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Dynamics-based data science in biology
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Life science has long been a rich subject
for research, and continues to develop at
high speed. One of the major aims of life
science is to study themechanisms of var-
ious biological processes on the basis of
biological big-data.Many statistics-based
methods have been proposed to catch
the essence by mining such data, includ-
ing the popular category classification,
variables regression, group clustering,
statistical comparison, dimensionality
reduction, and component analysis.
However, these mainly elucidate static
features or steady behavior of living
organisms because of a lack of temporal
data. A biological system is inherently
dynamic, and with increasingly accu-
mulated time-series data, there is a need
for dynamics-based approaches based
on physical and biological laws to reveal
dynamic features or complex behavior of
biological systems [1]. In this perspec-
tive, we review three dynamics-based
data science approaches for studying
dynamical bio-processes: namely, dy-
namical network biomarkers (DNB),
landscapes of differentiation dynamics
(LDD) and autoreservoir neural net-
works (ARNN). They are all data-driven
or model-free approaches but based on
the theoretical frameworks of nonlinear
dynamics, that is, ordinary differential
equations (ODE), partial differential
equations (PDE) and artificial neural
networks (NN), respectively. Figure 1A
and B illustrates dynamical bio-processes
and their omics data in biomedical
fields, while Fig. 1C summarizes the
three approaches of dynamics-based
data science, which serve as typical

examples for studying biological
systems from a data-driven dynamical
perspective.
(i) Providing early warning signals

of pre-diseases/tipping-points by
bifurcation theory. The rapid
development of high-throughput
technology is allowingmeasurement
of omics data to become more
precise and less time-consuming.
Identifying the tipping-point/pre-
disease state is an urgent task for
individuals in precision and preven-
tion medicine. The DNB theory [2]
is a dynamics-based data-driven ap-
proach to quantify critical states [1]
during disease progression, as shown
in the first column of Fig. 1C. A so-
called pre-disease state (between
normal and disease states) just
before the disease state is defined as
the state just before the bifurcation
point of the dynamic system (ODE),
which can be detected only by data
based on three statistical conditions:
(1) average standard deviations of
DNB-members drastically increase;
(2) Pearson correlation coefficients
(PCCs) between DNB-members
drastically increase in absolute
values; (3) PCCs between DNB-
and non-DNB-members drastically
decrease. The three conditions are
generically derived by exploring
the low-dimensional feature of the
centermanifold just before the bifur-
cation of a fixed point (equilibrium)
attractor in a nonlinear dynamical
system. DNB not only quantitatively
detects the ‘Wei-Bing’/pre-disease

state or predicts the imminent
disease state for predictivemedicine,
but also provides early warning
signals of other critical transitions,
such as influenza outbreaks or even
pandemics [2,3].

(ii) Quantifying cell potential landscape
by diffusion map theory with diver-
gence theorem. Single-cell sequenc-
ing data provide us the opportunity
to study heterogeneity of tissues
and capture features of different
stages in cell differentiation pro-
cesses. Various methods have been
proposed to construct the differenti-
ation tree, identify cells’ pseudo-time
trajectory of differentiation, and
study the transition rate between
different cell-states [4,5]. In contrast
to the traditional distance-based
and entropy-based methods, LDD
describes the cell differentiation as
a non-equilibrium system by consid-
ering birth and death of cells on the
basis of a source-sink Fokker-Planck
equation (PDE) [6,7], as shown
in the second column of Fig. 1C.
By exploring diffusion map theory
and divergence theorem, LDD can
numerically estimate the potential of
each cell cluster only with scRNA-
seq data. In particular, LDD can not
only identify the stem cell cluster
with the highest pluripotency but
also construct Waddington’s poten-
tial [8], without specific prior knowl-
edge on stem cells and cell flow rates,
which are required by the previous
algorithms.
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Figure 1. Dynamics-based data science approaches. (A) An illustration for a dynamic biological
process, which usually includes a series of stages or states. (B) An illustration for omics-data ex-
tracted from experiments. (C) Three examples of dynamics-based data science approaches. The
first column is the dynamic network biomarker (DNB) framework. DNB provides early warning sig-
nals for pre-disease/tipping-point detection from omics data of different health states, based on the
bifurcation theory with ordinary differential equations (ODE). The second column is the landscape
of a differentiation dynamics (LDD) framework, which distinguishes different cell types, provides
pseudo-time trajectory for cell clusters (C1, C2, C3 and C4), and constructs a potential landscape for
the cell differentiation process from single-cell RNA-sequencing (scRNA-seq) data during a cell dif-
ferentiation process, based on the diffusion map theory of partial differential equations (PDE) named
Fokker-Planck equations with source-sink terms. The third column is the autoreservoir neural net-
work (ARNN) framework, which is able to predict short time-series from high-dimensional data by
spatiotemporal information transformation (STI) and also significantly save computing resources,
based on the delay-embedding and generalized embedding theorems of dynamic systems.

