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Mild behavioral impairment (MBI), characterized by the late-life onset of sustained and
meaningful neuropsychiatric symptoms, is increasingly recognized as a prodromal stage
of dementia. However, the underlying neural mechanisms of MBI remain unclear. Here,
we examined alterations in the topological organization of the structural covariance
networks of patients with MBI (N = 32) compared with normal controls (N = 38). We
found that the gray matter structural covariance networks of both the patients with
MBI and controls exhibited a small-world topology evidenced by sigma value larger
than one. The patients with MBI had significantly decreased clustering coefficients at
several network densities and local efficiency at densities ranging from 0.05 to 0.26,
indicating decreased local segregation. No significant differences in the characteristic
path length, gamma value, sigma value, or global efficiency were detected. Locally,
the patients with MBI showed significantly decreased nodal betweenness centrality
in the left middle frontal gyrus, right inferior frontal gyrus (opercular part), and left
Heschl gyrus and increased betweenness centrality in the left gyrus rectus, right insula,
bilateral precuneus, and left thalamus. Moreover, the difference in the bilateral precuneus
survived after correcting for multiple comparisons. In addition, a different number and
distribution of hubs was identified in patients with MBI, showing more paralimbic hubs
than observed in the normal controls. In conclusion, we revealed abnormal topological
patterns of the structural covariance networks in patients with MBI and offer new insights
into the network dysfunctional mechanisms of MBI.

Keywords: mild behavioral impairment, structural covariance network, gray matter volume, small-world,
neuroimaging

INTRODUCTION

Mild behavioral impairment (MBI) is a neurobehavioral syndrome characterized by the late-life
onset of sustained and meaningful neuropsychiatric symptoms (NPSs) of any severity that other
formal medical and psychiatric nosologies cannot account for Mortby et al. (2018). MBI can be
divided into five subcategories: decreased motivation and drive, affective/emotional dysregulation,
impulse dyscontrol, social inappropriateness, and abnormal perception or thought content (Ismail
et al., 2016). Growing evidence suggests that the presence of MBI in older individuals is associated
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with a greater risk of cognitive decline and dementia than in
those without MBI. A large-scale study on cognitively normal
individuals showed that individuals with MBI had significantly
worse cognitive performance at baseline and a significantly
greater decline in attention and working memory over 1 year
(Creese et al., 2019). Another longitudinal study on cognitively
normal individuals reported that of those who progressed from
being normal to MCI or dementia, more than 59% developed
NPSs before the diagnosis of any cognitive disorder (Wise et al.,
2019). A recent study involving community-dwelling adults
showed an association of apathy with an increased risk of
developing probable dementia (Bock et al., 2020). Therefore,
MBI is becoming increasingly recognized as a prodromal stage
of dementia. However, the underlying neural mechanisms of
MBI remain unclear.

Structural covariance analysis is a powerful method for
investigating large-scale structural brain networks, also referred
to as structural covariance networks. This method is widely
applied based on a critical assumption that the morphological
traits of interconnected brain regions will covary because of
coordinated neurodevelopmental influences (Alexander-Bloch
et al., 2013). A growing body of literature has demonstrated
disrupted covariance between regions as a result of various brain
diseases, such as Alzheimer’s disease (AD) (Supekar et al., 2008;
Yao et al., 2010; Dai and He, 2014), schizophrenia (Spreng
et al., 2019), depression (Neufeld et al., 2020), amyotrophic
lateral sclerosis (Zhang et al., 2019), and epilepsy (Li et al.,
2020). However, to our knowledge, no study has investigated the
structural covariance networks in patients with MBI.

In general, three experimental approaches, which include
graph analysis, seed analysis and principal component analysis
can be used to reveal structural co-variance networks. Among
these, graph theory has been widely employed to characterize
the global and local topological characteristics of human brain
networks (Lo et al., 2011). Growing evidence suggests that
changes in the topological organization of brain networks
are associated with impairment of cognitive or behavioral
functions (Stam, 2014; Mears and Pollard, 2016; Liao et al.,
2017). A retrospective study constructed the resting-state
functional networks from AD Neuroimaging Initiative (ADNI)
database and demonstrated significantly decreased characteristic
path length and increased global efficiency in MCI using
graph theory methods (Zhang et al., 2020). Another study
reported that individuals with subjective cognitive decline
(SCD) exhibited higher nodal degree centrality and lower
nodal betweenness in the bilateral hippocampus compared
to the healthy controls, which indicated a compensatory
mechanism of the functional connectome underlying SCD (Chen
et al., 2020). A recent study using graph theory methods
demonstrated that distinct changes in functional connectivity
at the global and local network levels were associated with
different NPS clusters in patients with AD (Chang et al., 2020).
Moreover, another recent study reported that alterations in
structural network measures in AD-spectrum patients were
associated with impaired memory function and pathological
biomarkers of AD (Sheng et al., 2021). Structural covariance
network analysis using graph theory methods may offer

novel insights into the neural mechanisms underlying MBI at
the network level.

