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Since tyrosine phosphorylation is reversible and dynamic in vivo, the

phosphorylation state of proteins is controlled by the opposing roles of

protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both

of which perform critical roles in signal transduction. Of these, intracellular

non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP

family, are essential for the regulation of a variety of biological processes,

including but not limited to hematopoiesis, inflammatory response, immune

system, and glucose homeostasis. Additionally, a substantial amount of PTPNs

have been identified to hold crucial roles in tumorigenesis, progression,

metastasis, and drug resistance, and inhibitors of PTPNs have promising

applications due to striking efficacy in antitumor therapy. Hence, the aim of

this review is to summarize the role played by PTPNs, including PTPN1/PTP1B,

PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/

PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ,

PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and

immunotherapy and to comprehensively describe the molecular pathways in

which they are implicated. Given the specific roles of PTPNs, identifying

potential regulators of PTPNs is significant for understanding the

mechanisms of antitumor therapy. Consequently, this work also provides a

review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in

tumorigenesis and progression, which may help us to find effective

therapeutic agents for tumor therapy.
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Introduction

Protein tyrosine phosphatases (PTPs) are a wide class of

enzymes that oppose protein tyrosine kinases (PTKs) (1). PTPs

can be categorized into four families based on the amino acid

sequence of its catalytic structural domain, each with different

substrate specificities (2). Of these, 17 intracellular non-receptor

PTPs, belonging to the largest class I cysteine PTP family, are

designated as PTPNs (2). Extensive evidence suggests that PTPNs

are involved in a range of physiological and pathological processes,

including but not limited to hematopoiesis, inflammatory

response, immune system, cell proliferation and differentiation,

and glucose homeostasis (3–6). Furthermore, PTPNs hold a

critical role in tumor progression by dephosphorylating various

substrate proteins to activate or inhibit oncogenic pathways (7, 8).

More notably, several PTPNs are implicated in resistance to

chemotherapy and radiotherapy, and numerous studies have

demonstrated that targeting certain PTPNs can boost anti-

tumor immunity and efficacy, which stimulates the immune

system to attack tumors (9). Therefore, PTPNs are remarkably

promising therapeutic targets to combat tumors.

Non-coding RNAs (ncRNAs) are a type of RNA transcript

found in many eukaryotic genomes that function as a regulator of

cellular processes, including chromatin remodeling, transcription,

post-transcriptional modifications and signal transduction (10,

11). In recent years, ncRNAs have been linked to the development

and progression of cancer, particularly microRNAs (miRNAs),

long-stranded non-coding RNAs (lncRNAs), and circular RNAs

(circRNAs) (11, 12). Of these, miRNAs are defined as short

ncRNAs of approximately 22 nt, lncRNAs are ncRNAs with

transcripts longer than 200 nt, and circRNAs are closed

continuous loop structures lacking a terminal 5’ cap and a 3’

polyadenylated tail (11). Interestingly, lncRNAs and circRNAs can

perform as miRNA sponges, binding to miRNAs and altering

their function. Here, ncRNAs act as tumor promoters and

suppressors, depending on targeting PTPNs.

In this review, we elaborate on the roles played by PTPN

family members and provide a comprehensive summary of the

molecular pathways in which PTPNs are involved in various

human cancers. Subsequently, the essential position occupied by

PTPNs in the immune system and cancer immunotherapy is

further described. Furthermore, we characterize how ncRNAs

modulate PTPNs in tumorigenesis and hypothesize that ncRNA

regulation in combination with immunotherapy may lead to more

precise and effective efficacy.

The physiological role of PTPNs

PTPNs, belonging to the PTP family, share the common

proper ty of possess ing phospha tase ac t iv i ty tha t

dephosphorylates a series of proteins, thereby governing
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cellular signal transduction and biological processes. Several

studies have shown that PTPN2 and PTPN6 are highly

expressed in hematopoietic cells and act as negative signaling

regulators (13, 14). For instance, PTPN2 dephosphorylates and

inactivates signal transducer and activator of transcription

(STAT) protein, which is required to maintain cellular

homeostasis in the hematopoietic system (15). Furthermore,

PTPN2 also holds an essential role in glucose homeostasis. For

example, PTPN2 negatively regulates the insulin receptor

(INSR) signaling pathway through dephosphorylation of INSR

and controls gluconeogenesis and hepatic glucose production

through negative regulation of the interleukin-6 (IL-6) signaling

pathway (16, 17). PTPN14 is required for the regulation of

lymphangiogenesis (18). In addition, PTPNs perform crucial

roles in the regulation of immune cell development and

inflammatory responses, which will be described in later

sections. Overall, the PTPN family members act as a “brake”

and are essential for the maintenance of homeostasis in the body.
Role of PTPNs in the context of
cancer

Members of the PTPN family hold crucial roles in cancer

genesis, progression, metastasis, and drug resistance by

dephosphorylating a variety of substrate proteins to execute

oncogenic or tumor suppressive functions in various

cancers (Figure 1).
Breast cancer

PTPN family members have been extensively investigated in

breast cancer, with PTPN1 and PTPN11 driving the progression

of breast cancer. PTPN1, which is required for invadopodia

formation (19), promotes invasiveness of breast cancer cells by

negatively regulating PTEN and facilitates human epidermal

growth factor receptor 2 (HER2)-induced breast tumorigenesis

with lung metastasis (20, 21). PTPN11 is essential for HER2, IL-

6, and platelet-derived growth factor-B (PDGF-B)-induced

tumorigenesis and epithelial-to-mesenchymal transition

(EMT) (22–24). Mechanistically, PTPN11 enhances the

oncogenic activity of b-catenin and activates Src family

kinases, as well as regulates focal adhesion kinase (FAK) to

promote epidermal growth factor (EGF)-induced lamellipodia

persistence and migration of triple-negative breast cancer

(TNBC) cells (25–27).