(iii) Predicting time-series from short-
term high-dimensional data by
delay embedding theory. Predicting
future values from a short-term
time-series is a difficult task but a
hot topic. To overcome the small
sample size problem, spatiotemporal

information transformation (STI)
equations with nonlinear functions
were derived based on the Takens’
delay embedding theory for a non-
linear dynamic system [9] and its
generalization [10]. ARNN [11]
utilizes the STI equations by taking

advantage of the NN’s ability to
approximate any complicated non-
linear function, from the short-term
high-dimensional data, as described
in the third column of Fig. 1C. The
STI equations represent the essen-
tial dynamics from the data, which
equivalently enlarge the sample
size and thus make the prediction
accurate. In particular, different from
the traditional reservoir structure
with external dynamics [12], ARNN
adopts nonlinear dynamics of a
target system to efficiently transform
the high-dimension spatial data into
the low-dimension temporal data
of a target variable, that is, future
values or prediction [11]. ARNN
not only could reduce the consump-
tion of computing resources, but
also avoids overfitting caused by
much fewer training parameters.
ARNN has been shown to have
superior performances in predicting
short-term time-series, such as gene
expressions, daily cardiovascular
disease admissions, wind speed,
sea-level pressure, etc.

The efficiency of dynamical-based
data science approaches on biological
data has been demonstrated by the three
methods above, which all show strong
power in solving biological questions
and are complementary to traditional
statistics-based data science approaches.
In addition, dynamical-based data
science approaches can be applied to
dynamical causality detection by ex-
ploring continuity of the cross mapping
function between the observed variables.
From a methodological viewpoint, we
can summarize how to build a dynamics-
based data-driven approach for studying
biological dynamics as follows.

(i) It generally starts from basic laws
which a biological process obeys,
e.g. proper dynamical equations for
describing its time evolution. Note
that how to narrow down to an
appropriate dynamical model, e.g.
ODE, PDE or NN, depends on the
specific situation or prior informa-
tion of the problem under study.

(ii) Then, we need to derive the generic
or essential statistic features, that
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can be characterized by data,
from such dynamical equations or
models.

(iii) With such features characterized by
data, we can quantify various dy-
namical processes of biological sys-
tems based only on the measured
data in a fully model-free manner.

Taken together, we conclude that the
principles and advantages of dynamics-
based data-driven approaches are ex-
plicable, quantifiable and generalizable.
‘Explicable’ indicates that every term
in the dynamics-based data-driven ap-
proaches has its physical or biological
sense. ‘Quantifiable’ ensures that the sys-
tem can be measured by objective cri-
teria and is comparable by quantitative
indicators. ‘Generalizable’ says that the
method can be improved by adding new
factors or be generalized to other systems
by proper modifications. In particular,
dynamics-based data science approaches
exploit the essential features of dynami-
cal systems in terms of data, e.g. strong
fluctuations near a bifurcation point, low-
dimensionality of a center manifold or
an attractor, and phase-space reconstruc-
tion from a single variable by delay em-
bedding theorem, and thus are able to
provide different or additional informa-
tion to the traditional approaches, i.e.
statistics-based data science approaches.

