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The immersed boundary-lattice Boltzmann method (IB-LBM) was used to examine the motion and deformation of three elastic
red blood cells (RBCs) during Poiseuille flow through constricted microchannels. The objective was to determine the effects of the
degree of constriction and the Reynolds (Re) number of the flow on the physical characteristics of the RBCs. It was found that,
with decreasing constriction ratio, the RBCs experienced greater forced deformation as they squeezed through the constriction
area compared to at other parts of the microchannel. It was also observed that a longer time was required for the RBCs to squeeze
through a narrower constriction. The RBCs subsequently regained a stable shape and gradually migrated toward the centerline of
the flow beyond the constriction area. However, a sick RBC was observed to be incapable of passing through a constricted vessel
with a constriction ratio ≤1/3 for Re numbers below 0.40.

1. Introduction

Red blood cells (RBCs) play an important role in blood
flow in the human body, particularly in the transporta-
tion of oxygen from the lungs to every cell of the body.
An adult RBC has a biconcave shape of diameter 6 𝜇m
and thickness 2 𝜇m [1–6]. The RBC membrane is highly
deformable, which enables the passage of RBCs through a
blood vessel with a diameter smaller than that of the RBCs
[7, 8]. The flow of RBCs through a blood vessel represents
a typical fluid-structure interaction (FSI) problem, involving
a complex interplay of fluid dynamics, elastic body, and a
moving boundary [9]. A variety of accurate and efficient
numerical methods have been proposed for the solution
of a FSI problem involving a complex geometry, such as
the arbitrary Lagrangian–Eulerian method [10], immersed
interface method [11], immersed finite element method [12],
immersed boundary method [13], and immersed boundary-
lattice Boltzmann method (IB-LBM) [14–18].

Previous studies on the IB-LBM emphasized its poten-
tial advantages for the solution of FSI problems, namely,

its simplicity, parallelizability, intrinsic kinetic and explicit
calculations, and essential relative simplicity for handing
complex, moving, and deformable geometries [14–18]. In
recent years, the numerical investigation of the motion and
deformation of RBCs in capillaries and arteries has received
considerable attention [15, 16]. Zhang et al. [4] presented a
numerical IB-LBM algorithm for investigating the micro-
scopic hemodynamic and hemorheological behaviors of dis-
crete RBCs in shear flows. Dadvand et al. [9] used the IB-
LBM to numerically investigate the motion and deformation
of healthy and sick RBCs in viscous shear flows. Shi et al.
[19] proposed a two-dimensional (2D) elastic spring model
of the RBC membrane based on the immersed boundary
method, which was first introduced by Peskin [20] for the
investigation of blood flow through heart valves. Krüger et al.
[21] used a hybrid LB-IB-finite element method to simulate
the tumbling and tank-treading-like motion of dense sus-
pended RBCs in an external shear flow.The transient motion
and deformation of healthy RBCs and PF-RBCs at different
stages were examined in a simple 2D microchannel, with the
RBCs moving along the center line of the channel [22, 23].
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Sui et al. [24–26] used a combination of the IBM, a multi-
block lattice Boltzmann model, and membrane mechanics
to investigate the transient behaviors of elastic capsules and
the deformation and aggregation of RBCs in a shear flow.
Ma et al. [27] proposed an IB-LBM that considered the
ultrasonic effect for the simulation of RBC aggregation and
deformation in an ultrasonic field.They found that the action
of the ultrasound waves on the pure plasma could induce
a recirculation flow. The IB-LBM has also been used to
numerically investigate the effect of the RBC deformability
on the dispersion of the cells at physiological flow rates
with respect to the hematocrit [28]. Further, the IB-LBM
has been applied to quantitative analyses of the motion and
deformation of the RBCmembrane in a Poiseuille flow and its
compression during passage through a stenotic microvessel,
with a focus on the cell-cell interaction strength [2, 3, 29].The
flow of multiple RBCs through a microvascular bifurcation
has also been simulated by the 2D IB-LBMand anRBC spring
model [30, 31]. Other methods have been used for the same
purpose, such as by Stamou and Buick [32] and Wang et al.
[33]. Alizadeh et al. [17, 18] also used a hybrid IB-LBM to
investigate the dynamics of healthy and sick RBCs during
flows through a constricted vessel. The foregoing shows that
the IB-LBM is effective for investigating the dynamics of
RBCs in flows through constricted vessels and in relevant
biomedical applications.

