
1/14https://vetsci.org

Physiology

J Vet Sci. 2023 Jan;24(1):e2
https://doi.org/10.4142/jvs.22185
pISSN 1229-845X·eISSN 1976-555X

ABSTRACT

Background: Hypothermia is a crucial environmental factor that elevates the risk of 
cardiovascular disease, but the underlying effect is unclear.
Objectives: This study examined the role of cold stress (CS) in cardiac injury and its 
underlying mechanisms.
Methods: In this study, a chronic CS-induced myocardial injury model was used; mice were 
subjected to chronic CS (4°C) for three hours per day for three weeks.
Results: CS could result in myocardial injury by inducing the levels of heat shock proteins 
70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and 
malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high 
mobility group box 1 (HMGB1) interleukin1b (IL-1β), IL-18, IL-6, and triggering the depletion 
of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling 
pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 
3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related 
toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor 
kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stress-
involved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which 
play a pivotal role in myocardial injury resulting from hypothermia.
Conclusions: These findings provide new insights into the increased risk of cardiovascular 
disease at extremely low temperatures.
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INTRODUCTION

The environmental temperature is an essential factor that contributes to high levels of 
death and disease that have raised public health concerns [1]. Cold temperatures are largely 
responsible for the current burden of total mortality in many areas [2]. As a common stressor 
in livestock, cold stress (CS) hampers animal husbandry in cold climates, which affects the 
neuroendocrine, reproductive, and cardiovascular systems in animals [3]. Cold-induced 
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cardiovascular risks, such as blood stickiness, arrhythmia, and blood pressure, are common 
in the general population [4,5]. It is unclear whether cardiovascular disease morbidity and 
mortality are associated with extreme cold weather [6]. Accordingly, it is crucial to investigate 
the effects of CS on cardiac injury.

Increasing evidence suggests that chronic cold exposure can promote autophagy, inflammatory 
responses, and oxidative stress in different organs, including the heart [7-9]. However, 
few studies have examined CS and myocardial pyroptosis. Pyroptosis is a sort of regulated 
necrotic cell death characterized by the formation of pores in the cell membrane leading to 
cell enlargement, cell lysis, and the release of interleukin (IL)-1β and IL-18 [10]. Pyroptosis 
occurs through two typical pathways: the caspase-1-dependent canonical pathway, and the 
caspase-4/5/11-dependent noncanonical pathway [11,12]. Both caspase-1/11 (or caspase-4/5) 
are processed by protein hydrolysis Gasdermin D (GSDMD), which produces an N-terminal 
fragment (GSDMD-N) that opens a pore in the plasma membrane, resulting in serious 
inflammation reaction and pyroptosis [13]. Accumulating evidence shows that the occurrence 
of pyroptosis is nearly associated with the activation of the nucleotide-binding oligomerization 
domain (NOD)-like receptors protein 3 (NLRP3) [14]. The NLRP3 inflammasome recruits and 
activates caspase-1 either directly or through the adaptor protein ASC (apoptosis-associated 
speckle protein), which is then stimulated by pro-IL-1β/18 and cleaved by Gasdermin D 
(GSDMD), leading to severe inflammatory responses and pyroptosis [15].

More importantly, NLRP3 inflammasome activation is involved in multiple signaling 
pathways, including toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) and thioredoxin-1/
thioredoxin-interacting protein (Txnip) [16,17]. Thioredoxin-1 (Trx-1), an essential anti-
inflammatory and antioxidant protein, has been reported to bind to Txnip under basal 
conditions, while the Trx-1/Txnip complex dissociates under stress conditions, and Txnip 
binds NLRP3 to activate NLRP3 inflammasome [18,19]. On the other hand, TLR4 is one of 
the important pattern recognition receptors (PRRs) in the TLR family, which play a crucial 
role in various inflammatory diseases [20]. TLR4 can stimulate the NLRP3 inflammasome 
by recruiting myeloid differentiation factor 88 (MyD88) adaptors to activate NF-κB 
[20,21]. Previous research has shown that chronic and acute CS could induce the liver and 
hippocampus in mice via the activation of TLR4/MyD88/NF-κB and NLRP3 inflammasome 
signaling pathway [22,23]. Nevertheless, it is unclear whether chronic CS causes myocardial 
damage by altering pyroptosis in the NLRP3-related pathway. The current study examined 
the following: (i) pyroptosis and inflammation under prolonged CS in mouse cardiac tissues 
and (ii) the effects of pyroptosis and the inflammation-related NLRP3 inflammasome, Trx-1/
Txnip, and TLR4/MyD88 signaling pathway.