However, most PTPN family members function as tumor

suppressors in breast cancer, including PTPN2, PTPN4, PTPN6,

PTPN9, PTPN13, PTPN14, and PTPN23. Specifically, PTPN2 is

implicated in the subtype specificity of breast cancer, and low

expression in patients with Luminal A and HER2-positive
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FIGURE 1

Role of PTPN family members in various cancers. Red font represents tumor promoters and blue font represents tumor suppressors.
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tumors is linked to a higher recurrence rate, but not in patients

with triple-negative tumors (28). More importantly, loss of

PTPN2 is coupled with activation of oncogenic signaling

pathways, such as protein kinase B (AKT), Src family kinase

(SFK) and STAT3 signaling pathways, and also with resistance

to tamoxifen (29, 30). PTPN6 dampens the oncogenic

characteristics of breast cancer by dephosphorylating STAT3

and inactivating the Ras/extracellular signal-regulated kinase

(Erk)/glycogen synthase kinase-3beta (GSK-3b) signaling

pathway (31, 32). PTPN9 suppresses the growth and invasion

of breast cancer cells by negatively regulating HER2 and

epidermal growth factor receptor (EGFR) and suppressing

STAT3 activation (33, 34). Furthermore, PTPN4 and PTPN13

are favorable prognostic biomarkers for breast cancer patients

(35, 36), in which PTPN13 induces apoptosis of breast cancer

cells and inhibits breast tumor aggressiveness by directly

inactivating Src kinase and stabilizing intercellular adhesion

and promoting desmosome formation (37–39). PTPN14

negatively regulates the oncogenic function of yes-associated

protein (YAP) by modulating the subcellular localization of YAP

and suppressing its transcriptional co-activator activity (40), and

also inhibits breast cancer metastasis by altering protein

transport (41). PTPN23 is identified as a suppressor of cell

motility and invasion in breast cancer cells by inhibiting FYN

kinase (42).
Lung cancer

As with breast cancer, PTPN1 and PTPN11 also serve as

oncogenic factors in lung cancer. PTPN1 contributes to the

proliferation and metastasis of non-small cell lung cancer

(NSCLC) cells by enhancing the Erk1/2 signaling pathway and

diminishing the expression of p-Src (Tyr527), which activates

Src (43). Of note, PTPN11 is not only essential for lung cancer

cell growth, but also confers chemotherapy resistance (44).

Mechanistically, overexpression of PTPN11 increases

resistance to tyrosine kinase inhibitors (TKI) in either EGFR

mutant or EGFR wild-type NSCLC cells through Erk-AKT-

nuclear factor kappa B (NF-kB) and GSK3b-b-Catenin
signaling pathway-mediated C-X-C motif chemokine ligand 8

(CXCL8)-chemokine receptor 1/2 (CXCR1/2) feedback loop

that promotes stemness and tumorigenesis (45, 46). Moreover,

PTPN11 confers cisplatin resistance to lung cancer cells through

activation of the AKT-CA916798 pathway and the Ras/

phosphoinositide 3-kinase (PI3K)/AKT1/survivin pathway,

respectively (47, 48). Consequently, PTPN11 inhibitors in

combination with chemotherapy may be a promising therapy

strategy for patients with lung cancer.

Furthermore, PTPN3, PTPN6, PTPN12 and PTPN13 play

tumor suppressor roles in lung cancer. PTPN3 suppresses lung

cancer cell proliferation and migration by counteracting Src-

mediated disheveled-associated activator of morphogenesis 1
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(DAAM1) activation and actin polymerization and by

promoting EGFR endocytic degradation (49, 50). Similarly,

PTPN6 inactivates PI3K/AKT signaling pathway (51).

PTPN12 is a valuable prognostic biomarker for patients with

NSCLC (52). PTPN13 negatively regulates the growth and

migration of lung cancer cells in vitro and inhibits

tumorigenicity in vivo by controlling tyrosine phosphorylation

of EGFR and HER2 and by inhibiting transforming growth

factor beta1 (TGF-b1)-induced activation of p38 mitogen-

activated protein kinase (MAPK) and Smad 2/3 pathways,

respectively (53, 54).
Colorectal cancer

In colorectal cancer, PTPN1, PTPN2 and PTPN18

undoubtedly drive its progression. Among them, PTPN1

expression is related to poor prognosis in colorectal cancer

patients through dephosphorylation of the Tyr530 site of Src,

which activates the Src signaling pathway and enhances the

oncogenicity of colon cancer (55, 56). Similarly, high expression

of PTPN2 is implicated in the incidence of colorectal cancer (57),

and specific deletion of PTPN2 in bone marrow cells and

macrophages prevents the development of colorectal cancer,

although it promotes inflammation in the intestine (58).

PTPN18 activates myelocytomatosis oncogene (MYC)

signaling pathway and further potentiates cyclin-dependent

kinase 4 (CDK4) expression to promote colorectal cancer

progression (59).

PTPN4, PTPN6 and PTPN9, as tumor suppressors, suppress

the progression of colorectal cancer by dephosphorylating

pSTAT3 at the Tyr705 residue and restraining the

transcriptional activity of STAT3 (60–62). Moreover, PTPN6

also facilitates chemosensitivity of colorectal cancer cells by

inhibiting specificity protein 1 (SP1)/MAPK signaling pathway

(63). Additionally, PTPN23 also suppresses the proliferation and

EMT of human intestinal cancer cells (64).
Liver cancer

The vast majority of the reported PTPN family members

hold an inhibitory role in hepatocellular carcinoma (HCC), with

the exception of PTPN11, which drives HCC progression by

potentiating oncogenic proteins such as b-Catenin, PIK3CA and

MET, and is associated with chemoresistance in HCC patients

(65, 66).

PTPN2 can prevent hepatocyte progression to HCC by

inactivating STAT3 signaling and suppressing T-cell

recruitment in obese C57BL/6 mice (67). Consistently, PTPN6

overexpression inhibits the proliferation, migration, invasion

and tumorigenicity of HCC cells by suppressing multiple

oncogenic pathways, including janus kinase (JAK)/STAT, NF-
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kB and AKT signaling pathways (68). Likewise, PTPN9

contributes to the inhibition of HCC growth and metastasis by

repressing the AKT pathway (69). In addition, PTPN12 and

PTPN13 are associated with a favorable prognosis in HCC

patients. Mechanistically, PTPN13 suppresses HCC

progression by directly and competitively binding insulin-like

growth factor 2 mRNA-binding protein 1 (IGF2BP1) to

diminish the intracellular concentration of functional

IGF2BP1, thereby promoting c-Myc mRNA degradation (70).

Furthermore, PTPN14 significantly represses the proliferation,

migration, and invasion of HCC cells in vitro and tumor growth

and metastasis in vivo (71).
Cervical and endometrial cancer

Currently, most PTPN family members perform oncogenic

roles in cervical and endometrial cancers, with the exception of

PTPN14. In detail, PTPN1 expression is linked to poor prognosis in

cervical cancer possibly through activation of the PI3K/AKT

pathway (72). Importantly, PTPN11 contributes to the growth

and migration of cervical cancer cells and decreases the sensitivity

of cells to cisplatin (73). Specifically, PTPN11 facilitates cervical

cancer cell proliferation by suppressing interferon-b (IFN-b)
production and restricts chemotherapeutic drug-induced

apoptosis of cervical cancer cells through Parkin-dependent

autophagy (74, 75). Likewise, PTPN18 promotes proliferation and

metastasis and restrains apoptosis in endometrial cancer (76).

Mechanistically, silencing of PTPN18 induced ferroptosis in

endometrial cancer cells by increasing intracellular reactive

oxygen species (ROS) levels and p-p38 expression as well as

decreasing the expression of glutathione peroxidase 4 (GPX4) and

system xc(-) cystine/glutamate antiporter (xCT) (72).