The present study represents further work about certain
previous studies [30, 31], namely, an examination of the
motion and deformation of RBCs by numerical simulation
using the IB-LBM. The primary objective was a qualitative
analysis of the effects of the degree of constriction in the
vessel and the Re number on the physical characteristics of
flowing RBCs. The RBC dynamics were extensively analyzed
with respect to the degree of constriction, Re number, elastic
modulus, and bendingmodulus.The IB-LBMwas specifically
used to examine the physical characteristics of three elastic
RBCs. Flows through a simple straight vessel and a vessel with
an annular bump were considered. The rest of this paper is
organized as follows. Section 2 briefly describes the employed
governing equations and numerical method. The detailed
numerical results are presented and discussed in Section 3.
Finally, the conclusions drawn from the study and the scope
for further study are presented in Section 4.

2. Governing Equations
and Numerical Method

2.1. Governing Equations. Consider an RBC with curved
boundary Γ immersed in the 2D viscous fluid domainΩ. The
point on RBC boundary Γ is characterized by the Lagrangian
parameters X(𝑠, 𝑡), and the fluid domain Ω is represented
by the Eulerian coordinates x. The equations governing the
incompressible flow and elasticity of the RBCs in an external
force field are as follows [17, 18]:

𝜌(𝜕u𝜕𝑡 + u ⋅ ∇u) = −∇𝑝 + 𝜇∇2u + f (x, 𝑡) (1)

∇ ⋅ u = 0 (2)

f (x, 𝑡) = ∫
Γ
F (𝑠, 𝑡) ⋅ 𝛿 (x − X (𝑠, 𝑡)) 𝑑𝑠. (3)

In the above equations, 𝜌,u, 𝑝, and 𝜇, respectively, denote
the fluid density, fluid velocity, fluid pressure, and dynamic
viscosity; f(x, 𝑡) and F(𝑠, 𝑡) are, respectively, the membrane
forces acting on the RBCs at the Eulerian point x(𝑥, 𝑡) and
Lagrangian point X(𝑠, 𝑡); and 𝛿(x − X(𝑠, 𝑡)) is a nondimen-
sional Dirac delta function.

2.2. Immersed Boundary-Lattice Boltzmann Method (IB-
LBM). A popular kinetic model, namely, the discrete Boltz-
mann equation in the Bhatnagar–Gross–Krook (BGK)model
with a single relaxation time under an external force, may be
reproduced as follows [9, 18, 22, 27, 29]:

𝑓𝛼 (x + e𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝛼 (r, 𝑡)
= −1𝜏 [𝑓𝛼 (x, 𝑡) − 𝑓eq𝛼 (x, 𝑡)] + 𝛿𝑡 ⋅ 𝐺𝛼

(4)

𝐺𝛼 = (1 − 12𝜏) ⋅ 𝜔𝑎 ⋅ (e𝑎 − u𝑐2𝑠 + e𝛼 ⋅ u𝑐4𝑠 e𝛼) ⋅ f , (5)

where 𝑓eq𝛼 is the equilibrium distribution function, 𝑓𝛼 is the
distribution function, 𝜏 is the single relaxation parameter, 𝛿𝑡
is the time interval, e𝛼 is the particle velocity, and 𝜔𝛼 is a
weight coefficient that is determined by the selected lattice
velocity model. In the present study, a 2D lattice with nine
velocity components, referred to asD2Q9, was employed.The
formation of the D2Q9 lattice is illustrated in Figure 2.

The discrete velocity vectors of the 2D square lattice of
D2Q9 can be expressed as

e𝛼

=
{{{{{{{{{{{

(0, 0) 𝛼 = 0
𝑐 (cos [(𝛼 − 1) 𝜋2 ] , sin [(𝛼 − 1) 𝜋2 ]) 𝛼 = 1, 2, 3, 4
√2𝑐 (cos [(2𝛼 − 1) 𝜋4 ] , sin [(2𝛼 − 1) 𝜋4 ]) 𝛼 = 5, 6, 7, 8,

(6)

where 𝑐 (= 𝛿𝑥/𝛿𝑡) is the lattice speed and 𝛿𝑥 is the lattice
constant. 𝜔𝛼 are the weight coefficients with the following
values:

𝜔𝛼 =
{{{{{{{{{{{{{{{

49 𝛼 = 0
19 𝛼 = 1, 2, 3, 4
136 𝛼 = 5, 6, 7, 8.

