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Abstract

The successful parasitisation of a plant by a phytophagous insect is dependent on the deliv-

ery of effector molecules into the host. Sedentary gall forming insects, such as grape phyl-

loxera (Daktulosphaira vitifoliae FITCH, Phylloxeridae), secrete multiple effectors into host

plant tissues that alter or modulate the cellular and molecular environment to the benefit of

the insect. The identification and characterisation of effector proteins will provide insight into

the host-phylloxera interaction specifically the gall-induction processes and potential mech-

anisms of plant resistance. Using proteomic mass spectrometry and in-silico secretory pre-

diction, 420 putative effectors were determined from the salivary glands or the root-feeding

D. vitifoliae larvae reared on Teleki 5C (V. berlandieri x V. riparia). Among them, 170 con-

served effectors were shared between D. vitifoliae and fourteen phytophagous insect spe-

cies. Quantitative RT-PCR analysis of five conserved effector candidates (protein disulfide-

isomerase, peroxidoredoxin, peroxidase and a carboxypeptidase) revealed that their gene

expression decreased, when larvae were starved for 24 h, supporting their assignment as

effector molecules. The D. vitifoliae effectors identified here represent a functionally diverse

group, comprising both conserved and unique proteins that provide new insight into the D.

vitifoliae–Vitis spp. interaction and the potential mechanisms by which D. vitifoliae estab-

lishes the feeding site, suppresses plant defences and modulates nutrient uptake.

Introduction

The ability of phytophagous insects to feed from, or reproduce on plant hosts is dependent on

the efficient modulation or evasion of plant defence systems. These defences may be constitu-

tive or induced and can involve complex recognition and response systems that result in the

release of defensive substances, targeted self-destruction of cells or even the attraction of pred-

ators to contend with the invading insect. Insects and particularly those that engage the plant

host on cellular level, attempt to overcome these defences through a variety of strategies

including the delivery of bioactive substances into the plant cellular environment [1]. Many of
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these substances, commonly referred to as effectors, are delivered via the insect saliva directly

on- or into the host tissue and ultimately determine whether the prospected interaction is

compatible or incompatible. Effectors of phytophagous insects are generally small proteins or

molecules that alter host cell structures and/or biological functions once they are exposed to a

suitable plant tissue. Thereby single effectors may interact with several plant protein networks

and modulate various host physiological traits simultaneously [2, 3].

Identifying the effector repertoire of phytophagous insect species is essential to understand

the underlying host-parasite interaction and potentially leads to the development of innovative

pest control strategies reducing reliance on agrochemical application [4, 5]. The identification

of effector molecules within plant tissues is challenging due to their low concentration and

short ephemerality due to metabolic processing. An alternative strategy is to characterise the

effector-enriched salivary gland tissue, which previously resulted in the discovery of multiple

insect effector proteins released by aphids [6–8], hessian flies [9], planthoppers [10, 11], white-

flies [12, 13] and thrips [14]. Significant progress in protein-based mass spectrometry and next

generation sequencing technologies (e.g. RNAseq) facilitated the large-scale identification of

putative insect effectors lists within insect salivary glands or saliva [15–21]. Comparative In-sil-
ico analyses of predicted effector sets across phloem-feeding aphid species identified both con-

served effectors used as part of shared infestation strategies aimed to modulate common host

defensive and cellular processes and unique effectors employed to establish and maintain com-

patible interactions in a host-specific manner [22–24].

Historically grape phylloxera (Daktulosphaira vitifoliae FITCH; Phylloxeridae) was intro-

duced from North America into Europe in the late 19th century with devastating economic

consequences for the wine industry at the time. The sedentary insect infests the Vitis spp. root

system by the formation of root gall tissues, thereby inducing changes in the water, mineral

and assimilate transport affecting the host vine physiology and vigor [25–27]. In addition D.

vitifoliae infestation promotes secondary soil-borne infections harming the root system of

field-grown vines [28, 29]. The majority of commercial Vitis rootstocks tolerate minor phyllox-

era populations on the root system [30], however reports of phylloxera-caused root damages

in vineyards increase worldwide [31–38]. Root gall formation by D. vitifoliae involves the regu-

lation of various host plant physiological traits including the induction of structural root gall

growth [39–43], interference with plant defence mechanisms [44–47] and alteration of sys-

temic nutrient allocation [41, 48, 49].

Insect salivary glands are the principal organs for the production of effectors essential for

the establishment and maintenance of compatible host-parasite interactions. In this study we

aim to identify and characterise effector proteins of root-galling D. vitifoliae, a major pest of

Vitis spp. hypothesising that salivary glands dissected from root-feeding D. vitifoliae larvae are

enriched with effector proteins of diverse functional effector groups involved in the modula-

tion of host physiological pathways and required for insect feeding.