What’s more, the deletion of PTPN14 contributes to human

papillomavirus (HPV)-mediated cervical carcinogenesis, while

the major transforming activity of high-risk HPV is linked to the

E7 oncoprotein. Mechanistically, the crystal structure of the

terminal structural domain of E7 C binds to the catalytic

structural domain of PTPN14 and induces proteasome-

mediated degradation of PTPN14 via the ubiquitin ligase

UBR4 (77, 78), thereby restricting keratin-forming cell

di fferentiat ion and contribut ing to HPV-mediated

tumorigenesis (79).
Ovarian cancer

PTPN family members almost contribute to the progression

of ovarian cancer, except for PTPN13. PTPN1 and PTPN6 are

highly expressed in ovarian cancer cell lines (80, 81), in which

PTPN1 accelerates ovarian cancer progression in a c-Jun N-

terminal kinase (JNK)-dependent mechanism (80). Strikingly,

PTPN3 confers chemoresistance and tumor stem cell-like
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PTPN11 and PTPN18 potentiate ovarian cancer invasion and

metastasis through activation of PI3K/AKT axis (83, 84).

However, high PTPN13 expression in patients with high-

grade plasma ovarian cancer is related to better prognosis (85).

Mechanistically, PTPN13 dephosphorylates the signaling

domain of HER2 and the phosphorylation of tyrosine 42 on

IkBa (IkBa-pY42), respectively, thereby attenuating the

invasiveness and metastasis of ovarian cancer (86, 87).
Prostate cancer

In prostate cancer, PTPN1 and PTPN12 are linked to poor

prognosis in patients (88, 89). Importantly, PTPN11 promotes

prostate cancer metastasis by attenuating the PAR3/PAR6/

atypical protein kinase C (aPKC) polarity protein complex,

resulting in disruption of cell polarity, dysregulation of cell-cell

junctions, and increased EMT (90).

In contrast, PTPN13 and PTPN14 function as tumor

suppressors in prostate cancer. Specifically, PTPN13

suppresses the proliferation and migration of prostate cancer

cells and stimulates apoptosis mediated by PKCd (91).

Furthermore, PTPN14 restrains cell proliferation and invasion

by enhancing phosphorylation of YAP through activation of

large tumor suppressor 1 (LATS1), an effect that leads to a

significant decrease in YAP-mediated transcriptional

activity (92).
Glioma and glioblastoma

PTPN1 and PTPN2 can be used as predictors of poor

prognosis in glioma patients (93, 94). Mechanistically, PTPN1

promotes glioma progression through activation of MAPK/

Erk and PI3K/AKT pathways as well as IL-13-mediated

adhesion, migration and invasion of IL13Ra2-expressing
cancer cells (93, 95). Up-regulation of PTPN2 expression

induced by inflammatory response and oxidative stress

contributes to glioma progression (96). Furthermore,

PTPN11 regulates proliferation and tumorigenicity of glioma

stem cells (97).

Likewise, PTPN2 and PTPN3 are correlated with poor

patient prognosis in glioblastoma (GBM) (94, 98). In Ink4a/

Arf-deficient glioblastomas, PTPN11 regulates the interaction of

PI3K with PDGFRa and activates the downstream AKT/mTOR

pathway, ultimately promoting tumorigenesis (99). In addition,

the multivariate signaling regulatory function of PTPN11 holds

a crucial role in GBM cellular decision-making. PTPN11-driven

Erk1/2 activity is dominant in driving cellular proliferation and

PTPN11-mediated antagonism of STAT3 phosphorylation

prevails in the promotion of GBM cell death in response to

EGFR and c-MET co-inhibition (100).
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But for PTPN9, which appears to be a tumor suppressor,

leads to decreased glioma cell viability by reducing the

phosphorylation of EGFR and cooperating with BRAF

(V600E) inhibitors to restrain MAPK and AKT signaling

(101). Furthermore, PTPN12 controls GBM cell growth and

invasion by interacting with the ATP-dependent ubiquitin

segregase valosin-containing protein (Vcp)/p97 and regulating

phosphorylation and stability of the focal adhesion protein

p130Cas (Crk-associated substrate) (102).
Esophageal cancer

Interestingly, PTPN1 expression is implicated in the incidence

of esophageal cancer (57), while PTPN6 is down-regulated in

esophageal cancer and PTPN12 is a favorable prognostic

biomarker for patients with esophageal squamous cell carcinoma

(103, 104). What’s more, PTPN11 and PTPN14 suppress

malignant progression and chemoresistance in esophageal

cancer through dephosphorylation of STAT3 and negative

regulation of the Hippo signaling pathway, respectively (105, 106).
Gastric cancer

PTPN1 significantly promotes gastric cancer (GC) cell

proliferation in vitro and tumor growth in vivo by regulating

Src-related signaling pathways, such as the Src/Ras/MAPK and

Src/PI3K/AKT pathways (107–109). Furthermore, PTPN1 is

implicated in the poor prognosis of gastric cancer, and PTPN2

is linked to the incidence of gastric cancer (57, 109). It is well

known that Helicobacter pylori is a high risk factor for gastric

cancer. Jing Jiang et al. reveals that PTPN11 expression is

elevated in gastric cancer with H. pylori infection (110). In the

early stages of gastric carcinogenesis, CagA from H. pylori

translocates into gastric epithelial cells, undergoes tyrosine

phosphorylation, and binds to PTPN11 in the human gastric

mucosa in vivo to form a complex which is thought to contribute

to the development of gastric cancer (111). SHIP2, similar to

PTPN11, also binds to CagA in a tyrosine phosphorylation-

dependent manner and increases CagA delivery into gastric

epithelial cells (112). Of note, PTPN14 enhances the

proliferation and migration of GC cells by promoting YAP

phosphorylation in the Hippo signaling pathway (113). On the

contrary, PTPN6 attenuates the invasion and migration of GC

cells by dephosphorylating STAT3 (114).
Other cancers

In oral cancer, PTPN11 is significantly up-regulated and

promotes cell invasion and metastasis through the Erk1/2-Snail/

Twist1 pathway (115). In contrast, PTPN12 suppresses oral
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cancer cell proliferation and invasion through induction of

STAT3 dephosphorylation (116). In nasopharyngeal

carcinoma (NPC), PTPN6 potentiates radioresistance and

restrains cellular senescence (117). However, PTPN12, a

favorable prognostic biomarker for NPC patients, suppresses

the proliferation and migration of NPC cells through negative

regulation of EGFR (118). In melanoma, PTPN1 promotes

melanoma progression by activating the Src signaling pathway

through dephosphorylating the Tyr530 site of Src as well as by

enhancing the Erk1/2 signaling pathway, respectively (119, 120).

