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DPDR-CPI, a server that predicts 
Drug Positioning and Drug 
Repositioning via Chemical-Protein 
Interactome
Heng Luo1,†,*, Ping Zhang2,*, Xi Hang Cao3, Dizheng Du1, Hao Ye1, Hui Huang1, Can Li1, 
Shengying Qin1, Chunling Wan1, Leming Shi4, Lin He1 & Lun Yang1,#

The cost of developing a new drug has increased sharply over the past years. To ensure a reasonable 
return-on-investment, it is useful for drug discovery researchers in both industry and academia to 
identify all the possible indications for early pipeline molecules. For the first time, we propose the term 
computational “drug candidate positioning” or “drug positioning”, to describe the above process. It 
is distinct from drug repositioning, which identifies new uses for existing drugs and maximizes their 
value. Since many therapeutic effects are mediated by unexpected drug-protein interactions, it is 
reasonable to analyze the chemical-protein interactome (CPI) profiles to predict indications. Here we 
introduce the server DPDR-CPI, which can make real-time predictions based only on the structure of 
the small molecule. When a user submits a molecule, the server will dock it across 611 human proteins, 
generating a CPI profile of features that can be used for predictions. It can suggest the likelihood of 
relevance of the input molecule towards ~1,000 human diseases with top predictions listed. DPDR-
CPI achieved an overall AUROC of 0.78 during 10-fold cross-validations and AUROC of 0.76 for the 
independent validation. The server is freely accessible via http://cpi.bio-x.cn/dpdr/.

The cost of developing a new drug increased from $0.8 billion in 2003 to $2.6 billion in 20141. It was estimated that only 
one drug compound was approved for market use after screening, selection and trials from a large number of com-
pounds within 10–17 years2,3. The research and development (R&D) costs of new drugs are increasing while the num-
ber of annual approved new drugs has not changed much4. Therefore, it is important for drug developers in industry 
or academia to identify all possible indications for their pipeline molecules, i.e., positioning the molecule towards the 
best possible indications as early as possible. Even if there is no clinical or animal data available for the molecule, which 
is usually the case at early stages of the pipeline, potential indications should be identified. Here, for the first time, we 
propose this indication prioritization process as “drug candidate positioning”, or “drug positioning”, which differentiates 
with “drug repositioning” and could be one of the essential steps in the future R&D strategy. On the other hand, drug 
repositioning, i.e., identifying new uses for existing drugs3, also could maximize the market value of the existing drugs5. 
For both positioning and repositioning, the process of computational indication prediction is essential.

Many computational methods have been developed for drug repositioning, including structure-based prediction6, 
side-effect-based approach7,8, networks9–11, gene expression analysis12–16 and text mining17. Some studies combined 
various data types to get improved prediction performance18,19. Servers that utilize descriptors20,21, gene expressions13,22 
and multiple data types11 were developed. Most of the above methods require data and knowledge that have already 
been generated, such as the associated drug targets, drug labels, gene expression profiles and side-effects, many of 
which are only applicable to the late-stage or marketed drugs but not to early pipeline molecules. Therefore, they are 

1Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China. 2Center for Computational Health, IBM T.J. 
Watson Research Center, Yorktown Heights, NY 10598, USA. 3Center for Data Analytics and Biomedical Informatics, 
Temple University, Philadelphia, PA 19122, USA. 4Collaborative Innovation Center for Genetics and Development, 
State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of 
Life Sciences, Fudan University, Shanghai 200438, China. †Present address: IBM Thomas J. Watson Research Center, 
1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA. #Present address: Bayer Pharma AG, Müllerstraße 178, 
13353 Berlin, Germany. *These authors contributed equally to this work. Correspondence and requests for materials 
should be addressed to L.Y. (email: lun.yang@gmail.com)

