, 1.58]					
Total events	12		16								
Heterogeneity: Not ap Test for overall effect	•	5 (P = 0).45)				0.01	0.1 Favours ton	1 Dical oil Favours	10 routine skir	100 n care

Comparison: Topical oil versus routine skin care in preterm neonates

Outcome: Severe neurodevelopmental disability

	Topica		Routine skin			Risk Ratio	Risk Ratio
Study or Subgroup	Events		Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
5.7.1 BSID (3rd Ed):	•		_				
Konar 2019 Subtotal (95% CI)	1	27 27	5	27 27	23.4% 23.4%		
Total events Heterogeneity: Not ap	1 oplicable		5				
Test for overall effect	Z = 1.52	P = 0	0.13)				
5.7.2 BSID (3rd Ed):	Language	e <70					
Konar 2019 Subtotal (95% CI)	2	27 27	8	24 24	39.6% 39.6%		
Total events Heterogeneity: Not ap Test for overall effect	•	3 (P = C	8 ().04)				
5.7.3 BSID (3rd Ed):	Motor <7	0					
Konar 2019 Subtotal (95% CI)	1	27 27	5	24 24	24.7% 24.7%		
Total events Heterogeneity: Not ap	1 oplicable		5				
Test for overall effect	z = 1.63	S (P = C)	0.10)				
5.7.4 BSID (3rd Ed):	Social-en	notiona	al <70				
Konar 2019 Subtotal (95% CI)	0	27 27	2	24 24	12.3% 12.3%		
Total events Heterogeneity: Not ag	0 anlicable		2				
Test for overall effect	•	B (P = C).26)				
Total (95% CI)		108		99	100.0%	0.20 [0.08, 0.53]	
Total events	4	2 /-	20				
Heterogeneity: Chi ² =)%			0.01 0.1 1 10 100
Test for overall effect		•		D 10	2 2	.,	Favours topical oil Favours routine skin care
Test for subgroup dif	terences:	Chi' =	0.04, dt = 3	P = 1.00	$(1), 1^2 = 0$	%	

Comparison: Sunflower seed oil versus mustard oil in mixed term and preterm newborns

Outcome: All-cause neonatal mortality (intention-to-treat)

	Sunflower s	eed oil	Mustar	rd oil		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Katz 2024 (1)	478	15676	520	16327	41.5%	0.96 [0.85, 1.08]	
Kumar 2021 (2)	718	13478	708	13109	58.5%	0.99 [0.89, 1.09]	-
Total (95% CI)		29154		29436	100.0%	0.97 [0.90, 1.05]	
Total events	1196		1228				
Heterogeneity: Chi ² = Test for overall effect			$I^2 = 0\%$				0.7 0.85 1 1.2 1.5 Favours SSO oil Favours mustard oil

Footnotes

- (1) Intention-to-treat analysis
- (2) Intention-to-treat analysis

Outcome: All-cause neonatal mortality for low birthweight newborns (less than or equal to 2,500 grams) (intention-to-treat)

	Sunflower se	ed oil	Mustar	d oil		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Katz 2024 (1)	126	3538	113	3713	25.9%	1.17 [0.91, 1.50]	+-
Kumar 2021 (2)	327	5622	304	5236	74.1%	1.00 [0.86, 1.17]	*
Total (95% CI)		9160		8949	100.0%	1.05 [0.92, 1.19]	•
Total events	453		417				
Heterogeneity: Chi ² =	1.09, df = 1 (P)	P = 0.30	$; I^2 = 8\%$				0.2 0.5 1 2 5
Test for overall effect	Z = 0.67 (P =	0.50)					Favours SSO oil Favours mustard oil

Footnotes

- (1) newborns <2500 grams; intention-to-treat analysis
- (2) newborns ≤2500 grams; intention-to-treat analysis

Outcome: All-cause neonatal mortality for very low birthweight newborns (less than or equal to 1,500 grams) (intention-to-treat)