Moreover, PTPN14 blocks caveolin-1-induced cancer cell

metastasis by decreasing phosphorylation at the Tyr14 site of

caveolin-1 (121). In the head and neck squamous cell carcinoma,

PTPN11 promotes invadopodia formation through suppression

of Rho signaling, leading to cancer metastasis (122). Yet,

PTPN13 controls the progression of spontaneous or HPV-

induced squamous cell carcinoma by inhibiting Ras/Raf/MEK/

Erk signaling (123). In clear cell renal cell carcinoma, PTPN3

and PTPN13 act as tumor suppressors by inactivating the AKT

signaling pathway (124, 125), whereas PTPN12 restrains the

proliferation of renal cell carcinoma by inhibiting PI3K/

mechanistic target of rapamycin (mTOR) pathway activity

(126). In bladder cancer, PTPN1 and PTPN12 function as

tumor suppressors to attenuate the growth, invasion and

migration of cancer cells (127, 128). However, PTPN23 can

regulate the motility of bladder cancer cells (129). In

cholangiocarcinoma more than 40% of PTPN3 somatic

mutations, activation of PTPN3 mutations promotes cancer

cell proliferation and migration and is linked to cancer

recurrence (130). Strikingly, PTPN3 suppresses proliferation

through inhibition of AKT phosphorylation and is correlated

with a favorable prognosis in patients with perihilar

cholangiocarcinoma (131). In pancreatic cancer, PTPN1 and

PTPN2 are highly expressed and associated with poor survival.

Specifically, PTPN1 directly decreases pyruvate kinase M2

(PKM2) Tyr105 phosphorylation, which further leads to

AMP-activated protein kinase (AMPK) inactivation, thereby

increasing mTOC1 activity. PTPN2 activates the JAK-STAT

signaling pathway to promote cancer progression (132, 133).

Furthermore, inflammatory response and oxidative stress induce

up-regulation of PTPN2, which accelerates the progression of

laryngeal and thyroid cancers (134, 135). PTPN11 also promotes

laryngeal cancer growth through the Ras/Raf/Mek/Erk pathway

and serves as a prognostic indicator for laryngeal cancer (136).

Several studies have shown that PTPN2, which exerts tumor

suppressive effects in skin carcinogenesis, suppresses

proliferation and induces apoptosis by negatively regulating

multiple oncogenic signaling pathways, including STAT1,

STAT3, STAT5, PI3K/AKT, and fetal liver kinase 1 (Flk-1)/

JNK signaling pathways (137–139). In hematologic tumors,

specific deficiency of PTPN1 in mouse bone marrow

accelerates the development of acute myeloid leukemia (140),

and PTPN6 inhibits the progression of diffuse large B-cell
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lymphoma by dephosphorylating STAT3 (141). Finally,

PTPN12 inhibits tumor progression in osteosarcoma cells

probably by inactivating PI3K/AKT and Erk pathways (142).

In summary, we have comprehensively described the role of

PTPN family members in human cancers and observed that various

PTPN family members are implicated in almost all oncogenic

phenotypes, such as tumor proliferation, metastasis, and drug

resistance, through unique molecular pathways. Interestingly, the

majority of PTPN family members perform oncogenic or tumor

suppressive functions depending on the tumor in which they are

located. Nevertheless, a small number of PTPN familymembers exert

more specific functions, for instance, PTPN11 as a tumor promoter

whereas PTPN13 as a tumor suppressor in almost all cancers.

Dual role of PTPNs in specific
cancers

Strikingly, we observed that a portion of the PTPN family

members have dual roles in the same cancer. For instance, PTPN1

in hepatocellular carcinoma, PTPN11 in colon cancer and

PTPN12 in breast cancer can be both tumor promoters and

tumor suppressors based on different molecular pathways

(Figure 2). Elucidating the dual roles of certain PTPN may lead

to better understanding of its exact functions in tumorigenesis.
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Dual-sidedness of PTPN1 in
hepatocellular carcinoma

Leukocyte-derived chemotoxin 2 (LECT2), a tumor

suppressor in HCC, contributes to blocking vascular invasion

and metastasis in HCC by recruiting PTPN1 to antagonize MET

receptor activation (143). However, Wei-Tien Tai et al. and Fang

Yuan et al. proposed that PTPN1 exerts a carcinogenic role in

HCC. Specifically, Pituitary homeobox 1 (PITX1) exerts a tumor

suppressive effect in hepatocarcinogenesis through regulation of

Ras guanosine triphosphatase-activating protein (p120RasGAP)

expression levels, but PTPN1 attenuates the protein stability of

PITX by directly dephosphorylating PITX1 at residues Y160, Y175

and Y179 (144). Furthermore, down-regulation of PTPN1

expression inhibits HCC progression possibly by inactivating the

PI3K/AKT pathway and activating the AMPK pathway (145).
Two faces of PTPN11 in colon cancer

Controversially, Wang Y et al. (146) and Yu M et al. (147)

demonstrated that PTPN11 promotes vascular growth and

proliferation of colon cancer cells as well as resistance to

oxaliplatin through AKT and Erk signaling pathways. However,
FIGURE 2

Dual role of PTPNs in specific cancers.
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Yuan H et al. (148) and Wei B et al. (149) argued that PTPN11

possesses anticancer activity in colon cancer. Mechanistically, the

anticancer effects of PTPN11 are achieved by interacting with

CD81 and inhibiting its expression and by inhibiting DNA repair

and enhancing stimulator of interferon genes (STING) pathway-

mediated antitumor immunity, respectively.
Dual role of PTPN12 in breast cancer

In addition, several studies have shown that PTPN12 is

linked to a favorable prognosis in TNBC patients by suppressing

multiple oncogenic tyrosine kinases, including HER2 and EGFR,

thereby dampening breast cancer cell survival, migration and

EMT (150–152). However, Harris IS et al. noted that PTPN12 is

highly expressed in TNBC and promotes resistance to oxidative

stress and supports tumorigenesis by regulating forkhead box O

(FOXO) signaling (153).

Regarding the controversy of the three PTPN members

mentioned above in specific cancers, we have speculated the

following three reasons. First, there may be some differences in

various experimental settings and tumor cell lines. Second, there are

also differences in molecular mutation profiles in tumor cell lines. If

mutations occur in the regulator of PTPN, it might lead to a change

in the function of PTPN so that the exact opposite function appears

in the same cancer. Furthermore, mutations in PTPN itself can

result in opposite functions, as previously described, where PTPN3

inhibits the progression of cholangiocarcinoma by suppressing the

AKT signaling pathway, whereas mutated PTPN3 promotes the

oncogenic properties of cholangiocarcinoma (130, 131). Likewise,

mutations occurring in PTPN11 significantly potentiate its

function, producing oncogenes that facilitate the proliferation of

leukemic cells (154). Third, PTPNs possess phosphatase active

structural domains that regulate the dephosphorylation of many

substrate proteins, including tumor promoters or suppressors, so

focusing on only one molecular pathway may introduce bias for the

overall role of PTPNs in a particular cancer.