MATERIALS AND METHODS

Reagents
The primary antibodies of HSP70, HSP90, TLR4, MyD88, NLRP3, ASC, caspase-1, caspase-11, 
IL-18, IL-1β, HMGB1, COX-2, iNOS, and caspase-3 were supplied by ABclona Technology 
(China). Moreover, p-JNK, p-ERK, p-p38, p-IκBα/IκBα, and p-NF-κB (p65) were purchased 
from Cell Signaling (USA); GSDMD, Bax Trx-1, α-Tubulin, and Txnip were afforded by Abcam 
(USA). Additionally, CK-MB, CAT, GSH, MDA, and SOD test kits were supplied by Nanjing 
Jiancheng Biotech. Co., Ltd. (China). Unless specified otherwise, all other reagents were 
obtained from Sigma–Aldrich (USA).
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Animals
Male C57BL/6 mice, six weeks old, 18–22 g, were supplied by Liaoning Changsheng 
Technology Industrial Co., Ltd. (Certificate SCXK2010-0001; China). All mice were 
maintained for one week under controlled environmental conditions (temperature 24°C ± 
2°C, humidity 40%, light/dark cycle 12 h). All studies were performed in accordance with 
the International Guiding Principles for Biomedical Research Involving Animals, which has 
been agreed with the Institutional Animal Care and Use Committee of Heilongjiang Bayi 
Agricultural University (JXY2022037).

Experimental protocol
To establish chronic CS-induced myocardial damage, the mice were divided randomly into 
two groups (n = 5 mice per group), including the room temperature (RT, 24°C ± 2°C) group 
and the chronic CS group (4°C). Briefly, the mice in the CS group were placed in a climatic 
chamber at 4°C for three hours per day, and transferred back to RT; the chronic CS process 
lasted for three weeks. After a final cold stimulation, the mice were euthanized, and the heart 
tissue samples and serum were collected for biochemical index determination, hematoxylin 
and eosin (H & E) staining, quantitative real time polymerase chain reaction (RT-qPCR), and 
western blot analysis.

Measurement of myocardial function index and oxidative indicators
The C57BL/6 mice were kept at RT or CS (4°C) for three hours per day for three weeks. The 
heart tissues and blood from the mice were harvested to determine the different biochemical 
analyses. The levels of creatine kinase MB isoenzyme (CK-MB), MDA, CAT, SOD, and GSH 
in serum were analyzed using the appropriate assay kit according to the manufacturer′s 
instructions (Jiancheng Bioengineering Institute, China).

H & E staining
To evaluate the cardiac function, fresh cardiac tissues were fixed with 4% paraformaldehyde, 
dehydrated with a graded series of ethanol, embedded in paraffin wax, and cut into 5-μm-
thick sections. These sections were stained with H & E to observe the pathological changes in 
the heart by optical microscopy (OM, Nikon, Japan).

Staining of Masson′s trichrome
Staining was performed using the Masson’s Trichrome Stain (Masson) kit (Sigma-Aldrich) 
according to the manufacturer's instructions. The images were captured by OM at 200× 
magnification. Two individuals blinded to the experimental design analyzed the images 
using Image-Pro Plus software (version 6.0, Media Cybernetics, USA) for semi-quantitative 
analysis. Each section was selected randomly from five different areas for analysis, and the 
average value was taken as the final value.