(7)

The equilibrium distribution function 𝑓eq𝛼 was chosen
from the nine-velocity set model for 2D problems, as follows:

𝑓eq𝑎 = 𝜌𝜔𝑎 [1 + e𝑎 ⋅ u𝑐2𝑠 + (e𝑎 ⋅ u)22𝑐4𝑠 − |u|22𝑐2𝑠 ] , (8)

where 𝑐𝑠 = 1/√3 ⋅ 𝑐 is the speed of sound.
An immersed boundary treatment of a nonslip boundary

condition was adopted, wherein the boundary force is spread
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to the lattice points and the fluid lattice velocity is interpolated
to the boundary points [18]. Figure 3 illustrates a 2D part
of the membrane and the surrounding fluid. The interaction
between the blood and the RBCs can be considered based on
the relationship between the Lagrangian and Eulerian points
using the following interaction equations [8, 9]:

f (𝑥, 𝑡) = ∫𝑙
0
F (𝑠, 𝑡) 𝛿 (x − X (𝑠, 𝑡)) 𝑑𝑠

U (𝑠, 𝑡) = u (X (𝑠, 𝑡) , 𝑡) = ∫
Γ
u (x, 𝑡) 𝛿 (X (𝑠, 𝑡) − x) 𝑑x

𝛿ℎ (x) = 𝛿ℎ (𝑥) ⋅ 𝛿ℎ (𝑦) ,
(9)

whereF(𝑠, 𝑡) is the Eulerian force of the fluid flow, f(𝑥, 𝑡) is the
Lagrangian force of the immersed boundary, and 𝑙 represents
the cross-sectional profile of the immersed boundary of a
discrete RBC. 𝛿(x−X(𝑠, 𝑡)) can be smoothly approximated by
a continuous kernel distribution 𝛿(𝑥), as proposed by Peskin
[20]:

𝛿 (𝑥) = {{{
1 − |𝑥| 0 ≤ |𝑥| ≤ Δ𝑥
0 Δ𝑥 ≤ |𝑥| . (10)

The position of the RBC is updated explicitly:
𝜕X (𝑠, 𝑡)𝜕𝑡 = U (𝑠, 𝑡) . (11)

The macroscopic density is evaluated as 𝜌 = ∑𝛼 𝑓𝛼, the
velocity as u = (1/𝜌)∑𝛼 𝑓𝛼e𝑎, the pressure as 𝑝 = 𝜌𝑐2𝑠 , and
the viscosity as ] = (𝜏 − 1/2)𝑐2𝑠 ⋅ 𝛿𝑡.

Equation (4) can be decomposed into the two following
distinct parts that can be executed in succession.

Collision is

𝑓∗𝛼 (x, 𝑡 + 𝛿𝑡) = 𝑓𝛼 (x, 𝑡) − 1𝜏 (𝑓𝛼 (x, 𝑡) − 𝑓eq𝛼 (x, 𝑡)) . (12)

Streaming is
𝑓𝛼 (x + 𝑐𝛼 ⋅ 𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓∗𝛼 (x, 𝑡 + 𝛿𝑡) . (13)

Here, 𝑓∗𝛼 (x, 𝑡 + 𝛿𝑡) represents the distribution function
after the collision, with its execution followed by streaming of
the resulting distribution 𝑓∗𝛼 (x, 𝑡 + 𝛿𝑡) to neighboring nodes.

A Chapman–Enskog expansion can be used to obtain the
equations of the density and momentum from (4). To derive
the classical fluid equations ((1) and (2)), two macroscopic
time scales (𝑡1 = 𝜀𝑡 and 𝑡2 = 𝜀𝑡) and a macroscopic length
scale (𝑥1 = 𝜀𝑥) are required. An execution of the streaming
operation on the left-hand side of each of the classical fluid
equations ((1) and (2)) obtained by the Chapman–Enskog
expansion can be used to determine the inertial terms.