Material and methods

Plant and insect material

Dormant single eye cuttings of the rootstock Teleki 5C (V. berlandieri x V. riparia, clone Gm

6–52) were propagated in Jiffy-7 pots (40 mm; Jiffy Products International AS, Norway) under

controlled greenhouse conditions. In total 48 rooted plants were transplanted in four growth

containers (38 x 28 x 20 cm) containing a mixed substrate of perlite and foamed clay (1:1). The

growth containers were located in a climate chamber set to (25˚C, 60% rH and 16 h photope-

riod) and fertigated weekly (0.25‰ Ferty 3 MEGA) in quarantine conditions [50, 51]. Two
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hundred eggs of a D. vitifoliae single founder lineage were placed adjacent to the roots of each

plant growth container for hatching and asexual reproduction.

Salivary gland collection

After 50 days feeding D. vitifoliae L3 larvae [52] were carefully from root galls and submerged

in ice-cold phosphate buffered saline (PBS) with pH 7.0 (VWR, Radnor, USA) containing a

protease inhibitor cocktail (0.2 mM, Complete Mini, Roche, Basel, CH). For each biological

sample the salivary glands of 100 larvae were dissected under the binocular using two metallic

needles and immediately snap-frozen in liquid N2. The salivary gland samples for the

qRT-PCR analyses were collected likewise, but from L3 larvae submerged in a PBS buffer con-

taining RNAlater (Qiagen, Hilden, DE). For the qRT-PCR analyses salivary glands were dis-

sected from feeding (SG0) and starving D. vitifoliae larvae (SG24). For the starvation

treatment, feeding L3 larvae were gently removed from the root galls and kept without plant

contact on moist filter paper in isolated petri dishes for 24 h at 25±3˚C in the dark simulating

equal environmental conditions. For each treatment four or three biological samples were col-

lected and stored at -80˚C for the subsequent proteomic and transcriptomic analyses,

respectively.

Protein extraction and purification

Salivary glands were homogenized with a motorised pestle in 150 μl lysis buffer (7 M urea, 2 M

thiourea supplemented with a protease inhibitor cocktail, Roche, Complete Mini). Samples

were briefly sonicated and centrifuged at 9000 g for 5 min to pellet the cellular debris. The

supernatant was removed and purified using the 2D clean-up Kit (GE Heath Care, Chicago,

USA) following the manufacturer’s instructions (procedure A) and the resulting protein pellet

was resuspended in 50 μl of 6 M urea, 2 M thiourea, 0.1 M Tris-HCl, pH 8.0 and quantified

using the Qubit Protein assay Kit (Thermo Scientific, Waltham, USA). 20 μl of this resuspen-

sion was removed for protein digestion and 50 mM ammonium bicarbonate was added to

each sample. Proteins were reduced with 0.5 M dithiothreitol (DTT) at 56˚C for 20 min and

alkylated with 0.55 M iodoacetamide (IAA) at room temperature for 15 min, in the dark. 1 μl

of a 1% w/v solution of Protease Max Surfactant Trypsin Enhancer (Promega) and 1 μg of

Sequence Grade Trypsin (Promega) was added and the protein/trypsin mixture was incubated

at 37˚C for 18 hours. Digestion was terminated by adding 1 μl of 100% trifluoroacetic acid

(Sigma Aldrich) and incubation at room temperature for 10 min. Samples were centrifuged

for 10 min at 13,000 × g and a volume equivalent to 40 μg of pre-digested protein was removed

and purified for mass spectrometry using ZipTips (Merck Millipore, Burlington USA) follow-

ing the manufacturer’s instructions and the resulting eluant was concentrated with a Speedy-

Vac (Savant DNA120, Thermo Scientific Waltham, USA) and resuspended in acetonitrile (2%

v/v); TFA (0.05% v/v) buffer.

Mass spectrometry and functional annotation

A volume equivalent to 1 μg of tryptic peptides was loaded onto a QExactive high resolution

accurate mass spectrometer (Thermo Scientific Waltham, USA) connected to a Dionex Ulti-

mate 3000 chromatography system (RSLCnano, Thermo Scientific Waltham, USA). The pep-

tides were separated by a 2% to 40% gradient of acetonitrile on a Biobasic C18 PicofritTM

column (100 mm length, 75 mm ID), using a 120 minute reverse-phase gradient at a flow rate

of 250 nL min-1. All data were acquired with the mass spectrometer operating in automatic

data dependent switching mode. A full MS scan at 140,000 resolution and a range of 300–1700
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m/z was followed by an MS/MS scan, resolution 17,500 and a range of 200–2000 m/z, selecting

the 15 most intense ions prior to MS/MS.