Webelieve that dynamical-baseddata sci-
ence approaches will play an important
role in systematic research in biology and
medicine in future.
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IMMUNOLOGY

Hunting field: insights on distribution pattern of bacteria and immune
cells in solid tumors
Yang Li1,2,†, Yuqi Wang1,†, Xuefei Li1,2,∗ and Chenli Liu1,2,∗

Bacterial cancer therapy, which was
first applied in the clinic in 1868, has
regained attention owing to the recent
progress made in synthetic biology.
Considering their easily manipulated
genomes, preferential accumulation
in tumors, and penetration abilities,
bacteria have shown great therapeutic
potential in tumor treatment. During

treatment, it has been found that bac-
teria in tumors lead to corresponding
changes in the abundance as well as lo-
cations of a variety of cells and sub-
stances, especially immune cells, form-
ing a unique distribution pattern. This
has been suggested to contribute to
the therapeutic effect of bacterial cancer
therapy [1].

Generally, one to three days after the
administration of Salmonella, Clostrid-
ium,EscherichiaorPseudomonas inmouse
models, a relatively stable distribution
pattern of bacteria and immune cells can
be observed in tumors [2–4]. The sta-
ble distribution pattern (Fig. 1A) shares
a common feature: bacteria mainly col-
onize the necrotic region of the tumor,
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Figure 1. (A) The distribution pattern of bacteria in a tumor. Bacteria mainly colonize the necrotic/hypoxia area of a tumor, which can be divided into
two modes: (a) evenly distributing throughout the necrotic area or (b) accumulating in the hypoxic area with a few colonies deeper in the necrotic area.
Neutrophils gather around the necrotic area and form a ring to surround the bacteria, which sometimes overlaps with part of the bacterial area. (B)
Proposals for optimizing bacterial therapy. The methods can be divided into three aspects. One is to target the viable area in the tumor by preventing the
formation of the neutrophils ring (1), modifying the bacteria to have the potential of escaping the confinement of the neutrophil ring (2), combining bacteria
with chemotherapy and radiotherapy (3) or designing bacteria to secrete drug proteins which could spread to the viable rim (4). Another is to introduce
plasmids expressing tumor antigens/cytokines/immunostimulators/immunosuppressive/checkpoint inhibitor or other proteins with immunomodulatory
activities into bacteria to enhance the bacterial stimulation on the immune system (5). The third is to reduce the side effects elicited by the bacteria and
ensure safety by controlling the synthesis and secretion of toxic proteins or immuno-regulatory factors specifically within the tumor tissue by quorum-
sensing system (6) or tumor-specific promoter (7), pre-exposing mice to heat-killed bacteria (8) or co-injecting the attenuated bacteria with inflammatory
factors (9).

Page 2 of 4



Natl Sci Rev, 2021, Vol. 8, nwab023

with neutrophils forming a ring-like
structure surrounding the area of bacte-
ria. Two modes of bacterial distribution
are observed: an even distribution
throughout the necrotic area (Fig. 1Aa),
or accumulation in the hypoxic area in
close proximity to the necrotic region,
with a few colonies deeper in the necrotic
area (Fig. 1Ab) [2,3,5–9].

The development of the intra-tumoral
distribution pattern is a dynamic process
with interactions among bacteria, tumor
cells and the immune system. After trans-
port into tumor tissues through the blood
stream, bacteria colonize tumors, while
simultaneously the concentrations of im-
mune factors increase as well. This re-
sults in the formation and expansion of
necrotic areas in tumors, while a rim of
viable tumor cells is left on the periph-
ery. Tumors grow and create an immune-
privileged environment that protects can-
cer cells from being easily found and
killed by immune cells. After the entry
of bacteria, however, the ‘peace’ is bro-
ken. Like a hunting process, bacteria are
the ‘rabbits’ running into the flush for-
est where they can hide well, and the in-
nate immune cells are the ‘dogs’ chasing
behind. When entering the forest, rab-
bits and dogswake up the sleeping ‘tigers’
(adaptive immune cells) and the other
dogs. Then they find that there are also
many ‘sheep’ (cancer cells) hiding there,
andmore tigersmay come into the forest.
Therefore, tigers and dogs start to hunt
both the sheep and the rabbits, forming a
busy and crowded ‘hunting field’.