2.3. RBC Model. A natural undeformed human RBC has a
biconcave disk shape. The 𝑥-𝑦 coordinates of the RBC cross-
sectional profile can be described by the following equation
[15]:

𝑦 = 0.5 × (1 − 𝑥2)1/2 × (𝑐0 + 𝑐1𝑥2 + 𝑐2𝑥4) ,
−1 ≤ 𝑥 ≤ 1, (14)
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Figure 1: Schematic descriptions of the physical RBC models.
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Figure 2: D2Q9 lattice.

where 𝑐0 = 0.207, 𝑐1 = 2.002, and 𝑐2 = 1.122. A physical
model of the cross-sectional profile of an RBC is shown in
Figure 4.

2.4. Boundary Conditions. Three different boundary condi-
tions were implemented in this study. A periodic boundary
condition was applied to both the vessel inlet and outlet
[1, 4, 18, 23, 29]; a nonslip boundary condition was applied
to the solid-wall boundary of the vessel [7]; and a half-way
bounce-back boundary condition was applied to the straight
vessel walls.

The boundary conditions of the bottom and top walls are,
respectively, expressed by the following equations:

𝑓3 (𝑥𝑓, 𝑡 + 𝛿𝑡) = 𝑓4 (𝑥𝑓, 𝑡) ,
𝑓5 (𝑥𝑓, 𝑡 + 𝛿𝑡) = 𝑓6 (𝑥𝑓, 𝑡) ,
𝑓8 (𝑥𝑓, 𝑡 + 𝛿𝑡) = 𝑓7 (𝑥𝑓, 𝑡) ,
𝑓4 (𝑥𝑓, 𝑡 + 𝛿𝑡) = 𝑓3 (𝑥𝑓, 𝑡) ,
𝑓6 (𝑥𝑓, 𝑡 + 𝛿𝑡) = 𝑓5 (𝑥𝑓, 𝑡) ,
𝑓7 (𝑥𝑓, 𝑡 + 𝛿𝑡) = 𝑓8 (𝑥𝑓, 𝑡) .

(15)

The no-slip boundary condition on the fluid-solid inter-
face is satisfied by making the velocity of any point on the
solid surface equal to that of the adjacent fluid particle [9, 17,
25, 26].

3. Simulation Results and Discussions

A model of a microvessel with an annular bump was con-
structed as shown in Figure 1. Numerical calculations were
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Figure 3: Structural boundary immersed in the 2D computational
domain.
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Figure 4: Physical model of the cross-sectional profile of an RBC of
length L, widthW, and radius R.

performed over 200 × 32 lattice nodes covering a physical
space of 100𝜇m × 15𝜇m. A uniform square mesh with a
nondimensional unit of 𝑑𝑥 = 𝑑𝑦 = 1 was employed. The
membrane of an RBC of ≈6 𝜇m in diameter and ≈2𝜇m in
thickness was represented by 100 elastic elements. The elastic
modulus 𝐸𝑠 and bending modulus 𝐸𝑏 were, respectively, set
to 6.0 × 10−3Pa⋅s and 2.0 × 10−19 Pa⋅s for a healthy RBC and
6.0 × 10−2Pa⋅s and 2.0 × 10−18 Pa⋅s for a sick RBC, while
the nondimensional unit conditions 𝐸𝑏 and 𝐸𝑠 were set to
0.1 and 0.001 for a healthy RBC, respectively. The nonslip
boundary condition was applied to the solid-wall boundary
of the channel, while the immersedRBC elastic boundary and
the periodic boundary conditions were, respectively, applied
to the inlet and outlet of the channel. The physical problem
is governed by the nondimensional Re number defined by
Re = 𝜌𝑅2𝛾/𝜇, where 𝑅 is the RGBs radius and 𝛾 is the flow
shear rate. The Re number was 0.1. To examine the motion
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Figure 5: The rotational motions of an initially spherical vesicle
in Poiseuille flows: (a) series of snapshots from experimental data
[34], (b) numerical simulation by the FE-LBM [35], and (c) current
numerical simulation.

and deformation of the three considered RBCs during flows
through constricted vessels, five cases involving different
degrees of constriction values (=d/D) were investigated. The
initial positions of RBC I (upper), RBC II (middle), and RBC
III (lower)were (25, 30), (15, 30), and (2, 30), respectively (see
Figure 1).

3.1. Motion and Deformations of “Healthy” and “Sick” RBCs in
a Straight Vessel. The motions and deformations of healthy
and sick RBCs in a straight vessel were compared.The elastic
RBCs were placed asymmetrically in a Poiseuille shear flow
near the wall of the channel.