Protein identification and LFQ normalisation of MS/MS data was performed using

MaxQuant v1.5.6.5 (http://www.maxquant.org) to correlate data against the predicted pro-

tein set derived from the D. vitifoliae genome version 3.2 [53] produced and provided by

the International Aphid Genomic Consortium (IAGC) (bipaa.genouest.org/is/aphidbase)

and a contaminant sequence set provided by MaxQuant. The following search parameters

were used: first search peptide tolerance of 20 ppm, second search peptide tolerance

4.5 ppm with cysteine carbamidomethylation as a fixed modification and N-acetylation of

protein and oxidation of methionine as variable modifications and a maximum of two

missed cleavage sites allowed. False Discovery Rates (FDR) were set to 1% for both peptides

and proteins and the FDR was estimated following searches against a target-decoy data-

base. Perseus v.1.5.5.3 (www.maxquant.org/) was used for data analysis, processing and

visualisation. The data matrix was first filtered for the removal of contaminants and pep-

tides identified by site. LFQ intensity values were log2 transformed, ranked on their average

MS intensities and proteins not found in three of the four replicates were omitted from the

analysis.

Functional annotation of the identified proteins and the assignment of gene ontology

(GO) terms was conducted using Blast2GO v. 2.5.0 [54]. BlastP searches were conducted

against the NCBI nr database (as of 12.11.2018) reporting matches with a HSP cut-off

value � 33, BLAST hits with an E�10−3 value and > 90% sequence similarity were reported.

GO terms for all identified proteins were categorized by molecular function (MF), biologi-

cal process (BP) and cellular component (CC) to determine the functional component of

the salivary gland proteome. Signal secretion peptides were identified using a combined In-
silico pipeline consisting of: TMHMM Server 2 [55], PredGPI [56], SignalP Server 5.0 for

Eukarya [57] and SecretomeP Server 2.0 with NN-score > 0.6 [58]. Local BlastP analyses

against published salivary effector candidates of fourteen phytophagous insect species [11,

15, 16, 19, 24, 59–62] were performed with NCBI’s Blast+ tool. Effectors having an e-

value < e-50 and a bit score >100 were considered as orthologous matches for the effector

candidates of D. vitifoliae.

RNA extraction and qRT-PCR analysis

RNA was extracted using the NucleoSpin RNA XS kit (Macherey-Nagel, Düren, Germany) fol-

lowing manufacturer’s instructions yielding 100–250 ng total RNA per sample. Subsequent

reverse transcription (Sensiscript RT kit, Qiagen, Hilden, Germany) and normalisation were

conducted using 50 ng of cDNA. Out of six candidate genes, actin A1 (DV3000100) was cho-

sen as a reference gene after optimisation tests [63] following the Normfinder procedure [64].

The primer pairs were designed based on the D. vitifoliae genome version 3.2 using the NCBI

primer tool software (Table 1). Quantitative RT-PCR analyses were performed using the

Rotor-Gene Cycler Q (Qiagen, Hilden, Germany) employing KAPA SYBR FAST qPCR Uni-

versal (Kapa Biosystems, Wilmington, US) as detector agent in technical duplicates (total reac-

tion vol. 12 μl with 2 μl cDNA (1:7)). Primer efficiencies were determined by conducting

standard curves with four step template dilutions. Cycling conditions were: one cycle for 5

min at 95˚C, 45 cycles for 8 sec at 95˚C, 20 sec at 60˚C, 15 sec at 72˚C, 3 sec at 75˚C [48]. Rela-

tive gene expression levels were calculated using the EasyqpcR package (bioconductor) in R.

Statistics were performed with Independent T tests (p< 0.05) in SPSS (IBM, v24) comparing

the gene expression levels in salivary glands dissected from feeding larvae (SG0) versus starv-

ing larvae at 24 h (SG24).
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Results

Assessment and description of the salivary gland proteome of D. vitifoliae
The dissection of the salivary glands from 100 feeding D. vitifoliae larvae, subsequent protein

extraction and purification yielded 3.5–6.0 μg of total protein. In total 19,901 unique peptides

representing 1511 proteins were identified (hereafter the salivary gland proteome) with log2

normalised LFQ intensities ranging between 21.6–35.9 (S1 Table). Comparative blast searches

conducted with Blast2Go (as of 12.11.2018) revealed high similarities between the salivary

gland proteome of D. vitifoliae and the aphid species. In total 92.64% of the identified proteins

had top blast hits with proteins from: Sipha flava (22.47%), Rhopalosiphum maidis (15.05%),

Melanaphis sacchari (15.05%), Acyrthosiphon pisum (11. 51%), Myzus persicae (10.90%) and

Diuraphis noxia (10.29%) (Fig 1A). The majority of the identified salivary gland proteins, did

not exceed 100 kDa in weight (87.09%) (Fig 1B). The smallest identified protein DV3009370

was annotated as cytochrome b-c1 complex subunit 9 (6.91 kDa, 59 AA), whereas the biggest

protein DV3004164 was an annotated titin isoform X2 (1630.90 kDa, 14427 AA) (S1 Table).