RNA extraction and qRT-PCR analysis
The total RNA was extracted from the macrophage lysates and mouse heart tissues using 
Trizol reagent (Invitrogen, USA) according to the manufacturer′s instructions. The isolated 
RNA was reverse transcribed to cDNA using PrimeScriptTM RT reagent Kit with a dDNA Eraser 
(TaKaRa). The cDNA was subjected to qRT-PCR using SYBR Green Supermix (Bio-Rad, 
USA). The primers were synthesized by Shanghai Shenggong and are listed in Table 1. β-actin 
was used to normalize mRNA expression. The fold change in the relative mRNA levels was 
calculated using the 2−ΔΔCT method. The PCR reactions were carried out in an SYBR green 
working solution and measured quantitatively using the Applied Biosystems 7300 qRT-PCR 
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system and software (Applied Biosystems, USA). The following thermal cycler parameters 
were used: 95°C for 10 min, followed by 40 cycles of 95°C for 10 s, 60°C for 30 s.

Western blot analysis
Equal amounts of protein (20 μg) were separated on 10% SDS-polyacrylamide gel and 
transferred electrophoretically to a polyvinylidene fluoride membrane. The membranes were 
immersed in 5% skim milk powder for 1 h and incubated overnight at 4 °C with multiple 
specific primary antibodies, including HSP70, HSP90, TLR4, MyD88, NLRP3, ASC, caspase-1, 
caspase-11, IL-18, IL-1β, HMGB1, COX-2, iNOS, HMGB1, IL-6, TNF-α, p-JNK, p-ERK, p-p38, 
p-IκBα/IκBα, Bax, Txnip, NLRP3, caspase-1, caspase-11, GSDMD, ASC, IL-1β, IL-18, caspase-3, 
and α-Tubulin. Subsequently, the membrane was washed three times with PBST and incubated 
for 1 h with horseradish peroxidase (HRP)-conjugated secondary antibody (1:5,000). Finally, 
the membranes were again washed and visualized by enhanced chemiluminescence (ECL, Bio-
Rad) Western blotting detection system. The band intensities were quantified using Image J gel 
analysis software. All experiments were carried out in triplicate.

Statistical analysis
All data above were calculated as the means ± SEM and analyzed using SPSS19.0 (IBM, 
USA) software. Comparisons between each group were conducted using one-way analysis 
of the variance (ANOVA), whereas the least significant difference was used for multiple 
comparisons analysis. The value of p < 0.05 or < 0.01 were considered significant.

RESULTS

Chronic CS-induced myocardial damage in C57BL/6 mice
The pathological features of heart tissues caused by cold stimulation were analyzed by HE and 
Masson staining to determine if chronic CS could induce myocardial damage in mice. The CS 
group manifested severe myocardial architecture disruption, hemorrhage, and inflammatory 
cell infiltration compared to the RT group (Fig. 1A-B). Moreover, compared to the RT group, 
a significant increase in CK-MB was examined in the chronic CS-exposed group (Fig. 1C). The 
stress-related protein expression of HSP90 and HSP70 was detected by western blot. Chronic 
CS could enhance the expression of HSP70 significantly but had little effect on HSP90 protein 
expression compared to the RT group (Fig. 1D-E). In addition, western blot analysis indicated 
that chronic cold exposure could effectively promote the expression of cleaved-caspase-3 and 
Bax apoptosis-related protein in the heart tissues (Fig. 1F-G). These findings showed that 
chronic cold exposure resulted in myocardial injury.
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Table 1. Primers used for quantitative real time polymerase chain reaction
Genes Sequences
TNF-α Forward primer: 5′-GCAACTGCTGCACGAAATC-3′

Reverse primer: 5′-CTGCTTGTCCTCTGCCCAC-3′
HMGB1 Forward primer: 5′-GTTCTGAGTACCGCCCCAAA-3′

Reverse primer: 5′-TAGGGCTGCTTGTCATCTGC-3′
IL-6 Forward primer: 5′-ACATCGACCCGTCCACAGTAT-3′