Figure 5 shows the rotational motions of an initially
spherical vesicle in Poiseuille flows, it is evident that the
spherical membrane will rotate clockwise and is dragged
toward the centerline of the channel, and the red bold
point illustrates the rotation (Figure 5(c)). The comparison
reveals a good agreement among the experimental results
[34] (Figure 5(a)), numerical simulation by the FE-IBM [35]
(Figure 5(b)), and the present numerical results (Figure 5(c)).

The time evolutions of the rotational motions of a healthy
and sick RBC initially positioned vertically are plotted in
Figure 6: (a) healthy RBC, (b) sick RBC, and (c) numerical
simulation by the FE-LBM [35]. It can be observed from
Figure 6(a) that a healthy RBC undergoes deformation and
an unsteady tank-treading motion toward the center of the
channel, attributable to the shearing effect of the Poiseuille
flow. Figure 6(b) shows profile snapshots of the sick RBC dur-
ing its deformation. The sick RBC exhibits an almost steady
tumbling-rotating behavior accompanied by periodical shape
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Figure 6: The time evolutions of the motions of RBC in Poiseuille
flows, the initially vertical RBCs are positioned near the bottom
lateral wall of the channel. (a) Healthy RBC, (b) sick RBC, and (c)
numerical simulation by the FE-LBM [35].

deformation. It rotates clockwise and preserves its shape.The
above observations are well consistent with the findings of
previous studies [7, 9, 26, 27, 35].

Figure 7 shows snapshots of the deformation of healthy
and sick RBCs initially positioned thwart-wise ((a) and (b):
current numerical simulation; (c) and (d): numerical results
of [9]). The comparison reveals that the current numerical
simulation results (Figures 7(a) and 7(b)) are in line with
the numerical simulation by Dadvand et al. (Figures 7(c)
and 7(d)) [9, 35]. Comparison of the cases of different initial
states in Figures 6 and 7 suggests that the elastic modulus
significantly impacts the overall mechanical characteristics of
the tank-treading and tumbling-rotating motions of an RBC.

The spatial-temporal evolutions of themotions, deforma-
tions, and shapes of three healthy RBCs along the channel are
shown in Figure 8. It can be observed that RBC II moves over
a longer distance compared to RBCs I and III. RBC II assumes
a typical arrow-like shape, whereas RBCs I and III acquire
a diagonal configuration. This may be attributed to RBC II
being located near the centerline of the channel, where the
pressure is higher. RBCs I and III gradually migrate toward
the centerline of the channel, although the latter migrates
further and is more elongated.

To investigate the effect of the Re number on the variation
of the barycentric coordinates, four different Re numbers,
namely, 0.10, 0.15, 0.20, and 0.25, were considered. The
vertical movements of the RBCs for the different Re numbers
are described in Figure 9, the relationship of 𝑡 and vertical
distance is shown in Figure 9(a), and Figure 9(b) reveals the
effect of Re on the barycentric coordinates. Firstly, the vertical
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Figure 7: Rotational motions of healthy RBC ((a) and (c)) and
sick RBC ((b) and (d)) in Poiseuille flows. The initially thwart-wise
RBCs are positioned near the bottom lateral wall of the channel. ((a)
and (b)) Current numerical simulation and ((c) and (d)) numerical
results of [9].
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Figure 8: Rotational motions of three healthy RBCs asymmetrically
positioned in the channel.

distance increases with increasing Re number, accompanied
by farther migration toward to the centerline of the channel,
to reduce the flow resistance. Secondly, in a certain position,
the Re has little effect on the barycentric coordinates, and
the position of 𝑋 direction has important influence on the
longitudinal displacement.

3.2. Motion and Deformation of Three RBCs in a Constricted
Vessel. The spatial-temporal evolutions of the motions and
deformations of three healthy RBCs in various constricted
vessels are shown in Figures 10(a)–10(f), which, respectively,
correspond to cases of d/D = 30/30 at t = 45ms, d/D = 24/30
at t = 47ms, d/D = 20/30 at t = 51ms, d/D = 16/30 at t =
59.5ms, d/D = 12/30 at t = 85ms, and d/D = 10/30 at t =
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Figure 9: Variation of the RBC vertical movements with respect to the Re number of the flow: (a) the relationship of 𝑡 and vertical distance
and (b) the effect of Re on the barycentric coordinates.