Of the top 100 most abundant proteins, determined by relative ranking based on average

intensities, 36 were associated with structural components including contractile muscles, the

cytoskeleton and the extracellular matrix. In addition, numerous primary metabolic enzymes

(7) and mitochondrial associated proteins (14) were abundantly represented. To explore the

functional composition of the salivary gland proteome in more detail, a Gene Ontology (GO)

term analysis was conducted and terms were grouped into the categories: cellular component,

molecular function and biological process (Fig 1C). For the cellular component category, 44%

of the annotated proteins was associated to ‘cell’ or ‘cell part’, 25% to ‘organelle’ or ‘organelle

part’, 19% to ‘membrane’ or ‘membrane part’ and 12% to ‘protein-containing complexes’.

Within the biological process category the two most abundant groups were ‘cellular process’

35% and ‘metabolic process’ 42%. The protein distribution within the category molecular

Table 1. Analysed DvEffector genes and primers used for qRT-PCR.

Gene accession ID

(Dv 3.2)

Annotation Forward sequence Reverse sequence R2 Primer

efficiency(5’-3’) (5’-3’)

Reference gene

DV3000100 actA1 Actin A1 TGGGGTGGTAGTGGTGATGA ACACGTCGGATGTAAACGACA 0,981 1,10

DvEffectors matched with effectors of Acyrthosiphon pisum
DV3009058.1 Dv1 Protein disulfide-isomerase

A3

TCATGGCTTAGTTGGACATCGT TTACGCCAGTAGTTGGTTCCT 0,997 0,98

DV3001833 Dv2 Peroxiredoxin-2 AAACCAGCCCCAGATTGGAA TTGAACGCCAATATCTCAGTTGG 0,999 0,94

DV3017719 Dv3 Venom serine

carboxypeptidase-like

CAGAGCTGCGTGCAAAGTGA ACCAAAGCAAGACAGACGCA 0,993 0,93

DV3010201 Dv4 Peroxiredoxin-2 TGTTTTAGTGGAACCTGATGGTGT AGCCTGAACAAGCCGTAAGAC 0,997 1,09

DV3014676 Dv5 Peroxidase TCTGCGACAACAGTGACGAT TGTGGAGCAGCATGACCATA 0,997 0,96

False positives

DV3014415 Fp1 Muscle-specific 20-like ATTGAATATGGCGTTCCTGATGTAG AGGGCCTAAAAATGGACCTTTCC 0,993 1,02

DV3008102 Fp2 Myofilin isoform a CAGATCCATACCATTCTGAGCCT TCGGGCAGAGGTAGAGGTTT 0,993 0,96

DV3011193 Fp3 Serine arginine repetitive

matrix 1 isoform X1

AGTTCAACGTCCAGCGGAAA ACCGGGAATCACTTTCTTCGT 0,989 0,99

The presented genes coded for proteins identified within the salivary gland proteome of D. vitifoliae larvae feeding on root galls of Teleki 5C. The gene accession IDs

refer to the D. vitifoliae genome v 3.2 provided by the International Aphid Genomic Consortium (IAGC). ‘Dv 1–5’ refers to five conserved DvEffectors, whereas ‘Fp1-3’

to false positives functionally not associated to D. vitifoliae feeding. The gene annotation corresponds to the A. pisum effector ortholog.

https://doi.org/10.1371/journal.pone.0225881.t001
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function resulted in 42% of proteins with ‘binding’ properties, 40% with ‘catalytic activity’ and

10% with ‘structural molecule activity’ (Fig 1C).

DvEffectors identified within the salivary glands of D. vitifoliae
A combined In-silico pipeline was employed to resolve proteins that are secreted with high

probability among the D. vitifoliae salivary gland proteome (Table 2). The first step of the pre-

sented In-silico pipeline involved the screening for amino acid based structural retaining sig-

nals/motifs. Proteins with one or more transmembrane helices (TMHMMs) and/or

Fig 1. Characterisation of the salivary gland proteome. Gene ontology characterisation of the salivary gland proteome of D. vitifoliae larvae feeding on root galls of

Teleki 5C (V. berlandieri x V. riparia). A) Protein top blast hit analysis ranked by species; B) Molecular weight distribution [kDa] of 1511 proteins of the salivary gland

proteome and the secreted DvEffectors subset (420 proteins); C) GO enrichment analysis conducted with Blast2Go.

https://doi.org/10.1371/journal.pone.0225881.g001
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glycosylphosphatidylinositol-anchors (GPI-anchors) were excluded as effectors due to their

high probability of being retained by intra- and extracellular membranes. The remaining pro-

teins without structural retaining signals were analysed for their likelihood to be secreted via

classical (SignalP) or non-classical leaderless (SecretomeP, NN-score > 0.6) secretion pathway.