Reverse primer: 5′-CTTGGGACTGATGCTGGTGACAAC-3′
β-actin Forward primer: 5′-CTACCTCATGAAGATCCTGACC-3′

Reverse primer: 5′-CACAGCTTCTCTTTGATGTCAC-3′
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Chronic cold exposure triggered oxidative stress in the heart tissues of mice
Given that an oxidative insult is considered a vital factor of tissue damage in CS-induced 
mice, this study examined whether chronic cold exposure could induce oxidative myocardial 
damage. As shown in Fig. 2, chronic cold exposure increased the excessive accumulation 
of MDA and the depletion of GSH and SOD, suggesting severe oxidative stress in the heart 
tissues of mice caused by CS.
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Fig. 1. Chronic cold stress-induced myocardial damage in C57BL/6 mice. C57BL/6 mice were kept at RT or CS (4oC) for three weeks, three hours per day. (A) 
Representative histological sections of the heart were stained with hematoxylin and eosin (magnification×400). (B) Representative histological sections of the 
heart were stained with Masson-stain (magnification×400). (C) Myocardial injury was detected through the serum levels of CK-MB and lactate dehydrogenase 
using the enzyme-linked immunosorbent assay method. (D and F) Effects of low temperature on the level of stress-related HSP70 and HSP90 proteins, and 
apoptosis-related cleaved-caspase3 and BAX protein. (E and G) The relative protein expression was quantified by densitometric analysis. Similar results were 
obtained from three independent experiments. All data are presented as the means ± SEM (n = 5/group). 
RT, room temperature; CS, cold stress; CK-MB, creatine kinase isoenzyme MB. 
ap < 0.05 and bp < 0.01 vs. CS group; NS, not significant.
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Chronic CS led to the release of inflammatory mediators in mice
Inflammatory mediators are major contributors to various heart diseases. Therefore, the 
expression of iNOS, COX-2, TNF-α, IL-6, and HMGB1 was assessed after the three-week 
chronic cold exposure period. CS led to the tremendous expression of HMGB1, IL-6, and 
TNF-α protein, whereas the iNOS and COX-2 levels were similar to those in the RT groups 
(Fig. 3A-F). Simultaneously, the RT-qPCR results showed that CS dramatically induced 
the levels of HMGB1, IL-6, and TNF-α mRNA expression in myocardial tissue (Fig. 3G-I), 
indicating that chronic cold exposure promoted the cardiac inflammatory response.

Chronic CS-induced NLRP3-caspase1-GSDMD pyroptosis signaling pathway in 
mice
Inflammation is closely associated with pyroptosis. Therefore, this study examined whether 
CS could excite the pyroptosis-related signaling pathway using western blot. As shown in 
Fig. 4, chronic cold exposure induced the increased expression of NLRP3, ASC, cleaved-
caspase1, GSDMD-N, mature-IL-1β, and mature-IL-18 protein, while cleaved-caspase11 protein 
expression was moderate, suggesting that CS activates the GSDMD-mediated pyroptosis 
signaling pathway and is regulated by NLRP3 in a caspase-1-dependent, non-caspase-1-
dependent manner.