In the present study, we applied graph theory to investigate
the topological abnormalities of structural covariance networks
based on gray matter (GM) morphology in cognitively normal
older adults with MBI (the MBI group) compared with those
without MBI (the normal control group). In addition, some
global network parameters, such as small-world parameters, local
and global efficiency, and a regional network parameter, i.e.,
nodal betweenness centrality, were evaluated to describe the
topological organization of the structural covariance networks of
the two groups. We hypothesized that compared to the normal
control group, the MBI group would exhibit aberrant topological
patterns of structural covariance networks evidenced by altered
global network parameters, altered regional network parameters,
or divergent hub distributions.

MATERIALS AND METHODS

Subjects
Seventy cognitively normal older participants (32 patients
with MBI, 38 normal controls) aged ≥50 years were recruited
from the Department of Neurology at Huadong Hospital,
Shanghai, China (from August 2018 to June 2020). This study
was approved by the ethics committee of Huadong Hospital
(2019K145), and informed consent was obtained from all
participants. All participants received clinical, neurological,
and neuropsychological assessments and brain magnetic
resonance imaging (MRI) examinations. The neuropsychological
assessment battery included the Clinical Dementia Rating scale
(CDR), Mini-Mental State Examination Scale (MMSE), Geriatric
Depression Scale (GDS), Self-rating Anxiety Scale (SAS), and
Chinese version of the MBI Checklist (MBI-C). The MBI-C is a
validated and efficient MBI case ascertainment tool (Ismail et al.,
2017). Moreover, two previous studies determined cutoff points
for the MBI-C in detecting MBI in individuals with MCI (Mallo
et al., 2018a) and subjective cognitive decline (SCD) (Mallo et al.,
2018b). Cui et al. (2019) demonstrated that the Chinese version
of the MBI-C has high reliability and validity and could replace
the NPI-Q for AD dementia screening in the Chinese population.
All participants had a CDR score of 0 and met the following
MMSE scores based on education level: (1) middle school level
and above, >24 points; (2) primary school level (education
years > 6), >20 points; and (3) illiterate, >17 points, and their
Clinical Dementia Rating Scale total combined score = 0. The
diagnosis of MBI was made based on the ISTAART-AA MBI
criteria (Ismail et al., 2016) and an MBI-C score > 8. The normal
controls did not meet the ISTAART-AA MBI criteria or had an
MBI-C score = 0. Detailed demographic data of all participants
are listed in Table 1.

Magnetic Resonance Imaging Data
Acquisition and Preprocessing
T1-weighted structural MRI scans were acquired with
the MAGNETOM Skyra 3.0T at the Department of
Radiology, Huadong Hospital, Shanghai (repetition time/echo
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TABLE 1 | Demographic data of the participants.

MBI group Control group P-value

Total number (n) 32 38

Gender (man/female) 3/5 10/9 0.151a

Age (years) 67.31 ± 6.58 66.26 ± 7.34 0.795b

Education (years) 9.31 ± 1.54 11.94 ± 2.42 0.000*b

MMSE score 28.19 ± 1.20 28.78 ± 0.78 0.022*b

GDS score 10.19 ± 3.72 2.63 ± 1.44 0.000*b

SAS score 51.19 ± 4.80 28.26 ± 2.67 0.000*b

MBI-C total score 10.38 ± 1.45 0.00 ± 0.00 0.000*b

Decreased drive/motivation 3.56 ± 1.71 0.00 ± 0.00 –

Affective/emotional dysregulation 5.12 ± 1.54 0.00 ± 0.00 –

Impulse dyscontrol 1.81 ± 1.68 0.00 ± 0.00 –

Social inappropriateness 0.00 ± 0.00 0.00 ± 0.00 –

Abnormal thoughts/perception 0.00 ± 0.00 0.00 ± 0.00 –

aChi-square test.
bNon-parametric test (Mann–Whitney U test).
P < 0.05 was considered significant.
*Represent significant difference.
MMSE, Mini-Mental State Examination; GDS, Geriatric Depression Scale; SAS, Self-rating Anxiety Scale; MBI-C, Mild Behavioral Impairment checklist.