Applying these criteria 420 D. vitifoliae proteins (27.80%) were detected to be secreted

(Table 2) and therefore represented the putative D. vitifoliae effector set named ‘DvEffectors’

(S2 Table). The subsequent molecular weight analysis of the filtered DvEffectors showed a

higher proportion of smaller proteins in comparison to the overall salivary gland proteome.

Most of the identified DvEffectors (94.52%) did not exceed 100 kDa (Fig 1B).

To identify potentially conserved effectors shared between D. vitifoliae and other phytopha-

gous insect species, BlastP searches were conducted against salivary proteins of vascular

(xylem and phloem) feeding plant hoppers: Nephotettix cincticeps [11], Nilaparvata lugens,
Sogatella frucifera, Laodelphax striatellus [59]; phloem feeding aphids: Acyrthosiphon pisum
[15, 16], Myzus persicae, Rhopalosiphum padi, Myzus cerasi [24], Sitobion avenae [19]; gall

feeding gall midges: Mayetiola destructor [61], Mayetiola avenae, Mayetiola hordei [60] and

non-phloem feeding stink bugs: Halyomorpha halys and Nezara viridula [62]. The conducted

analysis (e-value < 1.0 e-50 and bit score >100) identified 170 conserved DvEffectors shared

with salivary proteins of at least one analysed insect species (Fig 2, S3 Table). As one example

42 DvEffectors matched with predicted salivary effectors of the pea aphid Acyrthosiphon pisum
(S4 Table, Table 3), being the species with most effector matches. Among them we identified

numerous functional effector annotations such as esterases, glucose dehydrogenases, heat

shock proteins, lysosomal alpha-mannosidases, maltases, peroxidases, peroxidoredoxins, pro-

tein disulfide-isomerases and carboxypeptidases (Table 3).

Biosynthesis of D. vitifoliae effector candidates

To increase the effector status of the predicted DvEffector candidates we challenged the hypoth-

esis that the expression of the underlying DvEffector genes decreased when not required for

feeding (= starved). In total five conserved effectors orthologs of Acyrthosiphon pisum (Dv1-5,

Table 1) were chosen for a qRT-PCR analysis using RNA samples extracted from the salivary

glands of feeding (SG0) and 24 h starving (SG24) D. vitifoliae larvae. In addition, three control

metabolism genes, unrelated to insect feeding, were chosen (Fp1-3, Table 1) hypothesising that

they their relative expression levels in salivary gland tissue remains unaffected by larval starva-

tion. The results of the qRT-PCR analysis (Fig 3) showed significant gene expression levels for

Table 2. Protein secretion pipeline applied to the D. vitifoliae salivary gland proteome.

Secretory prediction pipeline Protein number Percentage

Identified proteins 1511 100,00%

TMHMMs 240 15,88%

GPI-anchors 23 1,52%

Proteins without structural retaining signals 1259 82,32%

Classical secretion pathway 151 10,19%

Non-classical secretion pathway 354 23,43%

Secreted proteins 420 27,80%

The secretion pipeline used to identify secreted proteins within the salivary gland proteome of D. vitifoliae larvae

feeding on root galls of Teleki 5C (V. berlandieri x V. riparia). The online tools TMHMM Server 2.0 (TMHMMs),

PredGPI (GPI-anchors), SignalP Server 5.0 (classical secretion pathway) and SecretomeP Server 2.0 (non-classical

secretion pathway) were used in a stepwise fashion to determine the likelihood of proteins to be secreted.

https://doi.org/10.1371/journal.pone.0225881.t002
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all tested candidate genes (Dv1-5 and Fp1-3) in salivary gland tissue of feeding and starving D.

vitifoliae larvae (Fig 3A). Among them the gene expression level of Dv5 annotated as peroxidase

was ranked as the highest with 2.75 NRQ in SG0. Comparing the SG0 and SG24 treatments, the

analysis showed that the gene expression levels of all five DvEffectors decreased significantly,

when insects were starved for 24 h without plant contact (Fig 3A), whereas the gene expression

levels of Fp1-3 were statistically not affected by larval starvation (Fig 3B).

