
sensors

Article

A Low-Delay Lightweight Recurrent Neural Network
(LLRNN) for Rotating Machinery Fault Diagnosis

Wenkai Liu 1,2, Ping Guo 1,2,* and Lian Ye 1,2

1 Chongqing Key Laboratory of Software Theory and Technology, Chongqing University,
Chongqing 400044, China

2 College of Computer Science, Chongqing University, Chongqing 400044, China
* Correspondence: guoping@cqu.edu.cn

Received: 15 May 2019; Accepted: 5 July 2019 ; Published: 14 July 2019
����������
�������

Abstract: Fault diagnosis is critical to ensuring the safety and reliable operation of rotating
machinery systems. Long short-term memory networks (LSTM) have received a great deal of
attention in this field. Most of the LSTM-based fault diagnosis methods have too many parameters
and calculation, resulting in large memory occupancy and high calculation delay. Thus, this paper
proposes a low-delay lightweight recurrent neural network (LLRNN) model for mechanical fault
diagnosis, based on a special LSTM cell structure with a forget gate. The input vibration signal is
segmented into several shorter sub-signals in order to shorten the length of the time sequence. Then,
these sub-signals are sent into the network directly and converted into the final diagnostic results
without any manual participation. Compared with some existing methods, our experiments illustrate
that the proposed method has less memory space occupancy and lower computational delay while
maintaining the same level of accuracy.

Keywords: recurrent neural network; data-driven fault diagnosis; lightweight network; deep
learning; bearing faults

1. Introduction

Mechanical fault diagnosis—analysing data collected by sensors and predicting the health of
mechanical systems—has become a research hotspot in industry [1,2]. The existing methods can be
approximately divided into three categories: physics-based “white-box” models, data-driven artificial
intelligence (AI) methods (“black-box”), and the combination of above two kinds, referred to as
“grey-box” models. The performance of physics-based models is heavily dependent on the quality of
domain knowledge about the practical mechanical systems. In reality, mechanical equipment works
in complex production environments, and the collected data are seriously disturbed by a variety
of noise. The models built in an ideal environment may not work in such a complex environment.
A data-driven model can update parameters using real-time data [3]. This flexibility has made them
become the focus of fault diagnosis research. Although white-box models are dependent on the quality
of domain knowledge, this additional information could reduce the solution space and enhance the
performance of black-box models. Some grey-box models have earned relatively good results in fault
diagnosis. Zhou et al. [4] used neighbourhood components analysis to reduce the dimensionality of
original features, then applied coupled hidden Markov model (CHMM) to bearing fault diagnosis.
Jung et al. [5] exploit the multi-scale energy analysis of discrete wavelet transformation to obtain
a low-dimensional feature subset of data as the input of a k-nearest neighbours (k-NN) algorithm for
bearing fault classification. Gangsar et al. [6] proposed a method for the fault diagnosis of induction
motors by combining the wavelet packet transform (WPT) and support vector machine (SVM).

Sensors 2019, 19, 3109; doi:10.3390/s19143109 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5239-8896
http://www.mdpi.com/1424-8220/19/14/3109?type=check_update&version=1
http://dx.doi.org/10.3390/s19143109
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3109 2 of 17

The traditional AI methods are also shallow models and always work on the original feature
representation without creating new features during the learning process [7]. It is difficult to
characterise the inherent non-linear relationship of complex mechanical systems effectively while
using them. In order to further improve the diagnostic performance, deep learning has recently been
applied to mechanical fault diagnosis [8]. Deep learning can automatically extract advanced features
from the original data through hierarchical learning, and achieve end-to-end learning without any
manual participation. Compared with the traditional AI methods, the deep learning method has lower
dependence on the knowledge of feature design. At present, there are three main methods that are
widely used in the field of mechanical fault diagnosis: automatic encoder (AutoEncoder), convolutional
neural network (CNN), and recurrent neural network (RNN). The AutoEncoder can learn rich
representation features and reduce data dimensionality, and has has received a great deal of attention
in this research field. Ahmed et al. [9] proposed an unsupervised feature learning algorithm using
stacked AutoEncoders to learn feature representations from compressed measurements. Lu et al. [10]
presented a detailed empirical study of stacked denoising AutoEncoders with three hidden layers for
fault diagnosis. Junbo et al. [11] used a digital wavelet frame and nonlinear soft threshold method
to process vibration signals and used an AutoEncoder on the preprocessed signal to carry out roller
bearing fault diagnosis. However, adjusting the model parameters requires a large amount of data and
time, and it is difficult to judge whether the learned features are related to the target task.