Chronic CS activated NF-κB and MAPK signaling pathways in mice
The underlying mechanism of how chronic cold exposure promoted the cardiac 
inflammatory response was assessed. The classical inflammation-related NF-κB and 
MAPK signaling pathways were detected by western blot. Compared to the RT group, CS 
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Fig. 2. Effect of chronic cold exposure on levels of oxidative markers in mice. The C57BL/6 mice were kept at 
RT or CS (4oC) for three weeks, three hours per day. (A-D) Heart tissues of mice were gathered to measure the 
MDA, CAT, SOD, and GSH levels. Similar results were obtained from three independent experiments. All data are 
presented as the means ± SEM (n = 5/group). 
MDA, malondialdehyde; RT, room temperature; CS, cold stress; CAT, catalase; GSH, glutathione; SOD, superoxide 
dismutase. 
ap < 0.05 and bp < 0.01 vs. CS group.
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increased the phosphorylation of NF-κB (P65), JNK, ERK, and p38 MAPK and elevated the 
phosphorylation and degradation of IκBα, suggesting that CS could effectively activate NF-κB 
and MAPK signaling pathway (Fig. 5).
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Fig. 3. Effect of chronic cold exposure on the release of inflammatory mediators in mice. C57BL/6 mice were kept at RT or CS (4°C) for three weeks, three 
hours per day. The heart tissues of the mice were gathered and analyzed by western blot and RT-qPCR. (A) Effects of cold exposure on the protein levels of 
iNOS, COX-2, HMGB1, IL-6, and TNF-α in the heart tissues of mice. (B-F) Quantification of relative protein expression was performed by densitometric analysis. 
α-Tubulin was used as an internal control. (G-I) The mRNA levels of TNF-α, IL-6, and HMGB1 were detected by RT-qPCR. Similar results were obtained from three 
independent experiments. All data are presented as the means ± SEM (n = 5/group). 
RT, room temperature; CS, cold stress; IL, interleukin; TNF-α, tumor necrosis factor-α; CAT, catalase; RT-qPCR, quantitative real time polymerase chain reaction. 
ap < 0.05 and bp < 0.01 vs. CS group; NS, not significant.
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Chronic CS enhanced TLR4 and MyD88 protein levels in mice
Several studies showed that TLR4/MyD88, a critical inflammation regulator, is upstream 
of the NF-κB and MAPK signaling pathway. Thus, TLR4 and MyD88 protein expression 
under cold stimulation was examined using western blot. As shown in (Fig. 6), chronic cold 
exposure could result in the TLR4 and MyD88 protein expression in contrast to the RT group. 
These results suggest that the CS-induced cardiac inflammatory reaction may partially be due 
to the regulation of the TLR4/MyD88-NF-κB and -MAPK signaling pathways.
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Fig. 4. Effect of chronic cold exposure on NLRP3-caspase1/11-GSDMD pyroptosis signaling pathway in mice. C57BL/6 mice were kept at RT or CS (4oC) for 
three weeks, three hours per day. The heart tissues of the mice were collected and analyzed by western blot. (A) Effects of cold exposure on the protein levels 
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Chronic cold exposure caused a decrease in Trx-1 and an increase in the Txnip 
protein levels in mice
The potential mechanisms of inflammasome NLRP3 activation caused by chronic cold 
exposure were examined further. The Trx-1/Txnip signal plays an essential role in modulating 
inflammasome NLRP3. Therefore, the levels of Trx-1 and Txnip protein expression were 
detected by western blot. Expression of the Txnip protein was elevated by cold stimulation 
compared to the RT group (Fig. 7), but the expression of the Trx-1 protein was decreased in 
heart tissues.

DISCUSSION

Increasing evidence has shown that various cardiovascular diseases are strongly associated 
with extremely low temperatures [24,25]. Pyroptosis and inflammatory responses play vital 
roles in many heart disorders, particularly myocardial ischemia/reperfusion (I/R) injury [26], 
but a few studies examined the underlying mechanisms of CS and cardiac injury. Accordingly, 
this study examined the level of pyroptosis and inflammatory responses in mouse myocardial 
tissue under chronic CS conditions. The results showed that chronic cold exposure could 
induce a pyroptosis and inflammation reaction in the heart tissue of mice by regulating the 
NLRP3 inflammasome, Trx-1/Txnip, and TLR4/MyD88 signaling pathway.