Discussion

We present the first proteomic profile of salivary glands dissected from a root galling single

founder lineage of D. vitifoliae feeding on root galls of Teleki 5C (V. berlandieri x V. riparia).

Based on the salivary gland proteome and a subsequent In-silico secretory prediction 420 puta-

tive ‘DvEffectors’ were identified. Protein matches with salivary effector candidates of other

phytophagous insects resulted in the identification of 170, conserved effectors. Quantitative

RT-PCR analyses of five DvEffectors exemplarily complemented their potential roles as effec-

tors since their expression within the salivary glands decreased by larval starvation.

The salivary gland proteome of D. vitifoliae is similar to aphids

In total 92.64% of identified D. vitifoliae proteins had a top blast hits with six aphid species

(Fig 1A). Phylloxerids, in particular D. vitifoliae, are often described as ‘aphid-like’ or close

Fig 2. Conserved DvEffectors with phytophagous insects. A summary of the BlastP search results of the DvEffectors against salivary

gland proteins of phytophagous insects with different feeding behaviour: Plant hoppers–vascular feeders (green): Nephotettix cincticeps
[11], Nilaparvata lugens, Sogatella frucifera, Laodelphax striatellus [59]; Aphids—phloem feeders (blue): Acyrthosiphon pisum [15, 16],

Myzus persicae, Rhopalosiphum padi, Myzus cerasi [24], Sitobion avenae [19]; Gall midges—gall feeders (rosa): Mayetiola destructor [61],

Mayetiola avenae, Mayetiola hordei [60] and Stink bugs—non-phloem feeders (yellow): Halyomorpha halys and Nezara viridula [62].

Numbers within the circles indicated the ortholog matches (-value< 1.0 e-50 and a bit score>100) between DvEffectors and the salivary

gland proteins of at least one insect species within the insect feeding category.

https://doi.org/10.1371/journal.pone.0225881.g002
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Table 3. DvEffector matches with effectors of Acyrthosiphon pisum.

Functional annotation Acyrthosiphon pisum effector Daktulosphaira vitifoliae ortholog E-value Bit score

Esterases XP_001947304.2 DV3004001.2 0.00E+00 569.

DV3013307.2 4.24E-97 302.

Glucose dehydrogenase XP_001943395.1 DV3014986 0.00E+00 905.

Heat shock protein NP_001156420.1 DV3001393 0.00E+00 1020

Lysosomal alpha-mannosidase XP_008187164.1 DV3016723 0.00E+00 1390

Maltase XP_001943582.2 DV3005150 0.00E+00 555.

Peroxidase XP_001951217.2 DV3006190 0.00E+00 1206

DV3014676�.. 1.71E-168 493.

Peroxidoredoxins XP_001949571.1 DV3001833�.. 1.01E-156 430.

DV3010201�.. 1.07E-91 265.

DV3001185.2 2.63E-92 265.

Protein disulfide-isomerase XP_001950406.1 DV3009058.1� 0.00E+00 871.

XP_008183165.1 DV3000226 0.00E+00 755.

Carboxypeptidases XP_001943316.2 DV3017719�.. 2.82E-152 434.

XP_008183303.1 DV3004740.2 1.57E-70 239.

Blast results between the DvEffectors set against effector lists of Acyrthosiphon pisum [15, 16] using the BlastP software of NCBI were presented. The match quality is

determined by the e-value and bit score. The functional annotations are taken from the effector list of Acyrthosiphon pisum. Asterisks and bold protein IDs highlight

effector candidates (Dv1-5) employed for the following qRT-PCR analysis.

https://doi.org/10.1371/journal.pone.0225881.t003

Fig 3. Relative gene expression levels of D. vitifoliae effector genes. Expression levels [NRQ] of genes coding for A) conserved effectors of D. vitifoliae and A. pisum
(Dv1-5) and B) false positives detected within the salivary gland proteome of D. vitifoliae but not associated to feeding (Fp1-3). RNA was extracted from salivary glands

dissected from of feeding (SG0) and starving larvae (SG24). ActinA1 (DV3000100) was used as reference gene. Error bars indicate standard deviations of three

independent biological replicates each consisting of salivary glands dissected from 100 individuals. Minor letters refer to significant differences obtained by Independent

T-tests (p< 0.05).

https://doi.org/10.1371/journal.pone.0225881.g003
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aphid relatives because of their evolutionary relationship, similar modes of life and shared

environmental niches [65, 66]. In fact Aphidoidea and Phylloxeroidea are suggested to share a

common ancestor about 250 million years ago [67]. Recent genomic and transcriptomic stud-

ies confirm the phylogenetic proximity of D. vitifoliae and Aphidoidea [53, 68, 69]. Our results

underlined these findings by showing a high degree of consistency between the proteomic pro-

files of D. vitifoliae salivary glands and aphids. Furthermore we showed a strong similarity in

the effector profiles of root galling belowground D. vitifoliae and leaf feeding aphids as evi-

denced by the identification of conserved effector proteins (Fig 2 and S3 Table). In fact gener-

alist and specialist insect species utilise conserved ‘core’ effectors involved in general plant

infestation strategies [24, 70].