CNNs can automatically select the feature of data without any artificial designs, and has been
widely applied in fault diagnosis. Wen et al. [12] transformed a raw signal into a square matrix through
non-overlapping cutting and normalised the value to 0–255, which was regarded as an image directly
using 2D LeNet-5 for the fault prediction of gears and bearings. Liu et al. [13] cut the raw signal
into a square matrix by changing the interval distance, which was used directly for fault detection
in the 2D-CNN structure training. Sun et al. [14] used multi-scale information extracted by dual
tree-complex wavelet transform (DT-CWT) to form a matrix and combined it with a CNN for gear
fault diagnosis. Guo et al. [15] used a novel diagnosis method involving a CNN to directly classify
a continuous wavelet transform scalogram (CWTS). CNNs can effectively extract local features of data
and process high-dimensional data, but most CNN architectures are heavily over-parametrised and
computationally complex, taking a lot of time to train the network [16].

The initial parameter values affect the final performance of a CNN. Besides, CNNs are unable
to remember historical data information. When predicting, a CNN must process historical input
data repeatedly, bringing unnecessary computational consumption. The RNN is a framework for
processing sequence data. It analyses the combination of historical data feature and current input data,
then extracts the new feature information and makes decisions. The processing form of RNNs is more
suitable for mechanical fault diagnosis. RNNs have the ability to memorise historical information, and
only need to process the input data once. Therefore, they can detect the health status of mechanical
systems in real time. However, the vanishing gradient problem during the back-propagation of
model training hinders the performance of RNNs. This means that traditional RNNs may not
capture long-term dependencies. Long short-term memory networks (LSTMs), which can extract
long-term dependence features, avoid the gradient disappearance problem cleverly through the gate
mechanism and have been successfully applied in various fields, including image captioning [17],
speech recognition [18], and natural language processing [19]. Nevertheless, it is also difficult to train
LSTMs when the data sequence is too long. LSTM-based methods also have the problem of excessive
parameters and computational complexity. The LSTM structure can be further simplified to reduce the
calculation time. In order to solve the above problems, this paper proposes a low-delay lightweight
recurrent neural network (LLRNN) model for mechanical fault diagnosis, making the following two
main contributions: (1) The design of a lightweight network structure based on a special LSTM cell with
only a forget gate, reducing the parameters and calculation of the network. (2) It studies the influence of
step length (i.e., the length of each sub-segment of a sequence signal, as shown in Figure 1 Dx) and step
number (number of sub-segment of a sequence signal as shown in Figure 1 L/Dx) of the sequence

Sensors 2019, 19, 3109 3 of 17

data on the performance of the model, including accuracy, noise immunity, and calculation delay,
on the basis of the characteristics of the vibration signal. Two bearing data sets, provided by Case
Western Reserve University (CWRU)’s Bearing Data Center and the Center for Intelligent Maintenance
Systems (IMS), University of Cincinnati, respectively, were used to verify the performance of the
proposed algorithm. Compared with the LSTM-based methods and some CNN-based models, in our
experiments the proposed algorithm took up less storage space and had shorter calculation delay
under the same accuracy and noise immunity, and was more suitable for real-time fault diagnosis.

Figure 1. The step length (Dx) and step number (L/Dx) of a data sequence.

The rest of this paper is arranged as follows. In Section 2, the RNN variants and their applications
are reviewed. Then, the LLRNN and its analysis are presented in Section 3. In the following Section 4,
the experimental results using two data sets are illustrated. Finally, the conclusion is provided in
Section 5.