	Sunflower se	ed oil	Mustar	d oil		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Katz 2024 (1)	26	62	23	51	20.1%	0.93 [0.61, 1.42]	
Kumar 2021 (2)	78	311	95	278	79.9%	0.73 [0.57, 0.94]	-
Total (95% CI)		373		329	100.0%	0.77 [0.62, 0.96]	•
Total events	104		118				
Heterogeneity: Chi ² =	0.90, df = 1 (F	P = 0.34); $I^2 = 0\%$				0.1 0.2 0.5 1 2 5 10
Test for overall effect	Z = 2.32 (P =	0.02)					Favours SSO oil Favours mustard oil

Footnotes

- (1) newborns <1500 grams; intention-to-treat analysis (2) newborns ≤1500 grams; intention-to-treat analysis

Outcome: All-cause neonatal mortality (per protocol)

	Sunflower s	eed oil	Mustar	d oil		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Kumar 2021 (1)	256	4096	498	4720	100.0%	0.59 [0.51, 0.68]	•
Total (95% CI)		4096		4720	100.0%	0.59 [0.51, 0.68]	•
Total events	256		498				
Heterogeneity: Not ap Test for overall effect	•	0.00001)				0.2 0.5 1 2 5 Favours SSO oil Favours mustard oil

Footnotes

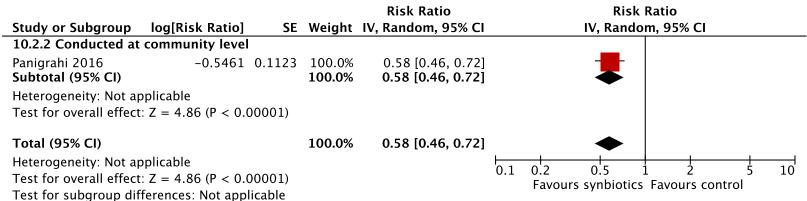
(1) Per protocol analysis

Outcome: Possible serious bacterial infections

	Sunflower seed oil		Mustard oil		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Katz 2024 (1)	1823	13483	1940	14145	100.0%	0.99 [0.93, 1.05]	-
Total (95% CI)		13483		14145	100.0%	0.99 [0.93, 1.05]	•
Total events	1823		1940				
Heterogeneity: Not ap	oplicable						0.5 0.7 1 1.5
Test for overall effect	Z = 0.47 (P = 0.47)	= 0.64)					Favours SSO oil Favours mustard oil

Footnotes

(1) Intention-to-treat analysis


4.3.3. Synbiotics Supplementation

Comparison: Synbiotics versus control in term newborns

Outcome: All-cause neonatal mortality

			Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE Weight	IV, Random, 95% CI	IV, Random, 95% CI
10.1.2 Conducted at	community-level			
Panigrahi 2016 Subtotal (95% CI)	0.4055 0.64	100.0% 100.0%	,,	
Heterogeneity: Not ap Test for overall effect	•			
Total (95% CI)		100.0%	1.50 [0.42, 5.31]	
Heterogeneity: Not ap Test for overall effect Test for subgroup dif	•	le		0.01 0.1 1 10 100 Favours synbiotics Favours control

Outcome: *Invasive infection*

4.3.4. Community-Based Antibiotic Delivery for PSBIs

Comparison: Community-based antibiotic delivery versus standard care (i.e., hospital referral)

Outcome: All-cause neonatal mortality

	Experin	nental	Cont	rol	Risk Ratio		Risk	k Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI		
Baqui 2008	82	2812	125	2872	10.2%	0.67 [0.51, 0.88]	<u> </u>		
Soofi 2017	736	17705	1050	19163	89.8%	0.76 [0.69, 0.83]	-		
Total (95% CI)		20517		22035	100.0%	0.75 [0.69, 0.82]	•		
Total events	818		1175						
Heterogeneity: Tau ² =	= 0.00; Ch	$ni^2 = 0.7$	1, df = 1	(P = 0.4)	$I(0); I^2 = 0$	%	0.5 0.7	1 1 5	
Test for overall effect	Z = 6.49	P < 0.0	00001)				Favours [experimental	l] Favours [control]	2