Conserved DvEffector groups

In total 420 DvEffectors of a D. vitifoliae single founder lineage feeding on root galls were identi-

fied based on their salivary gland proteome, among them 170 conserved effectors secreted by

root feeding D. vitifoliae and other phytophagous insect species (Fig 2, S3 Table). Among them

we detected numerous conserved DvEffectors associated to plant defence suppression such as

peroxidoredoxins (DV3001185.2, DV3010201, DV3001833), peroxidases (DV3014676,

DV3013176), superoxide dismutase (DV3003945) and serine protease (DV3001393) indepen-

dently of the insect feeding category (S4 Table). For phloem feeders (aphids and plant hoppers)

we found orthologous effector candidates potentially involved in stylet sheath formation (disul-

fide isomerases (DV3004088.2, DV3005250) and mucins (DV3010687.2, DV3001963) and

DvEffector orthologs associated to cuticle functions proteins (e.g. DV3000905.2, DV3004090.2,

DV3006395). Interestingly gall midges and stink bugs have an increased number of proteins

associated to ribosomal processes (e.g. DV3005082.2, DV3007542.2, DV3007763.2). In the fol-

lowing we associated selected conserved effectors (Table 3) to functional effector groups and

discuss their role for the compatible D. vitifoliae -Vitis spp. root interaction.

The first group is composed by DvEffectors involved in insect feeding site establishment.

Protein disulfide isomerases (PDI) are commonly detected within insect salivary glands [16,

61, 71, 72]. Their abundancy across insect species with piercing-sucking mouthparts is

explained by their catalytic role in the cross-linkage of cysteine bonds between mucin mole-

cules essential for the stylet sheath formation [73, 74]. Other references suggest that phytopha-

gous parasites secrete PDIs to detoxify host defensive reactive oxygen species [75, 76]. For D.

vitifoliae we report the combined secretion of PDIs and mucins presuming their essential role

for feeding site establishment by facilitating the stylet penetration into the root cortex and

maintaining its mobility within the root gall tissue during insect feeding. Esterases and manno-

sidases, secreted by invading insects and phytopathogens, represent two groups of digestive

enzymes assisting in the degradation of plant cell walls [77, 78]. Mobile D. vitifoliae larvae pen-

etrate the cortexes of root tips or secondary lignified roots in order to establish the root gall

feeding site [39, 41]. The secretion of enzymatic effectors contributing to the destabilisation of

root cuticular layers and cell walls might facilitate the stylet penetration into the root cortex tis-

sue. In addition increased cell wall flexibility could favour cell tissue expansion of root galls as

shown exemplarily for the induction host expansin genes [43].

The second group of DvEffectors is composed by proteins primarily involved in the sup-

pression of host plant defences. Glucose dehydrogenases (GDH) are among the most abundant

proteins effectors detected within aphid saliva [79, 80]. Based on their structural similarity to

glucose oxidases, GDHs are suggested to interfere with host plant defence mechanisms such as

alterations of the salicylic and jasmonic acid signalling cascades, detoxification of reactive oxy-

gen species, ethylene or other defensive compounds [81, 82], all of which might be part of the
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root infestation strategy of D. vitifoliae. Peroxidases and peroxidoredoxins catalyse the reduc-

tion of hydrogen peroxide (H2O2) known to be associated to incompatible host-parasite inter-

actions such as hypersensitive cell death responses (HR) [83, 84]. Through the external

delivery of detoxifying and scavenging enzymes into the root gall feeding site, D. vitifoliae
might encounter the accumulation of defensive secondary metabolites to protect itself and/or

to sustain the biological functionality of the feeding tissue; thus maintaining the compatible

interaction despite activated host plant defences. Heat shock proteins (HSP) are evolutionary

conserved key regulators known to interfere with stress signal cascades [85, 86]. In plants

HSPs trigger the activation of host innate immunity traits against invading insect species [87],

which would suggest a rather negative impact on the compatible D. vitifoliae–Vitis spp. inter-

action. On the opposite site HSPs trigger protective traits against a range of abiotic stresses

[88], which would favour the sustainability of D. vitifoliae root galls in the soil. For instance in

D. vitifoliae leaf galls HSPs are suggested to play a role for the suppression of host defences and

the carbohydrate allocation [89].