2. Related Work

2.1. Application of RNN in Fault Detection

RNNs are mainly used to process sequence data, because they can store the feature information
of historical data in the internal state (i.e., memory). Then, they combine current input data with
memory and extract new features, as shown in Figure 2a. RNNs can be trained via backpropagation
through time, but the vanishing gradient problem during backpropagation makes it difficult to capture
long-term dependencies. The LSTM is an efficient RNN variant structure to solve this problem.
It avoids long-term dependence problems through the gate mechanism and has the ability to extract
long-term dependent feature information effectively [20]. The LSTM cell structure is shown in Figure 2b,
and the calculation process is shown in Equation (1).

ft = σ(Wh
f · ht−1 + W x

f · xt + b f)

it = σ(Wh
i · ht−1 + W x

i · xt + bi)

gt = tanh(Wh
g · ht−1 + W x

g · xt + bg)

ot = σ(Wh
o · ht−1 + W x

o · xt + bo)

Ct = ft � Ct−1 + it � gt

ht = ot � tanh (Ct)

(1)

where ft denotes the forget gate, it the input gate, ot the output gate, and gt the new candidate memory
state. ht−1 and ht denote the hidden states of the previous moment and the current moment. xt denotes
the input of the current moment. Ct−1 and Ct denote the memory states of the previous moment and
the current moment. Wh

∗ and W x
∗ denote the parameters related to ht−1 and xt in the corresponding

gate. and b∗ denotes the bias in the corresponding gate. “·” and “�” denote the operations of matrix
multiplication and point multiplication, respectively.

Sensors 2019, 19, 3109 4 of 17

Figure 2. The inner structures of different recurrent neural network (RNN) cells: (a) RNN; (b) Long
short-term memory network (LSTM); (c) Gated recurrent unit (GRU)

The gate mechanism of LSTM is redundant, causing excessive parameters and calculations.
In order to solve this problem, researchers have proposed several variants [21–24]. Gated recurrent
unit (GRU) [24], the most successful variant, combines the forget gate and the input gate into an update
gate and mixes the memory state and the hidden state. The GRU cell structure is shown in Figure 2c
and the calculation process is shown in Equation (2):

zt = σ(Wh
z · ht−1 + W x

z · xt + bz)

rt = σ(Wh
r · ht−1 + W x

r · xt + br)

gt = tanh(Wh
g · (rt � ht−1) + W x

g · xt + bg)

ht = (1− zt)� ht−1 + zt � gt,

(2)

where rt denotes the reset gate, controlling the influence level of ht−1 on gt. zt denotes the update gate,
controlling the update of the memory state. The GRU can achieve performance comparable to LSTM
with one less gate.

LSTMs have been successfully applied in many fields, and have also received much attention
in the field of mechanical fault detection. Zhao et al. [25] combined a CNN with a bi-directional
LSTM to propose a novel machine health monitoring system used for tool wearing prediction.
Park et al. [26] employed an LSTM model in an edge device for industrial robot manipulator fault
detection. Yuan et al. [27] applied an LSTM for aero engine fault diagnosis and remaining useful life
(RUL) prediction. Zhang et al. [28] combined LSTM with Monte Carlo simulation for lithium-ion
batteries’ RUL prediction. Cui et al. [29] combined fast Fourier transform (FFT) and RNN for bearing
fault diagnosis. Wang et al. [30] applied LSTM to gear fault diagnosis. Liu et al. [31] proposed
a GRU-based method for rolling bearings fault diagnosis by comparing the reconstruction errors
generated from multiple-dimension time-sequence data. This paper proposes a lightweight model
with low delay based on a special LSTM cell structure for rotating mechanism fault diagnosis.