Outcome: Early neonatal mortality

Experimental		nental	Control			Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI		
Soofi 2017	610	17705	871	19163	100.0%	0.76 [0.68, 0.84]	_		
Total (95% CI)		17705		19163	100.0%	0.76 [0.68, 0.84]			
Total events	610		871						
Heterogeneity: Not ap	oplicable					-	0.7 0.85	1 12 15	
Test for overall effect	Z = 5.35	5 (P < 0.	Favours [experimental]	Favours [control]					

Outcome: *Late neonatal mortality*

	Experimental		erimental Control			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Soofi 2017	126	17705	179	19163	100.0%	0.76 [0.61, 0.96]		
Total (95% CI)		17705		19163	100.0%	0.76 [0.61, 0.96]		
Total events	126		179					
Heterogeneity: Not ap	-						05 07 1 15 2	
Test for overall effect	Z = 2.35	5 (P = 0.0)	02)				Favours [experimental] Favours [control]	

Outcome: Sepsis-specific neonatal mortality

	Experin	nental	Cont	rol		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Soofi 2017	87	17705	120	19163	100.0%	0.78 [0.60, 1.03]	-	
Total (95% CI)		17705		19163	100.0%	0.78 [0.60, 1.03]		
Total events	87		120					
Heterogeneity: Not ap	plicable						0.2 0.5 1 2	<u></u>
Test for overall effect	Z = 1.73	8 (P = 0.0)	08)				Favours [experimental] Favours [co	ntrol]

Appendix 5: Prophylactic Systemic Antifungal Agents Background, Methods, Results, and Discussion

Background

Yeast are naturally occurring on the skin and in the genitourinary tract and are transmitted vertically from mother to baby or horizontally within the hospital environment as a consequence of inadequate hand hygiene and IPC practices [14-17]; however, when colonizing yeast enter the newborn's bloodstream, severe systemic multi-organ infections can occur [18] with clinical presentations that are indistinguishable from invasive bacterial infections [10, 19]. To prevent systemic fungal infection, antifungal prophylaxis is frequently used, particularly for very preterm (<32 weeks' gestation) and very low birth weight (VLBW, <1500 grams) infants who are at greatest risk of fungemia due to their need for often lengthy hospitalization, surgeries, catheterization or mechanical ventilation, and prior or ongoing antibiotic therapy [10, 15, 20]. The most pervasive newborn nosocomial fungal infections are caused by *Candida* species [21], and prophylactic antifungal agents such as fluconazole, are normally the first choice for high-risk neonates, with amphotericin B commonly prescribed to treat invasive candidiasis [16]. Although invasive candidiasis is primarily diagnosed with blood culture, this test lacks sensitivity and high rates of false negative tests can hinder appropriate and timely antifungal treatment [14, 17, 22, 23]. There are also challenges in isolating higher than normal blood volumes and at greater frequency than normal to detect both the presence of infection and its clearance over time [16, 23, 24]. Because systemic antifungal infection is difficult to diagnose and therefore treat in a timely manner, there has been increased reliance on antifungal prophylaxis but gaps remain in the literature regarding its effect on mortality, morbidity, and its impact on the development of antifungal resistance [10] which is rising globally among *Candida auris*, *C. parapsilosis*, and *C. krusei* [14, 17, 21].

Methods

The review on prophylactic systemic antifungals searched Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and CINAHL for randomized or quasi-randomized controlled trials pertaining to the effect of prophylactic systemic antifungal therapy versus control or placebo or another

antifungal agent or regimen on primary outcomes of confirmed invasive fungal infection and mortality prior to hospital discharge in very preterm or VLBW infants [10].

We re-ran the search in the same databases for relevant trials published after the review's final search date of May 2015, and identified three new trials whose evidence was synthesized with ten trials from the existing review. For this topic, by technical advisory group (TAG) recommendation, we leveraged data from HIC contexts, recognizing the cost of the intervention and that in many LMICs newborns may not survive long enough to develop secondary fungal infections. To compare HIC and LMIC combined estimates with LMIC-only estimates, we disaggregated LMIC studies to evaluate the effectiveness of prophylactic systemic antifungals in low-resource settings. All trials were conducted in tertiary care facilities with eight trials conducted in HICs and five trials, two new and three existing trials, conducted in LMICs.