time = 220/2.46 ms, slice thickness = 5 mm, spacing = 1.0 mm,
FOV = 23.00 cm, total slices = 22). T2-weighted imaging,
diffusion-weighted imaging, fluid-attenuated inversion recovery
were also acquired. Previous studies reported that high white
matter (WM) hyperintensities burden were associated with the
increased risk of dementia and cognitive decline (Habes et al.,
2016; Soldan et al., 2020). Thus we assessed WM hyperintensities
according to the Fazekas scale (Fazekas et al., 1989) and
participants who had a Fazekas scale score of ≥2 were excluded
to remove the confounding effect of this factor on the brain
network analysis. However, no participants were excluded.
Image preprocessing was performed using CAT121 based on
SPM122, which was described in detail in a previous study (Li
et al., 2020). Briefly, all structural images were segmented into
GM, WM, and cerebrospinal fluid images. High-dimensional
DARTEL normalization was applied to normalize and modulate
the GM images. The voxel size of the modulated GM images was
1.5 × 1.5 × 1.5 mm.

Gray Matter Structural Covariance
Network Construction
We used the Automated Anatomical Labeling template to
parcellate the brain into 90 cortical and subcortical regions of
interest (ROIs), as was done in previous studies (Yao et al.,
2010). Regional GM volumes of each ROI were extracted and
corrected for age, gender, education and mean overall GM
volume by a linear regression analysis (He et al., 2007). Then,
a 90 × 90 correlation matrix for each group was constructed
by calculating the Pearson correlations between the corrected
regional GM volumes. Adjacency correlation matrices were
binarized and generated at a range of densities (0.05–0.5, with an
interval of 0.01).

1http://dbm.neuro.uni-jena.de/cat/
2http://www.fil.ion.ucl.ac.uk/spm

Global Network Parameters
To characterize the topological organization of the structural
covariance networks, widely used global network parameters
were applied in this study, including the clustering coefficient,
characteristic path length, small-world index, global efficiency,
and local efficiency. Briefly, the clustering coefficient of a node
is defined as the ratio of the number of existing connections
between the direct neighbors of the node to the maximal
possible number of connections between them. The clustering
coefficient of a network is the average of the clustering
coefficients across all nodes in the network, which can measure
the network segregation of the brain. The characteristic path
length of a network refers to the average shortest path lengths
between all pairs of nodes in the network and is a measure
of network integration. The normalized clustering coefficient
(gamma) and normalized path length (lambda) are defined as
the ratios of the clustering coefficient and the characteristic
path length, respectively, of the brain network to those of 1,000
matched random networks (He et al., 2008). The small-world
index (sigma) is computed as the ratio of gamma to lambda
(Humphries and Gurney, 2008). A sigma value greater than 1
is a hallmark of a small-world network, reflecting an optimized
balance between segregation and integration in the network.
The global efficiency is calculated by taking the inverse of the
harmonic mean of the shortest path lengths across pairs of
nodes in a network, showing the global efficiency of the parallel
information transfer in the network. The global efficiency of a
subgraph composed of the nearest neighbors of a node is referred
to as the local efficiency of that node. The local efficiency of a
network is the average of the local efficiencies across all nodes.

Regional Network Parameters
Nodal betweenness centrality is used to describe the regional
characteristics of the structural covariance networks. It is given
by the taking fraction of all the shortest paths passing through
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a node in the network, capturing the influence of a node on
the information flow between other nodes in the network, and
was normalized by the mean network betweenness centrality for
group comparison.

Network Hubs
Network hubs are essential for integrating diverse information
sources and supporting efficient information communication. In
the present study, a node whose nodal betweenness centrality was
at least one standard deviation higher than the average network
betweenness centrality was defined as a hub (Li et al., 2020).