The cardiac structure and level of myocardial enzymes in the serum are considered important 
indicators of cardiac injury [27]. Several studies reported that CS could cause cardiac 
remodeling and cardiac dysfunction [28]. In the present study, chronic CS also caused 
myocardial injury with an elevation of the creatine kinase isoenzyme-MB (CK-MB) levels, 
which is consistent with previous reports. Moreover, heat shock proteins (HSP) are key stress 
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proteins, including HSP70 and HSP90, which play an essential role as molecular chaperones 
in stress protection and have important regulatory roles in inflammation and oxidative stress 
[29,30]. The increase in HSP70 protein expression, but not HSP90, was induced by chronic 
cold stimulation. Moreover, cold exposure could increase the expression of apoptosis-related 
proteins, which are closely associated with myocardial functional impairment [31]. Previous 
studies showed that cold exposure provoked hippocampal neuroinflammation and hepatic 
oxidative stress by promoting the generation of inflammatory factors, decreasing the content 
of the antioxidant enzyme, and increasing the content of the oxidation product [22,32]. 
Western blot and qRT-PCR analysis showed that chronic hypothermia exposure resulted 
in the obvious expression of HMGB1, IL-6, and TNF-α protein and mRNA. In addition, 
biochemical indicators analysis indicated that the antioxidant enzymes CAT, SOD, and GSH 
were efficiently depleted, while the lipid oxidation product MDA increased under chronic 
cold exposure conditions. These investigations suggested that chronic CS could lead to 
cardiac injury by promoting cell apoptosis, inflammation, and oxidative stress.

Pyroptosis is a newly discovered pro-inflammatory type of programmed cell death (PCD) 
resulting from gasdermin D (GSDMD)-mediated membrane pore formation, cell swelling, 
and rapid lysis, which leads to the massive secretion of inflammatory cytokines, such as 
IL-1β and IL-18 [33,34]. Pyroptosis is strongly involved in cardiovascular disease (CVD), 
including atherosclerosis, myocardial ischemia/reperfusion injury (MI/RI), and myocardial 
infarction [35]. Although cold exposure may result in cardiac injury [32], it is unclear if it is 
associated with cellular pyroptosis. The present findings showed that the release of mature-
IL-1β and IL-18 and the formation of N-terminal cleavage product (GSDMD-N) were induced 
by CS. The effects of cold exposure on caspase-1 and caspase-11 activation were examined 
further because GSDMD, a key pyroptosis executor, is a common substrate for caspase-1 
and caspase-11 in mice [36]. Caspase-1 was activated, while caspase-11 was not efficiently 
changed. Moreover, new evidence indicated that NLRP3 inflammasome could first recognize 
various stimuli, and then activate pro-caspase-1 cleavage and an adaptor protein, like 
apoptosis-associated speck-like protein containing a CARD (ASC) recruitment to assemble 
inflammasomes, leading to inflammation and pyroptosis [37,38]. Indeed, NLRP3 was 
significantly activated in chronic CS-induced pyroptosis death and inflammation. Overall, 
chronic CS can induce pyroptosis mainly via the NLRP3-regulated caspase-1-dependent 
canonical pathway.

NLRP3 activation is closely related to multiple signaling pathways, including Trx-1/Txnip and 
TLR4-mediated NF-κB pathway [16,21]. More importantly, abundant research has shown 
that the TLR4 and Txnip pathways play a critical role in various myocardial injuries [26,39]. 
Inhibition of the TLR4 pathway reduces myocardial inflammation and improves the cardiac 
function [26]. In the present study, western blot analysis showed that chronic cold exposure 
activated the NF-κB and MAPK signaling pathways by promoting the TLR4/MyD88 signal. 
Moreover, Txinp was reported to be an endogenous inhibitor of the Trx-1 pathway, which 
is involved in some pathological consequences of myocardial ischemia /reperfusion injury 
[40]. The present results showed that chronic cold exposure could decrease Trx-1 protein 
expression and increase Txnip protein expression. These findings indicated that the chronic 
CS-induced NLRP3/caspase1/GSDMD signal might be associated with the Trx-1/Txnip and 
TLR4/MyD88 pathways.

In summary, as shown in Fig. 8, chronic CS triggers cell apoptosis, oxidative stress, 
inflammation, and pyroptosis, which leads to cardiac injury, with possible mechanisms 
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related to the NLRP3-mediated caspase-1-dependent canonical pathway, Trx-1/Txnip, and 
TLR4/MyD88 pathway. These investigations provide insights into the increased risk of 
cardiovascular disease with cold exposure.
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