received: 01 June 2016

Accepted: 10 October 2016

Published: 02 November 2016

OPEN

http://cpi.bio-x.cn/dpdr/
mailto:lun.yang@gmail.com


www.nature.com/scientificreports/

2Scientific RepoRts | 6:35996 | DOI: 10.1038/srep35996

not available to support drug candidate positioning. During our previous studies, we address this issue by con-
structing the in silico chemical-protein interactome (CPI)6,23–27, based on which the DRAR-CPI was developed6. 
The server requires the user submission of a molecular structure via the web interface, and then a CPI profile 
will be constructed for indication prediction. The CPI profile will be compared against the profiles of our library 
drugs and potential indications will be suggested based on profile similarities. It has helped different groups of 
researchers to identify putative targets and potential indications for their molecules28–31. However, the server was 
developed five years ago and it has two major limitations: (a) the number of predicted indications are limited 
and biased because of the limited drug library in our server and (b) the indication prediction is based on an 
unsupervised method, which does not utilize a training process to optimize the prediction for each indication. 
Therefore, we introduce an upgraded version of the server, DPDR-CPI, to predict drug candidate positioning 
and drug repositioning via CPI. It can accept a small molecule in major formats, including MOL, MOL2, PDB, 
SDF and SMILES, and predict its potential indications across 963 diseases using machine learning models. The 
performances were validated using a blinded independent validation–the model was trained at one institution 
and validated another institution. It achieved an area under the receiver operating characteristic curve (AUROC) 
of 0.78 during 10-fold cross-validations. The server will also suggest putative targets and their docking confor-
mations based on a faster and more accurate docking program so that the users can explore the rationale of the 
predicted indications32.

Results and Discussion
Model evaluation. The training set and the independent validation set both contain 628 drugs and 638 
ICD-9 disease indications belonging to 328 ICD-9 disease families (Supplementary Tables S1 and S2). For the 
10-fold cross-validations of the training set under global metrics, the models obtained an AUROC of 0.752 for the 
638 ICD-9 disease indications and 0.760 for the 328 ICD-9 disease families. The server-side models were trained 
using the combination of both the training set and the independent validation set (called entire dataset). They 
reached an AUROC of 0.782 for the 638 ICD-9 disease indications and 0.783 for the 328 ICD-9 disease families. 
Other measurements, including accuracy, precision, sensitivity, specificity and area under the precision-recall 
curve (AUPR), are shown in Table 1.

For the independent validation, we compared two types of prediction methods: (1) logistic regressions 
based on E-state, Extended Connectivity Fingerprint (ECFP)-6, Functional-Class Fingerprints (FCFP)-6, FP4, 
Klekota-Roth method, MACCS and PubChem structural descriptors (called LR-E-state, LR-ECFP6, LR-FCFP6, 
LR-FP4, LR-KR, LR-MACCS and LR-PubChem, respectively)33, and (2) DPDR-CPI proposed in this paper that 
analyzes CPI profiles to predict indications. For the 638 ICD-9 disease indications as endpoints, the comparisons 
of receiver operating characteristic (ROC) curves and precision-recall curves under global metrics are shown in 
Fig. 1. All evaluation measurements including global, drug-centric and disease-centric metrics are summarized 
in Table 2. We see the DPDR-CPI obtained the best overall performance with an AUROC of 0.764 during the 
independent validation.

Likewise, we used 328 ICD-9 disease families as endpoints and compared the structural descriptor-based 
methods and DPDR-CPI. The ROC and precision-recall curves are shown in Supplementary Figure S1 and eval-
uation measurements are attached in Supplementary Table S3. From either ICD-9 diseases or ICD-9 disease 
families, the independent validation showed that our CPI-based method generally outperformed structural 
descriptor-based methods. DPDR-CPI achieved a reasonably good overall performance and can be utilized for 
drug candidate positioning and repositioning purposes.

The CPI is an in silico atomistic prediction of drug-protein binding data. Though some studies utilized 
experimental drug-protein binding data to predict drug indications and demonstrated good prediction perfor-
mances18,19,34, such information is limited for new or pipeline drug candidates. Though our CPI may not be as 
accurate as the experimental binding data, it has the advantage to make predictions for new or pipeline drug 
candidates. Since obtaining the wet-lab binding data can be both costly and time-consuming, we believe our CPI 
provides a fast, low-cost and useful solution for drug candidate positioning.

Another advantage of our CPI approach is the consideration of potential off-target binding effects, which are 
important to the discovery of new indications. The 611 targets in our library consist of both pharmacokinetic 
(PK) and pharmacodynamic (PD) proteins serving as a reasonable distribution of off-targets. The features pro-
vided by off-target binding effects can be used to identify drug indications even if the on-target does not exist in 
the library. For example, Rolapitant is a neurokinin-1 (NK-1) receptor antagonist that can treat vomiting. Even 
though its target NK-1 is not included in our library, we submitted the molecule to our DPDR-CPI server and 
found its indication ranked to top second with a high confidence value of 0.85.