Therefore, the study of PTPNs in combination with cell lines in

vitro and mouse genetic studies in vivo, by knocking out specific

regulators and effectors, will contribute to a better understanding of

the specific signaling pathways regulated by PTPNs.
PTPNs are crucial targets for
regulating immune cells
development and cancer
immunotherapy

Given that PTPNs occupy important roles in human tumors,

in addition to achieving pro- or anti-tumor effects by modulating

multiple oncogenic pathways, perhaps they also reshape the

tumor microenvironment by inducing tumor cells to secrete
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various cytokines and chemokines. It is well known that

immune cells are an essential component of the tumor

microenvironment (TME) (155). There is growing evidence that

some PTPN family members can negatively regulate the

development and differentiation of immune cells to achieve an

anti-inflammatory response and prevent the onset of autoimmune

diseases, but on the other hand provide an opportunity for tumors

to evade surveillance by the immune system. Since the

immunosuppressive tumor microenvironment creates the

appropriate conditions for tumor proliferation and metastasis,

an accumulating number of studies indicate that targeting PTPNs

could activate the body’s immune system, thereby enhancing the

efficacy of anti-tumor immunity (Figure 3).
PTPNs mediate the physiological
functions of immune cells

During development and maturation, various inhibitory

receptors linked with phosphatases are expressed by subsets of

T cells. Phosphatases, in turn, dephosphorylate key players in

receptor signaling pathways. Several studies have shown that

PTPN family members are crucial for suppressing T cell

activation, with PTPN2, PTPN3, PTPN4, PTPN7, PTPN11

and PTPN22 negatively regulating T-cell receptor (TCR)

signaling (156–163). Specifically, PTPN2 dephosphorylates and

inactivates Src family kinases to regulate T cell responses (162).

PTPN22 functions in a synergistic manner when forming a

complex with C-terminal Src kinase (CSK), and dissociation of

this complex is necessary to recruit PTPN22 to the plasma

membrane, where it down-regulates TCR signaling and

inhibits T cell activation (164). However, end-binding protein

1 (EB1) specifically binds to the P1 structural domain of

PTPN22 by competing with CSK, which contributes to the

regulation of TCR signaling (165). Another essential purpose

of PTPN11 is to prevent T cells from differentiating into the T-

helper 2 (Th2) phenotype (166). However, phosphatase activities

of PTPN3 and PTPN4 are now dispensable for T cell

development and T cell effector function (156, 157, 167).

PTPN12, although not required for T cell development or

primary responses, promotes secondary T cell responses by

dephosphorylating the protein tyrosine kinase Pyk2 (168).

Likewise, PTPN1 and PTPN6 are also negative regulators of

B-cell receptor (BCR) signaling and hold a vital role in

modulating B cell activation and immunological tolerance

(169, 170). Mechanistically, PTPN1 restricts B cell activation

via negatively regulating CD40, B cell activating factor receptor

(BAFF-R), and toll-like Receptor 4 (TLR4) signaling in B

cells (169).

In Dendritic cells (DCs), ablation of PTPN1 and PTPN12

impairs motility in vivo and prevents efficient antigen

presentation to T cells (171, 172). These results indicate that

PTPN1 and PTPN12 hold a significant regulatory role in
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FIGURE 3

Members of the PTPN family are involved in regulating the development of immune cells and serve as therapeutic targets for inflammatory
diseases, autoimmune diseases and cancer.
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modulating a central DC function of initiating adaptive immune

responses in response to innate immune cell activation.

Pro-inflammatory macrophages M1 and tolerance-inducible

macrophages M2 are the two major subpopulations of

macrophages, the former mediating host defense and the latter

undertaking homeostatic and tissue regeneration functions

(173). PTPN1 negatively regulates macrophage development

through macrophage-colony stimulating factor 1 (CSF-1)

signaling. Mechanistically, PTPN1 deficiency tends to make

cells more sensitive to CSF-1, resulting in increased

phosphorylation of the CSF-1 receptor (CSF-1R) in bone

marrow-derived macrophages and increased inflammatory

activity, implying that PTPN1 is a critical regulator of bone

marrow differentiation and macrophage activation in vivo

(174, 175).
PTPNs perform pivotal roles in the
regulation of inflammatory and
autoimmune responses

Currently, several studies place PTPN family members as a

double-edged sword in the regulation of inflammatory

responses. PTPN1 deletion displays enhanced inflammatory

act iv ity in vi tro and in vivo through const i tut ive

overexpression of activation markers as well as greater

sensitivity to endotoxins (174). However, PTPN1 deletion

increases Mitogen-activated protein kinase phosphatase-1

(MKP1) expression in mouse macrophages, facilitating M2

macrophage polarization, which promotes the production of

anti-inflammatory cytokine (IL-10) according to another

study (176).

PTPN2 is a negative regulator of cytokine signaling, and its

loss-of-function carriers have increased susceptibility to the

development of inflammatory diseases (173). For instance,

PTPN2-/- mice develop progressive systemic inflammatory

diseases with dermatitis, liver inflammation, chronic

myocarditis, gastritis, nephritis, and salpingitis, as well as

elevated serum interferon-g (IFN-g) (177). Mechanistically,

PTPN2 deficiency promotes increased infiltration of B and T

lymphocytes, macrophages and DCs (178, 179), and up-

regulated IFN-g induces STAT signaling and secretion of IL-6

and monocyte chemoattractant protein-1 (MCP-1) (180).

PTPN6 is a key regulatory protein in the control of

inflammatory cell signaling, and its knockdown not only

increases systemic inflammation in mice, but more importantly,

is also implicated in human inflammatory diseases (181). For

instance, Th2 cell production and mast cell-specific cytokine

production are potentiated in Motheaten mice with a natural

mutation in PTPN6. In an OVA-induced model of allergic airway

inflammation, eosinophil inflammation, mucus hypersecretion,

and airway hyperresponsiveness are enhanced inMotheaten mice,

all of which contribute to the development of allergic disease
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(182). Furthermore, conditional deletion of PTPN6 in neutrophils

is sufficient to initiate IL-1 receptor-dependent inflammatory skin

diseases. Mechanistically, PTPN6 prevents caspase-8- and Ripk3-

Mlkl-dependent cell death and concomitant IL-1a/b release (183).
PTPN7 exerts an anti-inflammatory function by negatively

regulating Erk1/2 and p38, which enhance pro-inflammatory

tumor necrosis factor (TNF)-production (184).

Intriguingly, PTPN11 holds many functions in distinct cells.