Results

In treatment of suspected fungal infections in very preterm and very low birth weight (VLBW) newborns from high- and low-income facility-based settings, prophylactic systemic antifungal agents reduced the risk of invasive fungal infections by 59% (95% CI 45-70%) and mortality risk prior to hospital discharge by 22% (95% CI 1-38%), when compared to control or placebo. In very preterm and VLBW newborns from LMICs alone, prophylactic systemic antifungals reduced the risk of invasive fungal infections by 47% (95% CI 20-65%), but had no significant effect on mortality prior to hospital discharge (see *Appendix 7.1.6.*), when compared to control or placebo.

Table 4 Effect estimates for prophylactic systemic antifungal agents treat suspected neonatal infections in facility settings.

Prophylactic systemic antifungal agents									
Comparison	Population	Outcome	Subgroup	No. of studies (No. of	Effect estimate	Heterogeneity (I ²)			
				participants)	(95% CI)				
Prophylactic	Very preterm or	Invasive fungal	Total*	12 (1,827)	RR 0.41	37%			
systemic antifungals	VLBW neonates	infection			(0.30, 0.55)				
vs. control or									
placebo									
Prophylactic	Very preterm or	Invasive fungal	Studies conducted	4 (474)	RR 0.53	67%			
systemic antifungals	VLBW neonates	infection	in LMICs only		(0.35, 0.80)				
vs. control or									
placebo									

Prophylactic	Very preterm or	Neonatal	Total*	11 (1,551)	RR 0.78	0%
systemic antifungals	VLBW neonates	mortality prior to			(0.62, 0.99)	
vs. control or		hospital discharge				
placebo						

VLW, very low birth weight; bolded effect estimates are statistically significant (p<0.05)

Discussion

Prophylactic systemic antifungal agents were strongly effective in reducing the risk of invasive fungal infections but less effective in reducing the risk of neonatal mortality prior to hospital discharge when used in a high-resource settings for treatment of suspected fungal infections in very preterm and VLBW newborns. Comparatively, we found that systemic antifungal prophylaxis reduced the risk of invasive fungal infections but had no effect on mortality prior to hospital discharge in very preterm and VLBW newborns from LMICs. Similarly, the 2015 Cochrane review [10], which included trials at all income levels, found a statistically significant reduction in the risk of invasive fungal infection only, with no difference in mortality prior to discharge between treatment and control groups. Considerations that must be addressed in LMIC implementation include improving antifungal drug availability and ensuring laboratory diagnostic capacity for fungal infections [25]. In the absence of such resources, stricter attention to modifiable risk factors for nosocomial fungal infections such as the use of broad-spectrum antibiotics and central venous catheters are recommended to decrease fungal infection incidence [14]. More LMIC-based research is needed to evaluate the safety and effectiveness of this intervention, as well as considerations including cost-effectiveness, and barriers and facilitators to implementation, to further elucidate the viability of this intervention in LMICs.

^{*}Leveraged HIC data to produce an HIC and LMIC combined estimate.