Endpoints Dataset Accuracy Precision Sensitivity Specificity AUROC AUPR

638 ICD-9 
diseases

Entire dataset 0.956 ±  0.000 0.176 ±  0.001 0.274 ±  0.002 0.972 ±  0.000 0.782 ±  0.001 0.151 ±  0.001

Training set 0.953 ±  0.000 0.152 ±  0.001 0.241 ±  0.001 0.969 ±  0.000 0.752 ±  0.001 0.123 ±  0.001

328 ICD-9 
disease 
families

Entire dataset 0.925 ±  0.000 0.167 ±  0.000 0.363 ±  0.001 0.942 ±  0.000 0.783 ±  0.000 0.169 ±  0.001

Training set 0.919 ±  0.000 0.152 ±  0.001 0.341 ±  0.003 0.938 ±  0.000 0.760 ±  0.001 0.149 ±  0.001

Table 1.  Performance evaluation of DPDR-CPI using the entire dataset versus the training set during 10-
fold cross-validations. The entire dataset was utilized to build server-side prediction models while the training 
set was used to construct models for independent validation. The training set is a half of the entire dataset.
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Since drugs in the independent validation set may have similar structures to some of the drugs used in the 
training set, to reduce such impact, we removed the drugs from the independent validation set which have a 
Tanimoto similarity > 0.718 towards any drug in the training set. The new results of independent validation 
are shown in Supplementary Tables S4 and S5. We see that after removing the similar drugs, the AUROC of 
DPDR-CPI slightly dropped by 0.02~0.03, indicating the performance of our method is not mainly contributed 
by structural similar drugs.
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(A) ROC Curve

DPDR-CPI AUROC: 0.764
LR-ECFP6 AUROC: 0.651
LR-E-State AUROC: 0.602
LR-MACCS AUROC: 0.649
LR-PubChem AUROC: 0.704
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LR-KR AUROC: 0.660
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(B) Precision-Recall Curve

DPDR-CPI AUPR: 0.118
LR-ECFP6 AUPR: 0.040
LR-E-State AUPR: 0.030
LR-MACCS AUPR: 0.039
LR-PubChem AUPR: 0.050
LR-FCFP6 AUPR: 0.051
LR-FP4 AUPR: 0.038
LR-KR AUPR: 0.048

Figure 1. Under global metric, (A) the ROC curve comparison and (B) the precision-recall curve comparison 
for different prediction methods for 638 ICD-9 disease indications on the independent validation data.

Metric Method Accuracy Precision Sensitivity Specificity AUROC AUPR

global 

LR-ECFP6 0.801 0.040 0.355 0.811 0.651 0.040

LR-E-State 0.792 0.033 0.305 0.802 0.602 0.030

LR-FCFP6 0.904 0.050 0.193 0.919 0.670 0.051

LR-FP4 0.870 0.045 0.247 0.883 0.633 0.038

LR-KR 0.897 0.045 0.190 0.912 0.660 0.048

LR-MACCS 0.881 0.047 0.235 0.896 0.649 0.039

LR-PubChem 0.866 0.054 0.318 0.878 0.704 0.050

DPDR-CPI 0.964 0.192 0.203 0.981 0.764 0.118

drug-centric (628)

LR-ECFP6 0.906 ±  0.140 0.316 ±  0.303 0.490 ±  0.267 0.916 ±  0.144 0.783 ±  0.154 0.135 ±  0.161

LR-E-State 0.888 ±  0.153 0.235 ±  0.245 0.465 ±  0.273 0.898 ±  0.158 0.744 ±  0.150 0.085 ±  0.087