PTPN11 protects mice from intestinal inflammation in epithelial

cells (185), while promotes colitis and colitis-driven colon cancer

in macrophages (186). Mechanistically, PTPN11 impairs IL-10-

STAT3 signaling and its dependent anti-inflammatory response

in human and mouse macrophages (186). Additionally, PTPN11

promotes the formation of neutrophil extracellular traps (NETs)

through the Erk5 pathway, leading to pro-inflammatory

cytokines such as TNF-a, IL-1b, IL-6, IL-17A, and CXCL-15,

which exacerbate the inflammatory response (187).

Currently, despite extensive research on the mechanisms

underlying autoimmune diseases, the fundamental causes

remain unknown. Here, the main focus is on the regulatory

mechanisms by which PTPN2 and PTPN6 can be involved in

autoimmunity. Autoimmunity is characterized by a significant

increase associated with antinuclear antibodies, inflammatory

cytokines and immunoglobulins. Autoimmunity is exacerbated

by PTPN2 deficits in numerous immune lineages, including

naive T cells, T follicular helper cells (Tfh), and B cells (188).

PTPN6 deficiency in B cells and DC cells promotes B-1a cell

development and Th1 cell differentiation, respectively, leading to

autoimmune disorders (189, 190). In addition, PTPN6 acts as a

key negative regulator in allergic inflammation and allergen-

induced anaphylaxis by regulating the function of mast

cells (191).
PTPNs are emerging targets for cancer
immunotherapy

In recent years, significant progress has been made in the

immunotherapy of cancer. With the intensive exploration of

immune checkpoints, several PTPN family members have been

revealed to possess essential roles in anti-tumor immunity and

are promising therapeutic targets.

PTPN1 is elevated in intra-tumor T cells, and knocking it

out promotes T cell antitumor activity and chimeric antigen

receptor (CAR) T cell efficacy against solid tumors (192).

Furthermore, deletion of PTPN1 and PTPN2 in DCs

stimulated the growth of IL-12 and IFN-g, which amplified the

IL-12/STAT4/IFN-g/STAT1/IL-12 positive autocrine loop,

boosting the therapeutic potential of mature monocyte-derived

dendritic cells (moDCs) in tumor-bearing mice (193).

In several studies, PTPN2 has been proven to be a negative

regulator of interferon signaling (194, 195). Lack of PTPN2 in

tumor cells enhances immunotherapy efficacy through
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augmenting interferon-mediated antigen presentation and

growth inhibition (196). What’s more, PTPN2 deficiency in T

cells boosts the generation of Tim-3+ cells, CD44+ effector/

memory T cells, and CD8+ T cell infiltration and cytotoxicity

in tumors, as well as the efficacy of anti- programmed cell death

protein 1 (PD-1) and CAR T cells in solid tumors by promoting

activation of Src family kinase LCK and cytokine-induced

STAT-5 signaling (195, 197–199), which can actually facilitate

tumor control and improve immunotherapy potency.

Furthermore, inhibition of PTPN3 in lymphocytes expands

the proportion of tumor-infiltrating lymphocytes and activated

lymphocyte cytotoxicity, as well as the anticancer effect on small

cell lung cancer (SCLC) and large cell neuroendocrine

carcinoma (LCNEC) (200, 201).

PTPN6 shows a negative regulatory effect on the activation

of T cells, natural killer (NK) cells and macrophages. However,

deletion of PTPN6 significantly strengthens the capacity of these

immune cells for tumor killing and promotes anti-tumor

immunity (202–204). Of note, a considerable and durable T

cell-mediated suppression of tumor growth was observed when

PTPN6 knockdown of OT-I T cells was combined with anti-PD-

1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)

immunotherapy (205). And the ability of tumor-associated DCs

(TADCs) and MoDCs to take up and process immune

complexes (IC) containing tumor antigens bound to antitumor

antibody, ultimately inducing anti-tumor immunity in vivo, was

augmented by simultaneous inhibition of PTPN6 and

phosphatases regulating AKT activation (206).

PTPN11, involved in the regulation of tumor and immune

cell signaling, is a critical modulator of PD-1 and B and T

lymphocyte attenuator (BTLA) immune checkpoint pathways

and promising drug target in tumor immunotherapy (207).

Inhibition of PTPN11 activity enhances tumor-intrinsic IFN-g
signaling, resulting in increased chemoattractant cytokine

release and cytotoxic T cell recruitment, as well as increased

expression of major histocompatibility complex (MHC) class I

and programmed cell death ligand 1 (PD-L1) on the surface of

cancer cells, along with decreased differentiation and

suppression of immunosuppressive myeloid cells in the tumor

microenvironment (208, 209). In highly aggressive mouse

models of breast cancer and melanoma, simultaneous

suppression of CSF-1R and PTPN11 to activate macrophages

and promote phagocytosis may be an effective strategy for

macrophage-based immunotherapy (210). Mechanistically,

PTPN11 deletion attenuates CSF-1 receptor signaling, which

depletes pro-tumor M2 macrophages while increasing anti-

tumor M1 macrophages (211). On the other hand, deletion of

PTPN11 enhances macrophage response to IFN-g and increases

production of the tumor cell-derived cytokine CXCL9, thereby

promoting tumor infiltration of IFN-g-producing T cells (212).

More importantly, PTPN11 inhibitors combined with

immunotherapies, such as anti-PD-1/L1, would reverse

immunosuppression in the tumor microenvironment (TME)
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and potentiate the systemic antitumor effect in NSCLC cancer

(213, 214).

Currently, research on PTPN22 is not only limited to

autoimmune diseases, but more evidence indicates a

considerable importance in tumor immunity. Implantation of

syngeneic tumors in PTPN22-/- mice resulted in greater

infiltration and activation of macrophages, NK cells and T

cells, which in turn led to spontaneous tumor regression. More

importantly, the combination with anti-PD-1/L1 therapy in the

presence of PTPN22 inhibition significantly enhanced the

antitumor efficacy (215, 216).

Based on the above findings, PTPN family members still

serve as negative regulators in the immune system by restricting

the development and differentiation of immune cells to achieve

anti-inflammatory and anti-autoimmune responses. But on the

other hand, PTPNs could make tumor cel ls evade

immune surveillance.
Non-coding RNAs regulate the role
of PTPNs in cancers

A substantial body of evidence has demonstrated that

inhibition of some PTPN family members can considerably

improve the efficacy of antitumor immunity, and the

availability of small molecule inhibitors has given hope.