REFERENCES

- 1 Fitzgerald FC, Zingg W, Chimhini G, Chimhuya S, Wittmann S, Brotherton H, et al. The Impact of Interventions to Prevent Neonatal Healthcare-associated Infections in Low- and Middle-income Countries: A Systematic Review. Pediatr Infect Dis J. 2022;41(3S):S26-S35.
- 2 Lassi ZS, Fisher Z, Andraweera P, Cummins A, Roberts CT. Effectiveness of birthing kits for clean childbirth: a systematic review. Int Health. 2020;12(1):3-10.
- 3 Zhou J, Mei L, Chen S. Effect of chlorhexidine cleansing on healthcare-associated infections in neonates: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2022;107(4):398-407.
- 4 WHO. WHO recommendations on maternal and newborn care for a positive postnatal experience. Geneva: World Health Organization; 2022.
- 5 Cleminson J, McGuire W. Topical emollient for preventing infection in preterm infants. Cochrane Database Syst Rev. 2021;5(5):CD001150.
- 6 Priyadarshi M, Balachander B, Gupta S, Sankar MJ. Topical emollient application in term healthy newborns: A systematic review. J Glob Health. 2022;12:12002.
- 7 Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2020;10(10):CD005496.
- 8 Imdad A, Rehman F, Davis E, Attia S, Ranjit D, Surin GS, et al. Effect of Synthetic Vitamin A and Probiotics Supplementation for Prevention of Morbidity and Mortality during the Neonatal Period. A Systematic Review and Meta-Analysis of Studies from Low- and Middle-Income Countries. Nutrients. 2020;12(3).
- 9 Sharif S, Heath PT, Oddie SJ, McGuire W. Synbiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2022;3(3):CD014067.
- 10 Cleminson J, Austin N, McGuire W. Prophylactic systemic antifungal agents to prevent mortality and morbidity in very low birth weight infants. Cochrane Database Syst Rev. 2015;2015(10):CD003850.
- 11 Duby J, Lassi ZS, Bhutta ZA. Community-based antibiotic delivery for possible serious bacterial infections in neonates in low- and middle-income countries. Cochrane Database Syst Rev. 2019;4(4):CD007646.
- 12 Thomas D, Sharma A, Sankar MJ. Probiotics for the prevention of mortality and sepsis in preterm very low birth weight neonates from low- and middle-income countries: a Bayesian network meta-analysis. Front Nutr. 2023;10:1133293.
- 13 Feng K, He Y, Liu W, Zhang X, Song P, Hua Z. Evaluation of antibiotic stewardship among near-term and term infants admitted to a neonatal unit. Eur J Pediatr. 2023;182(1):245-54.
- 14 Kilpatrick R, Scarrow E, Hornik C, Greenberg RG. Neonatal invasive candidiasis: updates on clinical management and prevention. Lancet Child Adolesc Health. 2022;6(1):60-70.
- 15 Ferrando G, Castagnola E. Prophylaxis of Invasive Fungal Infection in Neonates: A Narrative Review for Practical Purposes. J Fungi (Basel). 2023;9(2).
- 16 Camacho-Gonzalez A, Spearman PW, Stoll BJ. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr Clin North Am. 2013;60(2):367-89.
- 17 Suleyman G, Alangaden GJ. Nosocomial Fungal Infections: Epidemiology, Infection Control, and Prevention. Infect Dis Clin North Am. 2021;35(4):1027-53.
- 18 Weimer KED, Smith PB, Puia-Dumitrescu M, Aleem S. Invasive fungal infections in neonates: a review. Pediatr Res. 2022;91(2):404-12.
- 19 Ng PC. Systemic fungal infections in neonates. Archives of Disease in Childhood. 1994;71:130-5.
- 20 Huang D, Li H, Lin Y, Lin J, Li C, Kuang Y, et al. Antibiotic-induced depletion of Clostridium species increases the risk of secondary fungal infections in preterm infants. Front Cell Infect Microbiol. 2022;12:981823.
- 21 Cook A, Ferreras-Antolin L, Adhisivam B, Ballot D, Berkley JA, Bernaschi P, et al. Neonatal invasive candidiasis in low- and middle-income countries: Data from the NeoOBS study. Med Mycol. 2023;61(3).
- 22 Bassetti M, Azoulay E, Kullberg BJ, Ruhnke M, Shoham S, Vazquez J, et al. EORTC/MSGERC Definitions of Invasive Fungal Diseases: Summary of Activities of the Intensive Care Unit Working Group. Clin Infect Dis. 2021;72(Suppl 2):S121-S7.

23 Hsieh E, Smith PB, Jacqz-Aigrain E, Kaguelidou F, Cohen-Wolkowiez M, Manzoni P, et al. Neonatal fungal infections: when to treat? Early Hum Dev. 2012;88 Suppl 2(Suppl 2):S6-S10.

24 Clancy CJ, Nguyen MH. Finding the "missing 50%" of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis. 2013;56(9):1284-92.

25 Driemeyer C, Falci DR, Oladele RO, Bongomin F, Ocansey BK, Govender NP, et al. The current state of clinical mycology in Africa: a European Confederation of Medical Mycology and International Society for Human and Animal Mycology survey. Lancet Microbe. 2022;3(6):e464-e70.