D. vitifoliae feeds on the cell content withdrawn from parenchymal root cortex tissue

marked by depleted levels of dissolved carbohydrates and elevated levels of free amino acids as

compared to aphid species [90–92]. This implies the employment effectors assisting in and

optimising the uptake of essential nutrients within the liquid diet. Maltases and GHDs are

important enzymes for the endogenous sugar metabolism of insects [93, 94]. Both enzymes are

previously detected in salivary glands of several aphids [16, 17, 19, 79, 80] thought to be

involved in the extra oral digestion of carbohydrates increasing the digestibility of the sugar-

rich phloem sap [14]. Root galls of D. vitifoliae contain abundant starch amounts due to redi-

rected sucrose from the host plant’s primary metabolism [48]. It is not yet clear whether the

accumulated starch serves as nutrient reservoir for the insect and its offspring or whether it

represents a way to balance potentially phytotoxic sucrose levels. Nonetheless the secretion of

sugar cleaving enzymes likely enables D. vitifoliae to exploit and feed from the accumulated

carbohydrate reservoir within the root galls. Carboxypeptidases are involved in protein diges-

tion processes aimed to provide peptides or amino acids for a balanced insect nutrition [95].

D. vitifoliae root galls and tuberosities contain elevated levels of essential amino acids such as

glutamate, glutamic acid and asparagine and aspartic acid [41]. Secreted carboxypeptidases

might be responsible for the protein or peptide cleavage explaining the accumulation of free

amino acids in order to be dissolved and imbibed within the parenchymal sap by the insect.

Additionally carboxypeptidases possess antimicrobial properties against bacterial and fungal

pathogens [96, 97]. Alternatively carboxypeptidases may suppress feed-competitive or sapro-

phytic microorganisms in the root tissue, which otherwise could contaminate the insect feed

or degrade the host gall tissue [28].

DvEffectors involved in structural root gall formation

Among the set of DvEffectors, 65 (15.48%) do not have a functional annotation (‘not anno-

tated’ or ‘uncharacterized protein’) and might represent novel D. vitifoliae-specific or even bio-

type-specific candidates involved in the establishment of a compatible root interaction. In

particular, the identity and function of insect effectors that modulate plant physiological path-

ways resulting in structural root gall formation are yet unknown. However, through compari-

sons to identified effectors in other phytophagous organisms the potential function of newly

identified effectors can be made. Although the feeding sites of root galling nematode species

such as Heterodera sp., Globodera sp. [98] and Meloidogyne sp. [99] are structurally different

from D. vitifoliae root galls [39, 41], effectors involved in root galling could be expected to

have evolutionary conserved functions [100]. Based on experimental evidence Hassan (et al.
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2010) [101] characterised effectors of root-galling nematodes with stringent biological func-

tions involved in cell wall degradation, suppression of host plant defences, feeding site initia-

tion, development and maintenance. Comparing the nematode effectors associated with

structural root gall formation with the DvEffectors, numerous proteins are common to both.

These include calreticulins (DV3007536, DV3007818.2) and proteins associated to ubiquitina-

tion (DV3014649, DV3013030, DV3002279, DV3001602, DV3004034, DV3012664) as well as

nuclear DNA/RNA modifications (e.g. DV3010515, DV3009903.2, DV3016166, DV3010607

DV3002380, DV3001693.2, DV3017446 DV3019764, DV3008705, DV3003913, DV3000194)

and could be the effector candidates associated with root gall formation described for an insect

species.

Insect starvation supports effector status

In order to provide further evidence for the effector status of the identified DvEffector set, the

biosynthesis of five selected effector candidates Dv1-5 (Table 1) was investigated on transcrip-

tional level. A decrease in expression was observed for all five target genes in D. vitifoliae larvae

that were removed from the gall and starved for 24 h (Fig 3). D. vitifoliae as a sedentary insect

is in continuous contact with the root gall tissue and offers the possibility to assess temporarily

well-defined starvation treatments [44, 48, 97]. When dealing with insect starvation, one key

factor is the intensity and duration of the prospected treatment. A starvation regime that is too

abrupt may affect overall insect metabolism and behaviour [102], whereas a targeted and mild

starvation, as conducted in the present study, merely affects the metabolic processes related to

insect feeding [103]. Here we show that the expression of effectors genes within the salivary

glands of root-galling D. vitifoliae larvae decreased, when insects were starved for 24 h con-

firming the validity of our approach to provide improved characterisation and methodological

complementation of the presented DvEffector set.
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(blue), gall midges (rosa) or stink bugs (yellow). Proteins IDs were based on the D. vitifoliae
genome v. 3.2. (as of 12.11.2018).
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