LR-FCFP6 0.902 ±  0.147 0.298 ±  0.292 0.497 ±  0.267 0.911 ±  0.150 0.781 ±  0.153 0.132 ±  0.156

LR-FP4 0.897 ±  0.145 0.258 ±  0.261 0.472 ±  0.266 0.907 ±  0.149 0.761 ±  0.146 0.103 ±  0.116

LR-KR 0.903 ±  0.139 0.289 ±  0.290 0.498 ±  0.265 0.912 ±  0.142 0.778 ±  0.152 0.129 ±  0.156

LR-MACCS 0.895 ±  0.148 0.271 ±  0.276 0.478 ±  0.269 0.905 ±  0.152 0.762 ±  0.152 0.108 ±  0.124

LR-PubChem 0.897 ±  0.156 0.293 ±  0.294 0.486 ±  0.265 0.907 ±  0.160 0.766 ±  0.160 0.125 ±  0.146

DPDR-CPI 0.893 ±  0.150 0.273 ±  0.282 0.511 ±  0.271 0.902 ±  0.154 0.775 ±  0.156 0.128 ±  0.163

disease-centric (638)

LR-ECFP6 0.668 ±  0.268 0.061 ±  0.075 0.559 ±  0.305 0.671 ±  0.278 0.563 ±  0.138 0.032 ±  0.036

LR-E-State 0.596 ±  0.323 0.059 ±  0.097 0.593 ±  0.338 0.596 ±  0.336 0.504 ±  0.150 0.026 ±  0.026

LR-FCFP6 0.711 ±  0.242 0.077 ±  0.105 0.529 ±  0.293 0.716 ±  0.250 0.583 ±  0.136 0.036 ±  0.044

LR-FP4 0.629 ±  0.307 0.064 ±  0.093 0.575 ±  0.326 0.632 ±  0.318 0.524 ±  0.148 0.030 ±  0.035

LR-KR 0.690 ±  0.259 0.109 ±  0.212 0.553 ±  0.308 0.695 ±  0.268 0.571 ±  0.133 0.035 ±  0.048

LR-MACCS 0.659 ±  0.286 0.061 ±  0.083 0.549 ±  0.310 0.663 ±  0.296 0.536 ±  0.145 0.030 ±  0.034

LR-PubChem 0.746 ±  0.231 0.075 ±  0.090 0.523 ±  0.283 0.752 ±  0.239 0.609 ±  0.144 0.039 ±  0.046

DPDR-CPI 0.888 ±  0.173 0.258 ±  0.261 0.388 ±  0.234 0.899 ±  0.179 0.682 ±  0.148 0.088 ±  0.091

Table 2.  Performance comparisons of the different structural descriptor-based methods and DPDR-
CPI using 638 endpoints of ICD-9 disease indications on the independent validation data. Three types of 
metrics, including global, drug-centric and disease-centric metrics, were used.
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Case study 1: drug candidate positioning for parogrelil. It is important to make early decisions of the 
indication prioritization for the pipeline molecules, so that the developers could choose the best indications with 
unmet needs, clinical developability and return on investment. Here we found an investigational molecule, “NM-
702”, originally developed for peripheral vascular disease35 (http://www.drugbank.ca/drugs/DB05505), and sub-
mitted it the DPDR-CPI server. The server successfully picked up this indication (Table 3) as the third rated one 
and all the top four predictions were relevant to the same disease category (cardiovascular diseases). Among these 
four top predictions, we believe that the second prediction, cerebral arterial occlusion, is a highly unmet need 
and should be considered. Acute stroke is caused by cerebral arterial occlusion and can lead to brain infarction36. 
Stroke is the fifth most common cause of death and the most frequent causes of disability in the US37. Therefore, 
by using the DPDR-CPI server, the drug developer could have positioned this drug candidate into the second 
indication and compared efficacy for both indications in the respective animal models. We believe the server 
provides drug developers an opportunity to choose the most promising indication for further development, such 
as deciding whether to pursue it for a higher unmet need (cerebral artery occlusion) or continuing its original 
designated indication, along with the atomistic docking model to help make sense of the additional targets.

From the case study, we see that the DPDR-CPI server can identify the best indications for a compound based 
only on its molecular structure, which is very important to the pharmaceutical industry since it supports a rapid 
high throughput approach. Though our work is based on the in silico docking approach, which has been exten-
sively used for virtual screening and target identification in the past decades, the purposes of this work include 
drug candidate positioning as an important application.