2.2. Introduction of JANET

Der Westhuizen et al. [32] proposed a new LSTM cell structure with only one forget gate, namely,
“just another network” (JANET). Not only does JANET provide computational savings, but also
outperforms the standard LSTM on multiple benchmark data sets and competes with some of the best
contemporary models. The JANET cell structure is shown in Figure 3, and the calculation process is
shown in Equation (3).

ft = σ(Wh
f · ht−1 + W x

f · xt + b f)

gt = tanh(Wh
g · ht−1 + W x

g · xt + bg)

Ct = ft � Ct−1 + (1− ft)� gt

ht = Ct

(3)

Sensors 2019, 19, 3109 5 of 17

JANET retains the most important forget gate ft in LSTM. Since ft determines which information
should be discarded, the information that ft does not suggest to drop should be retained. Therefore,
(1− ft) is approximately regarded as it, reducing both the parameters and calculation caused by the
input gate. The output gate selects the useful information in the memory state Ct and passes it to the
hidden state ht. In fact, this task can be handed over to the forget gate of the next moment. Based on
this idea, JANET cancels the output gate and merges the hidden state ht and memory state Ct, just like
the GRU. JANET has a simpler structure and less calculation.

Figure 3. The inner structures of JANET.

3. The Proposed Method

3.1. Model Structure

In this paper, a low-delay lightweight recurrent neural network (LLRNN) model for rotating
machinery fault diagnosis is designed based on a JANET cell, and the overall flowchart is shown
in Figure 4a. The input vibration signal is segmented into several shorter sub-signals. Then, these
sub-signals are sent to the network directly and converted into the final classification results, as shown
in Figure 4b. As an end-to-end model, the proposed model can turn the data collected by sensors
into the finally desired prediction results without any manual participation, which could be used for
real-time monitoring and has two improvements: (1) It is based on a simpler cell structure with fewer
parameters, and the proposed model consumes less storage space while maintaining its performance.
(2) Segmenting the signal before sending it into the network not only reduces the training difficulty of
the network, but also improves the noise immunity.

Figure 4. (a) Flowchart of the proposed method. (b) Diagnostic process of the proposed method.
LLRNN: low-delay lightweight recurrent neural network.

Sensors 2019, 19, 3109 6 of 17

3.2. Network Structure

Using the output of the previous layer as the input of next layer, an RNN can also be stacked
to form a deeper structure similar to a CNN, as shown in Figure 5a. The feature extraction ability
of the model can be improved and the learned features have more semantic information. However,
this operation brings a risk of over-fitting and more calculation. After logically expanding, the actual
calculation process of an l-layer RNN is described in Figure 5b. The length of each xt is Dx, and
T = steps = L/Dx. In subsequent experiments, the effects of various parameters on the performance
of the model are verified, including accuracy, noise immunity and computational delay.

Figure 5. LLRNN network structure: (a) The real structure; (b) The logically expanding structure.

3.3. Model Analysis

3.3.1. The Parameters and Calculation of Different Cell Structures

As shown in Equation (3), the calculation process of each gate is essentially a fully connected
layer. Let Dh denote the quantity of hidden units in each gate, and Dx denote the input data dimension.
The parameters and calculation cost are defined as in Equations (4) and (5):

Paramsgate = (Dh + Dx) · Dh + Dh (4)

FLOPsgate = 2 · (Dh + Dx) · Dh (5)

where Paramsgate and FLOPsgate (FLOP: floating-point operations) denote the parameters and
calculation amount of each gate, respectively.

The parameter quantity of the cell is the sum of that of all the gates inside it. LSTM has four gates,
GRU has three, and JANET has only two. Their parameters are shown in Equations (6)–(8). JANET
has only half the number of parameters that LSTM does, and two-thirds those of GRU:

ParamsLSTM = 4 · Paramsgate (6)

ParamsGRU = 3 · Paramsgate (7)

ParamsJANET = 2 · Paramsgate (8)

The calculation of the cell in each moment equals to the sum of the that of all the gates, plus the
calculation cost of information interaction between the respective gates, which essentially are some

Sensors 2019, 19, 3109 7 of 17

point addition and point multiplication operations. LSTM has four multiplication interactions, GRU
has five, and JANET has four. The total calculations are shown in Equations (9)–(11):

FLOPsLSTM = (4 · FLOPsgate + 4 · Dh) · steps (9)

FLOPsGRU = (3 · FLOPsgate + 5 · Dh) · steps (10)

FLOPsJANET = (3 · FLOPsgate + 4 · Dh) · steps (11)

where steps denotes the number of sub-segments of a sequence signal, and steps = L/Dx, as shown in
Figure 1.