116.5ms. It can be seen that the RBCs in the vessel would
deform and pass through the constricted part easily. Ahead
of the constriction, the RBCs are swept by the fluid flow with
minimal deformation. As they approach the constriction,
they rotate toward the center of the flow and gradually
assume an approximately horizontal orientation. The RBCs
are relaxed and vibrate elastically, although the vibration
rapidly decays under the viscous damping of the surrounding
fluid.The RBCs subsequently regain their stable shape within
a short time.

Comparison of the six constriction cases suggests that,
with increasing constriction, the RBCs are forced to exhibit
higher deformability than in other parts of the microchannel
to squeeze through the constriction. In addition, a longer
time is required for the RBCs to squeeze through a narrower
constriction, attributable to the greater deformation required.
It is also noteworthy that the initial position of the RBCs is
not on the centerline of the channel, although they migrate
toward the centerline, assuming a diagonal configuration to
reduce the flow resistance.

In contrast with a healthy RBC, the elastic modulus of a
sick RBC is reduced to 0.05 while the other parameters are
maintained constant. Figure 11 shows the spatial-temporal
evolutions of the motions and deformations of three sick
RBCs in a constricted vessel. Figures 11(b)–11(e) reveal that
the sick RBCs easily pass through the constriction and no
obstruction will occur during the process, and the overall
characteristics of the motions are similar consistent with
healthy RBCs. However, the ultimate shape of the sick RBCs
significantly defers from that of the healthy RBCs in Figures
10(b)–10(e), and this is attributed to the variations of the

pressure along the flow direction. It can also be seen that the
sick RBCs move slower than the healthy one due to its larger
elastic module. Moreover, for a low constriction ratio of d/D
= 1/3 in Figure 11(f), only the sick RBC II emerges from the
constriction zone, with the sick RBCs I and III touching the
boundary of the constriction, and this touching phenomenon
can produce friction, which caused the RBCs aggregating at
the constriction area.

The deformations and motions of three sick RBCs in a
constricted vessel with d/D = 1/3 are shown in Figure 12. It
can be observed that, with increasing Re number up to 0.40,
the RBCs pass through the constriction region and gradually
migrate toward the centerline of the channel. This is due
to the fact that, with the Re number increasing, the shear
force acting on the RBCs could undergo a bigger growth, and
then the RBCswill experiencemore deformation. Peoplewho
have suffered a hypertensive disease experienced a crucial
augment in blood velocity, whichmaybe caused fractures and
lacerations. Heart disease may cause a reduction in blood
velocity, under the low-speed vessels which maybe caused
deoxygenation [18]. In addition, the elastic modulus, blood
pressure, flow velocity, and Re number significantly impact
the passage of the RBCs passing through a constricted vessel.

3.3. Effect of Constriction Ratio on RBC Mechanical Behavior.
To examine the effects of the degree of constriction on the
motion and deformation of the RBCs, six cases with d/D
values of 30/30, 24/30, 20/30, 16/30, 12/30, and 10/30 were,
respectively, considered. The nondimensional ratios width-
to-length (𝑊/𝐿), width-to-diameter (𝑊/𝑅), and length-to-
diameter (𝐿/𝑅) were evaluated, where W, L, and 𝑅 are the
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Figure 10: Transient deformations and motions of three healthy
RBCs during Poiseuille flow through a constricted vessel: (a) d/D
= 30/30 at t = 45ms, (b) d/D = 24/30 at t = 47ms, (c) d/D = 20/30 at
t = 51ms, (d) d/D = 16/30 at t = 59.5ms, (e) d/D = 12/30 at t = 85ms,
and (f) d/D = 12/30 at t = 116.5ms.

length, width, and radius of the RBCs, respectively (see
Figure 4).