However, drug discovery is an extremely long process, so the

search for new therapeutic tools is urgent. The presence of a

large number of non-protein-coding RNAs in the human

genome and the potential for these non-coding RNAs to affect

normal gene expression and disease progression make them a

new class of targets for drug discovery (217). Therefore, we

present here a comprehensive summary of ncRNAs, including

miRNAs, lncRNAs and circRNAs, involved in the regulation of

PTPNs in tumors and other diseases (Figure 4).
MicroRNAs are implicated in the
regulation of tumorigenesis, progression,
metastasis, and drug resistance by
targeting PTPNs

Currently, it is widely reported that miRNAs can influence

the disease process, especially in cancer, by regulating the

expression of PTPN1. In hepatocellular carcinoma, miR-122

and miR-206 target the 3’ untranslated region (3’ UTR) of

PTPN1 mRNA and induce its degradation (218, 219), while

miR-125a-5p suppresses PTPN1 expression via the MAPK

signaling pathway (220), both of which ultimately alleviated

the progression of hepatocellular carcinoma. Interestingly, miR-

14b reverses the EMT phenotype of cisplatin-resistant lung

adenocarcinoma cells by targeting PTPN1 (221). PTPN1 has

also been discovered to be a target of numerous miRNAs in
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various malignancies. PTPN1 is targeted by miR-542-5p and

miR-34c in glioma (222, 223), miR-146b and miR-338-3p in

gastric cancer (224, 225), and miR-193a-3p in breast cancer

(226). By regulating PTPN1, the miRNAs described above serve

as tumor suppressors in cancers. Conversely, by targeting

PTPN1, a tumor suppressor in bladder cancer, the miR-130

family (miR-130b, miR-301a, and miR-301b) contributes to

cancer development (127).

The previously mentioned PTPN3 can confer chemotherapy

resistance and tumor stem cell-like characteristics to ovarian

cancer cells, but its expression is regulated by miR-199 (82).

What’s more, miR-574-5p facilitates phosphorylation of p44/42

MAPKs by targeting PTPN3, thereby promoting angiogenesis in

gastric cancer (227).

PTPN4 appears to function as a tumor suppressor in cancer,

miR-15b-5p activates STAT3 signaling by targeting PTPN4 to

promote oral squamous cell carcinoma progression (228). And

miR-183 promotes migration and invasion of CD133+/CD326+

lung adenocarcinoma initiating cells by inhibiting PTPN4 (229).

Furthermore, miR-34a-5p inhibits ROS-mediated apoptosis in

papillary thyroid cancer cells through down-regulation of

PTPN4 (230).

The regulation of PTPN6 is primarily mediated by a tiny

proportion of miRNAs. Among them, miR-152 indirectly

promotes PTPN6 expression to suppress lymphoma growth

through down-regulation of DNA methyltransferase 1

(DNMT1) (231). But in nasopharyngeal carcinoma, miR-4649-

3p inhibits cell proliferation and miR-378g partially enhances
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the radiosensitivity of NPC cells both by targeting PTPN6

(232, 233).

PTPN9 exhibits various functions depending on the type of

tumor. PTPN9 promotes proliferation and invasion of

esophageal cancer cells and non-small cell lung cancer and is

negatively regulated by miR-126 and miR-126-3p, respectively

(234, 235). But in cervical, breast, colorectal and gastric cancers,

PTPN9 functions as a tumor suppressor with an essential role in

suppressing tumor proliferation, invasion and migration.

However, PTPN9 is targeted by miR-613 and miR-96 in

cervical cancer (236–238), miR-96 and miR-24 in breast

cancer (239, 240), miR-21 in colorectal cancer (241), and miR-

181a-5p in gastric cancer (242).

PTPN11, which is considered an oncogenic factor and a key

target for cancer immunotherapy according to several studies, is

mediated by several miRNAs. MiR-124 and miR-489 inhibited

the progression of renal cell carcinoma and hypopharyngeal

squamous cell carcinoma by suppressing the expression of

PTPN11, respectively (243, 244). In cutaneous squamous cell

carcinoma, miR-204 inhibits STAT3 and facilitates the MAPK

signaling pathway, possibly through PTPN11, a direct target of

miR-204 (245). In oral squamous cell carcinoma, miR-186

directly binds to 3’ UTR of PTPN11 mRNA and inhibits the

expression, which suppresses the signaling activity of Erk and

AKT that is required for cancer cell growth (246). In

hepatocellular carcinoma, miR-186 inhibits self-renewal of

hepatocellular carcinoma stem cells and is more sensitive to

cisplatin treatment by binding to 3’-UTR of PTPN11 mRNA and
FIGURE 4

Members of the PTPN family are regulated by miRNAs, lncRNAs and circRNAs in various cancers.
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reducing its expression (247). However, miR-500a-3p promotes

HCC cancer stem cell properties by targeting PTPN11, a

negative regulator of the JAK/STAT3 signaling pathway (248).

Moreover, HER2 is a direct target of miR-489, overexpression of

miR-489 suppresses breast cancer invasion by attenuating

HER2-PTPN11-MAPK signaling, which in turn inhibits miR-

489, producing a mutually inhibitory loop (249).

PTPN12 suppresses progression of multiple cancers and is

negatively controlled by miR-106a-5p in hepatocellular

carcinoma (250), miR-503 in retinoblastoma (251), miR-194

in ovarian cancer (252), and miR-200b in colon cancer (253).

MiR-30e-5p promotes lung adenocarcinoma cell growth by

targeting PTPN13 and is detrimental to the survival of LUAD

patients (254). What’s more, miR-26a desensitizes NSCLC cells

to tyrosine kinase inhibitors by targeting PTPN13.

Mechanistically, miR-26a, which is downstream of EGFR

signaling, directly targets and silences PTPN13 to maintain

activation of Src, the dephosphorylated substrate of PTPN13,

thereby enhancing the EGFR pathway in regulatory

circuits (255).

By targeting PTPN14, miR-21 promotes intrahepatic

cholangiocarcinoma proliferation and growth in vitro and in

vivo (256), miR-4295 and miR-4516 contribute to the

progression of osteosarcoma and glioblastoma, respectively

(257, 258). But miR-217 inhibits EMT in gastric cancer (259).

In addition, miR-125a-5p is implicated in imatinib

resistance in gastrointestinal stromal tumor (GIST).

Mechanistically, overexpression of miR-125a-5p suppresses

PTPN18 exp r e s s i on and sub s equen t l y enhanc e s

phosphorylated FAK (pFAK) expression in GIST cells, which

contributes to imatinib resistance in GIST (260, 261).

PTPN23, which features a tumor suppressor function in

testicular germ cell tumors, is regulated by miR-142-3p (262).

In light of the fact that almost all miRNAs target and

suppress the expression of PTPNs, miRNA modulation

combined wi th immunothe rapy may be a nove l

therapeutic strategy.
LncRNAs and circRNAs regulate the role
of PTPNs in cancers in part by sponging
miRNAs

In recent years, a growing review of the literature revealed

that lncRNA and circRNA appear to play a pivotal role in cancer

and hold considerable promise as novel biomarkers and

therapeutic targets (263). Next, we illustrate the mechanisms

by which lncRNAs and circRNAs modulate PTPN family

members, respectively.