Statistical Analyses
Non-parametric permutation tests with 1,000 repetitions
were performed to test intergroup differences in global and
regional network parameters (He et al., 2008; Zhang et al.,
2019). The corrected GM volumes of all participants were
randomly reassigned into two new groups in each permutation.
A corresponding binarized matrix in each randomized group
was constructed using the same range of densities as in the real
brain networks. The network parameters and the intergroup
differences for each randomized group were calculated at each
density to generate a permutation distribution of differences
under the null hypothesis. For each network parameter, the
actual difference between patients with MBI and the controls
was placed in its corresponding permutation distribution to
obtain the significance level. The significance level for group
differences in the global and regional network parameters was
set at p < 0.05 and after false discovery rate correction was
carried out for multiple comparisons. The Brain Connectivity
Toolbox was used to calculate the network parameters and detect
the structural covariance network differences between groups
(Rubinov and Sporns, 2010). BrainNet Viewer was employed for
network visualization (Xia et al., 2013).

RESULTS

Global Network Analysis
This study showed that the structural covariance networks
of both groups followed a small-world topology across the
range of densities, as evidenced by sigma values greater
than one (Figure 1D). As shown in Figure 1, the clustering
coefficient (Figure 1A), local efficiency (Figure 1F), gamma value
(Figure 1C), and sigma value (Figure 1D) in the MBI group were
lower than those in the control group across densities ranging
from 0.05 to 0.5 (clustering coefficient and local efficiency) and
from 0.05 to 0.26 (gamma and sigma values). The characteristic
path length (Figure 1B) and global efficiency (Figure 1E) of
both groups were similar. Significant differences (p < 0.05) in
the clustering coefficient at several network densities (Figure 2A,
arrows) and in the local efficiency values at 0.05 < density < 0.26
were detected between groups (Figure 2F, arrows). No significant
intergroup differences were detected in the characteristic path
length (Figure 2B), gamma value (Figure 2C), sigma value
(Figure 2D), or global efficiency (Figure 2E).

Regional Network Analysis
Compared with the normal controls, patients with MBI
demonstrated a significant decrease in nodal betweenness
centrality in the left middle frontal gyrus, right inferior frontal
gyrus (opercular part), and left Heschl gyrus. Conversely, some
regions, including the left gyrus rectus, right insula, bilateral
precuneus, and left thalamus, in the MBI group showed a
significant increase in nodal betweenness centrality. However,
of all these regions, only the bilateral precuneus survived after
correcting for multiple comparisons (p < 0.05) (Figure 3 and
Supplementary Table S1).

Network Hub Analysis
A different number and distribution of network hubs were found
between the MBI group and the control group. Specifically, 14
network hubs in the control group (Figure 4), i.e., the right
precentral gyrus, left middle frontal gyrus, left inferior frontal
gyrus (opercular part), bilateral Rolandic operculum, right medial
superior frontal gyrus, left anterior cingulate and paracingulate
gyri, right calcarine fissure and surrounding cortex, left middle
occipital gyrus, left fusiform gyrus, left supramarginal gyrus,
bilateral Heschl gyrus, and right middle temporal gyrus, and 11
network hubs in the MBI group, i.e., the right superior frontal
gyrus (orbital part), left middle frontal gyrus, right Rolandic
operculum, left gyrus rectus, right insula, left anterior cingulate
and paracingulate gyri, right postcentral gyrus, right superior
parietal gyrus, bilateral precuneus, and right paracentral lobule,
were identified. Three network hubs were common to both
groups: the bilateral Rolandic operculum and the left anterior
cingulate and paracingulate gyri (Figure 4).

DISCUSSION

In this study, we investigated whether the topological
organization of structural covariance networks was disrupted
in patients with MBI compared with that in healthy controls.
The patients with MBI had significantly decreased clustering
coefficients at several network densities and local efficiency at
densities ranging from 0.05 to 0.26, indicating decreased local
segregation. No significant differences in the characteristic
path length, gamma value, sigma value, or global efficiency
were detected. In addition, both decreased and increased nodal
betweenness centrality and a different number and distribution
of network hubs were observed in patients with MBI compared
with the normal controls. These findings provide novel insights
into the altered topological organization in the structural
covariance networks of patients with MBI.

Previous studies demonstrated that the brain networks of
healthy individuals have an economical small-world topology
(Liao et al., 2017). In line with these studies, we found
that the GM structural covariance networks of both patients
with MBI and controls showed a small-world topology, which
provided further evidence supporting the notion that small-
world topology is a fundamental organizational principle of
structural brain networks.
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FIGURE 1 | Changes in global network parameters as a function of network density. (A) Clustering coefficient, (B) Characteristic path length, (C) Gamma, (D) Sigma
value, (E) Global efficiency, (F) Local efficiency in normal controls (controls) and MBI patients.