In the ‘hunting field’, both dogs and
tigers contribute to the death of sheep.
The invasion of bacteria in a tumor can
promote the infiltration of a large num-
ber of innate as well as adaptive immune
cells. Importantly, the exhausted effector
immune cells can be re-activated. There
is a possibility that specific types of bac-
teria have similar antigens with cancer
cells, which can help to stimulate the im-
mune cells that can recognize neoanti-
gens. Furthermore, the death of can-
cer cells caused by bacteria and innate
immune cells may expose the neoanti-
gens to the adaptive immune system,
which could further enhance the cancer-
specific killing. Therefore, when, where
and how the bacteria interact with the

immune system impacts the effectiveness
of therapy.

This hunting field not only reflects
the state of the tumor during treatment,
but also affects the curative potential of
bacterial treatment. Based on the distri-
bution pattern, we can analyze and utilize
the colonization mode of bacteria and
overcome known limitations to optimize
therapy. The recurrence of tumors after
bacterial treatment is due to the prolifer-
ation of tumor cells within the viable tu-
mor area, especially for large tumors [10].
This suggests taking additional measures
to target the rim of viable cells (Fig. 1B1–
4). Enhancing the antitumor effect of the
immune system can be another potential
method (Fig. 1B5), e.g. by increasing in-
filtration or anti-neoplastic activity of im-
mune cells induced by bacteria. It is also
crucial to balance toxicity and efficacy
of bacterial therapy. Measures should
be applied to reduce the side effects of
bacteria to alleviate the harm on normal
tissues, ensuring safety (Fig. 1B6–9).

Nevertheless, some questions require
further exploration. This spatial pattern
can be important for the survival of bac-
teria, but whether this prolonged exis-
tence of bacteria in tumors helps or lim-
its the therapeutic effects still awaits an
answer. It remains unclear why some ge-
netically engineered bacteria show poor
therapeutic effect and fail to induce a sim-
ilar spatial pattern in a tumor. It is vital
to know which abstracted appendages or
gene products of bacteria contribute to
the formation of a spatial pattern. In ad-
dition, although the immunology of the
tumor microenvironment has been in-
tensively studied, the behavior and effect
of immune cells after bacteria have en-
tered the tumor tissue are still obscure.
Which immune cells or immune factors
have crucial impacts on therapeutic ef-
fects remains to be elucidated.

Currently, the primary methods used
in studies of intra-tumoral patterns are
immunofluorescence and immunohis-
tochemical staining of tumor sections.
Therefore, only static images and snap-
shots of the spatiotemporal evolution
can be captured. The continuous and
dynamic characterization of different
components in the whole tumor, before
and after bacterial treatment, is lacking.

We should note that even for primary
tumors, the spatiotemporal evolution of
the tumor microenvironment is still an
active area of study. How bacteria trigger
the required cancer-killing by immune
cells will be an important focus of future
study. To achieve this goal, standardized
and quantitative data acquisition and
analysis are required. Specifically, we
need to quantify and understand how
bacteria help to attract and activate cor-
responding immune cells and how the
immune cells interact with cancer cells.
Since the interactions among bacteria
and the tumor microenvironment are
complex, mathematical models can be
helpful for explorations of the detailed
mechanisms underlying the pattern
evolution. More importantly, such
exploration will be helpful for indicating
the potential directions of strain modifi-
cations and possible treatment strategies.
The challenges are not limited to bacteria
engineering, and mechanistic studies on
the spatiotemporal evolution of patterns
will shed light on the rational engineering
of the tumor microenvironment for a
safe and effective therapy.
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