PTPN family members have been shown to be regulated by

different lncRNAs, including but not limited to lncRNA UCA1,

TINCR, HNF1A-AS1, LINC00673, MEG3, GATA2-AS1, and

HOTAIR. Specifically, lncRNA UCA1 accelerates the
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proliferation of breast cancer cells based on the miR-206/

PTPN1 axis (264). In hepatocellular carcinoma, lncRNA

TINCR interacts directly with and inhibits PTPN2 to promote

the proliferation and invasion through activating STAT3

signaling (265). However, lncRNA HNF1A-AS1 reverses the

malignancy of hepatocellular carcinoma by enhancing the

phosphatase activity of PTPN6 (266). Furthermore,

LINC00673 can strengthen the interaction of PTPN11 with

PRPF19, an E3 ubiquitin ligase, and promote PTPN11

degradation through ubiquitination, resulting in reduced Src-

Erk oncogenic signaling and enhanced STAT1-dependent

antitumor response activation (267). PTPN11 can be targeted

by lncRNA MEG3, thereby suppressing the proliferation and

metastasis of renal cell carcinoma (243). On the basis of the miR-

940/PTPN12 axis, lncRNA GATA2-AS1 restrains esophageal

squamous cell carcinoma progression (268). In contrast, ectopic

expression of lncRNA HOTAIR promotes drug resistance and

augments GC cell proliferation and migration by inhibiting miR-

217 expression and enhancing PTPN14 expression (269).

CircRNAs with similar regulatory mechanisms to lncRNAs

are implicated in the regulation of PTPN family members,

namely circRNA CCDC66, circMMD 007, circUSP7,

has_circ_0001971, and circPRRX1. CircRNA CCDC66, in

particular, promotes osteosarcoma proliferation and metastasis

by sponging miR-338-3p to increase PTPN1 expression (270).

Likewise, circMMD_007 promotes oncogenic effects in lung

adenocarcinoma progression via the miR-197-3p/PTPN9 axis

(271). CircUSP7 renders NSCLC patients resistant to anti-PD1

immunotherapy. Mechanistically, circUSP7 suppresses CD8+ T

cell function by sponging miR-934 to up-regulate PTPN11

expression (272). Moreover, hsa_circ_0001971 promotes the

proliferation of oral squamous carcinoma cells via miR-186/

PTPN11 axis (273). Finally, circPRRX1 strengthens doxorubicin

resistance in gastric cancer by regulating miR-3064-5p/PTPN14

signaling (274).

Taken together, lncRNAs and circRNAs serve as oncogenic

or tumor suppressors and regulate the expression of PTPNs

overwhelmingly through sponging miRNA, thereby dominating

cancer progression.
Conclusion and perspective

Over the last three decades, a growing series of investigations

have been able to conclude that PTPNs perform an essential role

in almost all phenotypes of tumor cells. As described previously,

there are numerous members of the PTPN family that all exert

distinct functions in various malignancies, although they share

the same catalytic structural domain. Some PTPNs exploit their

structural domains with phosphatase activity to dephosphorylate

a variety of oncogenic substrate proteins to achieve activation or

inactivation, thereby participating in the regulation of cancer

progression. Importantly, some members confer stem cell-like
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and EMT characteristics to tumor cells. The functions and

signaling pathways regulated by PTPN family members are

tissue- and cell-specific, so most PTPNs exert their functions

still depend on the type of tumor in which they are located, but a

small proportion of members still serve more specific functions,

for instance, PTPN11 exerts oncogenic effects, while PTPN13

holds a tumor suppressive role in almost all cancers. Currently,

although part of the mechanisms underlying the engagement of

PTPN family members in tumors have been elucidated, the

understanding of their operational mechanisms is even more

challenging and urgent. In the future, a better understanding of

the multifunctional and sophisticated regulatory mechanisms of

PTPNs may be significant for the development of more specific

targeted therapeutic strategies.

What’s more, PTPNs also hold critical role in cancer

treatment, growing evidence suggested that PTPNs are

implicated in chemotherapy and radiotherapy resistance. For

instance, PTPN11 confers cisplatin resistance in small cell lung

cancer, while PTPN6 promotes radiation resistance in

nasopharyngeal carcinoma. Furthermore, inhibiting PTPNs,

regardless of immune checkpoint inhibitors or CAR T

therapies, can significantly improve the efficacy of

immunotherapy. Currently, PTPN11 is the most reported to

be associated with tumor immunotherapy and has spawned

multiple inhibitors, including but not limited to SHP099 and

TN0155, which in combination with anti-PD-1 and anti-PD-L1

therapies can significantly improve the malignant characteristics

of tumors (209, 213, 275). Accordingly, further development of

novel PTPNs inhibitors and investigation of the safety of these

compounds is urgently need for conquering cancer in future.

Given the special role of PTPNs in cancer progression and

immunotherapy, the question about how PTPNs inhibitors can

move from the laboratory to rational clinical application should

be the next thing to consider. As previously described, PTPNs

perform a negative regulatory role in the immune system.

Inhibition of PTPNs can activate a variety of immune cells

involved in the killing of tumor cells, and also significantly

potentiate the efficacy of cancer immunotherapy. In brief, PTPN

inhibitors are positive modulators of antitumor immunotherapy.

Then regarding the rational use of PTPNs inhibitors there are

three situations: first, if PTPN plays a carcinogenic role, the

usage of PTPN inhibitors will dramatically enhance the

antitumor efficacy by suppressing the carcinogenic properties

of PTPN while activating the immune system to combat tumors.

Second, if PTPN exerts a tumor suppressive function, the use of

PTPN inhibitors needs to be more cautious because it is not clear

whether the anti-cancer effect of PTPN itself or the anti-tumor

immune effect of PTPN inhibition is stronger, which needs to be

further studied in mouse models. Third, there is the issue of the
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dual-sidedness of PTPN in specific cancers that we mentioned

earlier, which requires even more in vivo experiments to further

explore. Therefore, the rational and accurate clinical use of these

inhibitors depends on the individual situation.

As we all know, the inhibitors applied in the clinic must be

with high specificity. For the development of PTPN inhibitors,

there is still a thorny issue of specificity. Furthermore, designing

drug-like inhibitors for PTPNs is challenging due to their highly

conserved and positively charged active site structures (276).

Hence, the elucidation of the mechanisms regulating PTPNs

may become a new therapeutic strategy. Here, we systematically

summarize the ncRNAs involved in the regulation of PTPNs as

an alternative to developing new inhibitors and propose that

ncRNAs, especia l ly miRNAs, in combinat ion with

immunotherapy, which may be a promising therapeutic

approach to combat tumors.
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