The results of the global network analysis showed significantly
lower clustering coefficients and local efficiency in patients with
MBI compared with controls, indicating alterations in network
topological properties in patients with MBI, consistent with
previous studies (Yao et al., 2010; Menon, 2011; Zhao et al.,
2012; Reijmer et al., 2013; Brier et al., 2014). The clustering
coefficient measures the extent of local interconnectivity in
a network, and local efficiency reflects the efficiency of the

exchange of information between subgraphs. Lower clustering
coefficient and local efficiency indicate decreased network
segregation in patients with MBI, which is in accordance
with previous findings that the local efficiency of the network
was decreased in patients with AD and that the clustering
coefficient was lower in cognitively normal participants who
harbored the AD biomarker pathology (Zhao et al., 2012;
Brier et al., 2014).
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FIGURE 2 | Differences between normal controls and MBI patients in global network parameters as a function of network density. The 95% confidence interval and
group differences in (A) Clustering coefficient, (B) Characteristic path length, (C) Gamma, (D) Sigma value, (E) Global efficiency, (F) Local efficiency. The * red marker
denotes the difference between normal controls and MBI patients; the * signs lying outside of the confidence intervals indicate the density where the difference is
significant at P < 0.05. The positive values indicate MBI patients > controls and negative values indicate MBI patients < controls. The arrows represents the critical
point where there is a significant difference between the two groups.
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FIGURE 3 | Differences between MBI group and normal control group in
nodal betweenness centrality. Regions that showed significant differences
between both groups in regional network topology were presented by the
AUC of full connectivity mapped on ICBM152 surface template. The color bar
represents log(1/p-value). The hot colors in the color bar represent regions
that have significantly higher nodal betweenness centrality in the normal
controls than in the MBI group, while cold color indicates regions with
significantly higher nodal betweenness in the MBI group than in the normal
controls. L, left; R, right.

The present study showed significantly decreased nodal
betweenness centrality in the left middle frontal gyrus, right
inferior frontal gyrus (opercular part), and left Heschl gyrus in
patients with MBI. These regions partly overlap the frontoparietal
control network (FPCN), which encompasses regions across
the frontal and parietal cortices. The FPCN plays a critical
role in flexible information processing and goal-related behavior
(Nico et al., 2007). Our results were in agreement with findings
that altered FPCN connectivity was associated with affective
symptoms in MCI (Munro et al., 2015; Joo et al., 2017).
Previous studies have also reported NPS-related atrophy, reduced
metabolism and perfusion, and WM abnormalities in the frontal
and parietal cortices in MCI and AD patients (Ota et al., 2012;
Trzepacz et al., 2013; Delrieu et al., 2015).

The present study also showed significantly increased nodal
betweenness centrality in several brain regions in patients with
MBI, including the left gyrus rectus, right insula, bilateral
precuneus, and left thalamus. Moreover, the differences in
the bilateral precuneus survived after correcting for multiple
comparisons, which is consistent with previous studies showing
increased nodal betweenness centrality of the precuneus in MCI
and AD groups (Yao et al., 2010) and children with epilepsy
(Li et al., 2020).

The precuneus, as a key region of the default mode
network (DMN) (Utevsky et al., 2014), plays a crucial role
in self-referential processing and episodic memory retrieval
and emotion regulation (Fransson and Marrelec, 2008;
van Buuren et al., 2010). The increased nodal betweenness
centrality in the precuneus in patients with MBI implies the
increased influence of the precuneus on information flow in

the network. However, previous studies have shown amyloid
deposition (Dickerson et al., 2009), reduced cerebral glucose
metabolism (Tripathi et al., 2014) and decreased functional
connectivity (Balthazar et al., 2014) in the precuneus in
patients with AD. Drzezga et al. (2011) employed a multimodal
imaging method in non-demented subjects and found that
a higher amyloid burden correlated with lower whole-brain
connectivity and metabolism, particularly in the posterior
cingulate cortex/precuneus. Other studies using resting-state
functional MRI (fMRI) demonstrated decreased resting-state
activity and connectivity of the precuneus in patients with
depression (Liu et al., 2017; Li et al., 2018; Dutta et al., 2019).
A recent study found a significant correlation between higher
rumination levels and decreased connectivity strength degree of
the right precuneus in patients with major depressive disorder
(Jacob et al., 2020). These results seem to contrast with our
results, one possible explanation for which is that the increased
nodal betweenness centrality in the precuneus might indicate
hyperactivity of the precuneus, resulting in an impaired ability
to synchronize with the rest of the network and leading to the
apparent reduced connectivity. Since the present study was based
on the structural covariance analysis of structural MR images, the
functional connectivity of the precuneus could not be analyzed.
In the future, resting-state fMRI analysis is needed to further
confirm this hypothesis.