Case study 2: drug repositioning for rosiglitazone. Rosiglitazone is an anti-diabetic drug which has 
been on the market for years. We would like to know whether our server is able to expand its indications for 
possible new uses. We submitted its structure to the server and found our server successfully identified its orig-
inal indications, hypoglycemia and diabetes mellitus, as the top two predictions (Table 4). Some other reported 
new uses, such as disorders of fatty acid oxidation38 and Alzheimer’s disease39, are also prioritized by the server. 
Among the top predictions, retinal disorders and glaucoma are also listed. It is reported that rosiglitazone is a 
potential neuroprotectant for retinal cells and may increase the retinal cell survival40. It may also delay the onset 
of proliferative diabetic retinopathy41. In addition, the drug was found useful after glaucoma filtration surgery for 
anti-fibrotic activity42. Therefore, in concordance with the literature reports, the atomistic based prediction results 
suggested that it is possible to expand rosiglitazone for eye disease treatments.

We also look at the binding target predictions for rosiglitazone and found monoamine oxidase A (MAO-A) 
is ranked in the top three. It was reported that rosiglitazone is an inhibitor for MAO-A43, a drug target for neu-
roprotective therapy44. Such prediction provides possible biologic clues for rosiglitazone’s neuroprotective effects 
towards retinal cells, and may help to discover its potential uses and mechanisms for treating eye diseases.

Conclusion
The DPDR-CPI server is able to produce indication predictions for a user molecule towards ~1,000 human 
diseases, providing suggestions for drug candidate positioning and drug repositioning. It has the potential to 
improve the drug development pipeline in terms of indication prioritization even for molecules in the early R&D 
stage.

Methods
Preparation of the training set. We included 2,515 drug molecules, 611 ligand-bindable target structures 
and their CPI from our previous study24. The 2,515 molecules were collected from DrugBank45 and STITCH46, 
of which 85% are FDA-approved drugs. The 611 target structures contains 239 PK proteins and 372 PD proteins 
collected from Protein Data Bank (PDB)47 and PDBBind48. Though the targets were harvested from a project for 
drug-drug interaction prediction, we still believe they can serve as potential off-target binding features for drug 
indication prediction. The in silico interactome of these 2,515 molecules across 611 targets was generated using 
AutoDock Vina32.

Rank Disease Confidence

1

458: Hypotension 0.80

 458: Hypotension 0.80

 458.9: Hypotension, unspecified 0.80

2
434: Occlusion of cerebral arteries 0.70

 434.91: Cerebral artery occlusion, unspecified with cerebral infarction 0.70

3
443: Other peripheral vascular disease 0.69

 443.9: Peripheral vascular disease, unspecified 0.69

4

427: Cardiac dysrhythmias 0.67

 427: Cardiac dysrhythmias 0.60

 427.1: Paroxysmal ventricular tachycardia 0.59

 427.9: Cardiac dysrhythmia, unspecified 0.58

Table 3.  Drug candidate positioning prediction for NM-702 using the DPDR-CPI server. The diseases are 
grouped into ICD-9 families and ranked by their confidence values.

http://www.drugbank.ca/drugs/DB05505
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We chose MEDication Indication resource (MEDI)49 as a gold standard for drug indications since it contains 
the largest number of indications (4,352 diseases) among the existing drug-indication databases50 and it uses 
International Classification of Disease (ICD)-9 codes (2014 version) to represent diseases. We mapped the 3,112 
drugs from MEDI to DrugBank using DrugBank synonym rules, and identified 1,256 common drugs that exist 
both in MEDI and our CPI (Supplementary Table S1). The docking scores of 1,256 common drugs against the 
611 targets were used as features for our machine learning models, and the disease indications are considered as 
endpoints.

We filtered the endpoints according to the following criteria: (a) we removed the endpoints containing ICD-9 
codes from 780 to 999 since they are related to symptoms, injuries or poisoning which are less of interest; (b) we 
removed the endpoints that can be treated by less than five drugs due to the fact that the positive samples are 
too few in those cases. Afterwards, we got 963 ICD-9 disease indications which belong to 424 ICD-9 families 
(Supplementary Table S2). For each drug-indication pair, if the drug is reported to treat the indication in MEDI, 
it is labeled as “1” (positive), otherwise, “0” (negative). Finally, the dataset was converted to a matrix containing 
1,256 drugs as rows and 611 target-binding features as predictor variables with 963 ICD-9 diseases and 424 ICD-9 
disease families as dependent variables or endpoints.