Figure 13 shows the variations of the ratios L/R andW/R
for different degrees of constriction of the microchannel. It
can be seen that the values of 𝐿/𝑅 and𝑊/𝑅 were positively
correlated with constriction ratio; the constriction area has
a significant effect on the nondimensional parameters, and
the RBCs undergo grater forced deformation compared to
other areas of the microchannel to squeeze through the
constriction. The peak position indicates that the RBCs have
entered the constriction area. With the constriction ratio
increasing, a longer time is required for the RBCs to squeeze
through the constriction. When the RBCs pass through the
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Figure 11: Transient deformations and motions of three sick RBCs
during Poiseuille flow through a contracted vessel with Re = 0.10: (a)
d/D = 30/30 at t = 46.5ms, (b) d/D = 24/30 at t = 47.5ms, (c) d/D =
20/30 at t = 51.5ms, (d) d/D = 16/30 at t = 62ms, (e) d/D = 12/30 at
t = 88ms, and (f) d/D = 12/30 at t = 110ms.

constriction section, the RBCs regain a stable shape beyond
the constriction area.

Figures 14(a)–14(f) show the variations of the ratio W/L
of healthy RBCs for d/D values of 30/30, 24/30, 20/30, 16/30,
12/30, and 10/30, respectively. It can be seen from the figures
that RBC II undergoes greater deformation and flows faster
than RBCs I and III, and the peak position also indicates that
the RBCs have entered the constriction area. This may be
attributed to the shearing effect of the Poiseuille flow. Figures
14(b)–14(f) reveal that as the RBCs approach the constriction
section, the nondimensional parameter W/L of RBCs has
a substantial change until they leave the constriction area.
RBC II (middle) moves quicker than RBC I and RBC
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Figure 12: Deformations and motions of three sick RBCs in a constricted vessel (d/D = 10/30) with Re = 0.4.
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Figure 13: Variations of the (a) length-to-diameter and (b) width-to-diameter ratios of healthy RBCs during Poiseuille flow through
microchannels with different degrees of constriction.

III (lower), attributed to the effect of the Poiseuille flow.
Another interesting phenomenon is that, with RBCs leaving
constriction area, theW/L of RBC II has minor change, while
the values for RBCs I and III abruptly decrease owing to the
boundary effect.

The variations of L/R ratio for the healthy and sick RBCs
II for different degrees of constriction are shown in Figure 15.
It can be seen from the figures that the healthy RBC has a

lower L/R ratio than the sick RBC. In addition, the variation
of the L/R ratio of the healthy RBC is regular, whereas that of
the sick RBC is irregular and oscillates.

4. Conclusions

The motions and deformations of three RBCs in a Poiseuille
flow through a constricted microchannel were numerically
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Figure 14: Variations of the width-to-length ratio for healthy RBCs during Poiseuille flow through microchannels with different degrees of
constriction represented by d/D values of 30/30, 24/30, 20/30, 16/30, 12/30, and 10/30, respectively.

investigated using the IB-LBM. The dynamics of the RBCs
with respect to the degree of constriction of the microchan-
nel, the Re number of the flow, and the elastic and bending
moduli of the cells in the flow field were analyzed in detail.
Following is a summary of the conclusions drawn from the
observations.

Firstly, when the RBCs are located off the axis of
symmetry of the microchannel, the shearing effect of the
Poiseuille flow increases the forces acting on them, inducing
their migration toward the centerline of the microchannel.
Secondly, healthy RBCs exhibit higher deformability than
sick RBCs during passage through a constriction area. In
the process, the length-to-radius ratios of healthy RBCs vary
regularly, whereas those of sick RBCs vary irregularly and
oscillate. Thirdly, the width-to-radius and length-to-radius

ratios of the RBCs increase with decreasing constriction ratio,
with a longer time required for the RBCs to squeeze through a
narrower constriction. However, the RBCs regain their stable
shape beyond the constriction area. Furthermore, for sick
RBCs in a microchannel with a constriction ratio as low as
1/3, adjustment of the flow parameters such as increasing the
Re number to about 0.4 is required, given which they are
able to pass and gradually migrate toward the centerline of
the channel. This is particularly applicable to practical health
conditions such as hemangioma and hypertension.

It is noteworthy that the present study only examined
the effects of the degree of constriction of the channel and
the Re number of the flow on the mechanical behavior of
RBCs. Further study is required to examine the aggregation
behavior of the cells and the elastic and viscoelastic effects
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Figure 15: Variations of the length-to-radius ratio of the healthy and sick RBC II during Poiseuille flow throughmicrochannels with different
degrees of constriction represented by d/D values of 30/30, 24/30, 20/30, 16/30, 12/30, and 10/30, respectively.

of the channel. Additionally, for more accurate results, more
sophisticated 3Dmodels withmore complex geometries such
as bifurcation should be adopted for the simulations.
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