The hubs in both groups in the present study were
predominantly located in regions of the association cortex, in
accordance with previous studies (He et al., 2008; Drzezga
et al., 2011; Bai et al., 2012) and evidencing the pivotal role
of the association cortex in receiving convergent information
in human cortical networks and combining this information
to create emergent psychological properties (Goldman-Rakic,
1988). Three common hubs between the two groups were
identified, including the left anterior cingulate cortex (ACC)
and bilateral Rolandic operculum. The ACC is one of the
crucial limbic structures in emotional self-control and behavioral
and cognitive processing (Allman et al., 2001). Converging
evidence has shown that decreased GM volume, perfusion
or metabolism in the ACC were found in patients with AD
exhibiting NPSs (Rosenberg et al., 2015). Another study found
aberrant ACC connectivity during information processing in
schizophrenia (White et al., 2010). The ACC was identified
as one of the common hubs, indicating its pivotal role in
the brain network.

The patients with MBI and normal controls also differed
in the number and distribution of network hubs. More
paralimbic cortices, including the right superior frontal
gyrus (orbital part), left gyrus rectus, and right insula, were
identified as hubs in the patients with MBI than in the
normal controls. The insula, a core region of the salience
network (SN) with extensive connections to many areas of
the cortex and limbic system, receives and integrates various
types of information, including motivational, emotional,
and cognitive information, from cortical and subcortical
regions and then relays this information to other regions to
influence subsequent choice and action (Grupe and Nitschke,
2013). Dysfunction in the insula could lead to inappropriate
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FIGURE 4 | Network hubs in normal controls and MBI patients. Red color represents common network hubs in both groups, blue color represents hubs only in MBI
group, and green color represents hubs only in control group.

behaviors. Previous studies have shown hyperactivation of
the anterior and mid-insula across different anxiety disorders
(Etkin and Wager, 2007; Qiao et al., 2017). Other studies using
resting-state fMRI demonstrated increased insular functional
connectivity associated with hyperactivity syndrome (i.e.,
agitation, irritability, aberrant motor behavior, euphoria, and
disinhibition) (Balthazar et al., 2014) and decreased connectivity
of the insula associated with apathy syndrome in patients with
AD (Jones et al., 2019).

We also observed that the bilateral precuneus, which had a
higher nodal centrality in patients with MBI, became a new hub
region, which may reflect compensatory recruitment.

LIMITATIONS

This study had some limitations that should be addressed.
First, the sample size of our study was relatively small and
thus may not reflect real cortical networks as accurately as
possible. Second, this study built the structural covariance
network at the group level, which is impossible to perform
the correlation analysis between the network parameters and
neuropsychological/behavioral scores. Third, in this study, GM
structural covariance network was constructed based on clinical
quality MRI, which may be not optimal for assessing GM
structural covariance. However, Nowrangi et al. (2020) also
utilized the clinical quality MRI to examine the interaction
between structural brain volume measures and occurrence of
neuropsychiatric symptoms (NPS) in outpatient memory clinic

patients. Compared to other studies from research settings, We
hope this study will serve as a validating first step in the eventual
application of more sophisticated neuroimaging methods to
study neural mechanisms underlying MBI. Future research from
our group will implement inversion-prepared 3D T1-weighted
sequences (e.g., MP-RAGE) to assess structural connectivity
at single subject level and elucidate the relationship between
network parameters and neuropsychological/behavioral scores in
patients with MBI.

CONCLUSION

The present study revealed the abnormal topology of the
structural covariance networks in patients with MBI. Our
findings offer new insights into the network dysfunctional
mechanisms of MBI, and alterations in the topological patterns of
structural covariance networks may serve as potential biomarkers
for the early detection and diagnosis of patients with MBI
at high risk of dementia. Future studies with data from
additional imaging modalities, such as transcranial magnetic
stimulation, DTI, and resting state-fMRI, are warranted to
further explore this issue.
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