Model training and evaluation. To evaluate an indication prediction method for multiple drugs to mul-
tiple diseases, there are three possible approaches- (1) Global metrics: one can merge the prediction scores for 
all drugs over all diseases, and then compute the overall evaluation result; (2) Drug-centric metrics: one can 
compute an evaluation result for each drug and then average the results over all drugs to obtain an overall score; 
(3) Disease-centric metrics: one can compute an evaluation result for each disease and then average the results 
over all diseases to obtain an overall score. In this study, global metrics were used during the model training and 
cross-validation. All three evaluation approaches were implemented during the independent validation.

The workflow of the model training and prediction is shown in Fig. 2. We randomly split the original dataset 
into two equal parts, one half serving as training set, and the other half as independent validation set. We filtered 
the diseases that have fewer than five associated drugs in the new training set to ensure each endpoint has at 
least five positive samples. After the filtering process, we ended up having 638 ICD-9 individual diseases and 
328 disease families. We treated the indication prediction task as a binary classification problem and constructed 
separate classifiers for each disease. A comparison of Naïve Bayes, logistic regression and random forest models 

Rank Disease Confidence

1
251: Other disorders of pancreatic internal secretion 0.95

 251.2: Hypoglycemia, unspecified 0.83

2

250: Diabetes mellitus 0.93

 250.1: Diabetes with ketoacidosis 0.93

  250.10: Diabetes with ketoacidosis, type ii or unspecified type, not 
stated as uncontrolled 0.93

  250.01: Diabetes mellitus without mention of complication, type i 
[juvenile type], not stated as uncontrolled 0.89

  250.00: Diabetes mellitus without mention of complication, type ii 
or unspecified type, not stated as uncontrolled 0.81

 250: Diabetes mellitus 0.80

3

362: Other retinal disorders 0.91

 362.83: Retinal edema 0.73

 362.10: Background retinopathy, unspecified 0.62

 362.9: Unspecified retinal disorder 0.62

4
277: Other and unspecified disorders of metabolism 0.87

 277.85: Disorders of fatty acid oxidation 0.81

5

276: Disorders of fluid electrolyte and acid-base balance 0.87

 276.2: Acidosis 0.87

 276.69: Other fluid overload 0.64

6

365: Glaucoma 0.85

 365: Glaucoma 0.85

 365.9: Unspecified glaucoma 0.85

 365.1: Open-angle glaucoma 0.84

 365.10: Open-angle glaucoma, unspecified 0.84

 365.13: Pigmentary open-angle glaucoma 0.84

 365.04: Ocular hypertension 0.84

 365.00: Preglaucoma, unspecified 0.82

7
331: Other cerebral degenerations 0.83

 331.0: Alzheimer’s disease 0.82

Table 4.  Top disease predictions for rosiglitazone from the server. The diseases are grouped into ICD-9 
families and ranked by their confidence values.
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showed comparable efficiency and accuracy of predictions on our training data, so we chose logistic regression for 
the DPDR-CPI server. The models were set up with L2-regularization which gives an increasing penalty as model 
complexity increases to prevent overfitting. Models were constructed using Python 2.7 and the Scikit-Learn pack-
age51 and evaluated with 10-fold cross-validation. Cross-validation experiments were repeated 100 times to get a 
mean and a standard deviation of the AUROCs and the AUPRs and the accuracy, precision, sensitivity, and spec-
ificity measures were calculated based on a prediction threshold when the maximum F-score (harmonic mean of 
precision and recall) was achieved.

Then we assessed the models on the independent validation data by using global metrics, drug-centric met-
rics, and disease-centric metrics. Since this independent dataset was not included anywhere in the training, we 
used it as a gold standard to evaluate our method. To compare our method against structural descriptor-based 
methods, we generated the E-state, ECFP6, FCFP6, FP4, Klekota-Roth, MACCS and PubChem33 fingerprints for 
all the drugs. The E-State, ECFP6, MACCS, and PubChem fingerprints were generated using rcdk package 3.3.252 
in R 3.1.3, FP4 fingerprints were produced by Open Babel 2.3.253 and FCFP6 and Klekota-Roth fingerprints were 
generated via RDKit version 2016-06-30 in Anaconda Python 2.7.12. We built models based on the descriptor 
features following the same procedure above and compared the methods during the independent validation.

We also utilized all the data, including both the training and validation sets, to train comprehensive mod-
els to run on the server-side for predictions. The parameters and thresholds were determined using the exact 
cross-validation procedure described above. In order to make the scores comparable across different diseases for 
ranking purposes, we used an Empirical Bayes method54 to normalize prediction scores of the same drug across 
all endpoints (i.e., diseases). To explain this process, consider a particular drug i and divide the diseases into two 
groups: group 1 includes diseases which can be treated by drug i, and group 0 includes diseases which cannot be 
treated by drug i. For a disease j, yj is the predicted score generated from the models. We use the confidence of 
disease j belonging to Group 1 (i.e. the probability of the disease belongs to Group 1 based on all predicted scores 
for drug i) as the normalized value.

According to the Bayes’s rule,

| =
|

| + |
P G y

P y G P G

P y G P G P y G P G
( )

( ) ( )

( ) ( ) ( ) ( )j
j

j j
1

1 1

1 1 0 0

Here P(·) denotes the probability of an event. G1 and G0 denote the events of belonging to Group 1 and Group 
0, respectively, and yj|G1 denotes the event of observing yj when the disease belongs to Group 1. We obtain the 
probabilities on the right-hand side of the formula from empirical distributions. P(G0) and P(G1) are the prior 
probabilities of a disease from Group 0 and Group 1, respectively. P(G0) is the proportion of diseases that cannot 
be treated by the drug from the training data, and P(G1) is the proportion of diseases that can be treated by the 
drug from the training data. Let P(yj|G0) denotes the probability density from the distribution of predicted scores 
of diseases from Group 0 based on the training data. P(yj|G1) is the probability density from the distribution of 
predicted scores of diseases from Group 1 based on the training data. After obtaining all values on the right-hand 
side of the formula, the normalized score is calculated. Since the probabilities on the right-hand side are obtained 
from for each drug, the normalized scores of diseases are comparable within each drug.

Figure 2. Flow chart of the model training and prediction process. We collected 1,256 drug molecules and 
611 ligand-bindable targets (a) to constructed an in silico chemical-protein interactome (CPI) using docking 
(b). Based on the existing drug-indication knowledge, machine learning models (c) were trained to predict drug 
indications (d) based on the CPI. When a user submits a molecule to our server (e), it is docked against our 
library targets to generate docking scores. These scores are fed to the machine learning models (f) to predict the 
indications (g) for this molecule.
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Server workflow. The overall workflow of the server is shown in Fig. 3. Users can submit a molecular file in 
the following formats: MOL, MOL2, PDB, SDF and SMILES. A JSME Molecule Editor55 is also provided for the 
user to sketch a molecule. We utilize Molconvert 14.8.18.0 from Marvin Beans (https://www.chemaxon.com) and 
AutoDock Tools 1.5.456 to convert the 2D molecular structure to 3D PDBQT file with Gasteiger charges. A small 
molecule, naphthylamine, is provided for a quick test of the server. Our server is designed to dock small drug-like 
molecules so it may fail or generate inaccurate results for molecules that are larger than 900 Daltons, such as 
peptides and natural products, or small inorganic molecules that do not contain any rotatable bonds. When the 
molecule file is submitted, it is added to the queue to be docked by AutoDock Vina32 against the 611 targets with 
default parameters. The docking scores and poses with the lowest energy scores are extracted and sent to the 
machine learning models for indication prediction. A typical calculation task usually takes minutes to hours, 
depending on how complicated the input molecule is. The user can choose to view the ongoing process online as 
it executes, bookmark the task link and return later, or leave an email address and wait for a notice.

The following results will be provided when a task is complete:

1. The predicted indications from 963 ICD-9 indications of 424 ICD-9 disease families along with confidence 
values. The indication table is organized as a tree-like structure based on ICD-9 code hierarchy and ranked by 
the ICD-9 family confidence values.

2. The binding scores and structures of the user molecule towards the 611 library targets. The interaction pat-
terns can be visualized online via JSMol (http://www.jmol.org) and the target residues within 6.4 Å distance23 
from the ligand are highlighted.

Disclaimer. This server is only for research purposes and the authors and their organizations are excluded 
from all liability for any costs, claims, expenses, charges, losses, damages or penalties of any kind incurred directly 
or indirectly arising from the use of this server.
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