3.3.2. Analysis of Step Length

As shown in Equations (8) and (11), Dh and Dx affect both the calculation and parameters, and
steps affects only the calculation. When the signal length L of the input model is fixed, steps = L/Dx

and the Equations (12) and (13) can be obtained by substituting it into Equations (8) and (11):

ParamsJANET = 2 · Dh · Dx + 2 · Dh · (Dh + 1) (12)

FLOPsJANET =
4 · Dh · (Dh + 1)

Dx
· L + 4 · Dh · L (13)

Equation (12) shows that the total parameters of the model are positively correlated with Dx,
and the occupancy of parameters and storage space increases with Dx. On the contrary, Equation (13)
shows that the total calculation of the model is negatively correlated with Dx, and the increment
of Dx will reduce the calculation. In addition to the computation, the waiting time caused by data
dependencies also affects the total computing time of the model. The RNN has a serious problem of
calculation delay when processing long sequence data. Because the calculation of ht must wait for ht−1,
the parallel computing power of the GPU cannot solve it. When training the network using a vibration
signal ~x = {x1, x2, ..., xt, ..., xL}, the model takes a long time to process such a long time sequence if
every point is used as the input of each moment. It is difficult to train the network. In addition, there is
too little effective information that can be extracted, and the extracted features are seriously disturbed
by noise if the input vibration signal is single-point. Noise interference not only changes the amplitude
information of the signal, but may even change the direction information of the vibration. As a result,
the accuracy of the algorithm is reduced.

In order to solve these problems, we segment the vibration signal of length L into steps-segment
sub-signals of length Dx, as shown in Figure 1. When Dx-point vibration information is used as the
input of each moment, the step number of the time sequence will reduce from L to L/Dx and the total
calculation decreases according to Equation (13).

Both the fault shock signal and noise signal are superimposed on the normal signal. The operation
of each gate in the cell is a vector multiplied by a matrix, which is essentially a weighted summation of
each point of input. It plays a certain smoothing effect, the same as a mean operation, as shown in
Equation (14):

Sdata = Svibration + Snoise

Svibration = Snornaml + S f ault

Operationgate =
Dx

∑
i

w(i) · Snornaml(i) +
Dx

∑
i

w(i) · S f ault(i) +
Dx

∑
i

w(i) · Snoise(i)

(14)

where Sdata denotes the signal of input data, Svibration and Snoise denote the signal of vibration part and
noise part in Sdata, and Snormal and S f ault denote the signal of the normal part and the fault part in
Svibration. Most noise is subject to the zero-mean distribution and E[Snoise] = 0. This means that the
larger Dx is, the closer ∑Dx

i w(i) · Snoise(i) is to 0. Although the E[S f ault] 6= 0, for the most part the value

Sensors 2019, 19, 3109 8 of 17

of S f ault is 0, except for the moments where a fault shock happens. If Dx is too large, ∑Dx
i w(i) · Snoise(i)

will be very small. It is difficult for a model to extract the feature of faults. Consequently, the Dx should
be appropriate—not too large or too small. These analyses were verified in the subsequent experiments.

4. Experiment and Analysis

Two bearing data sets were used to verify the performance of the proposed algorithm and the
previous analyses. The data sets were provided by Case Western Reserve University (CWRU)’s
Bearing Data Center [33] and the Center for Intelligent Maintenance Systems (IMS), University of
Cincinnati [34]. The hardware resources of the computing device used for the experiment were as
follows, CPU: Intel Core i7-8700k, 3.7 GHz, six-core twelve threads; GPU: NVIDIA 1080Ti, 11G ×2;
Memory: 32 GB; Storage: 2 TB.

The software environment was as follows, Ubuntu 16.04 system; TensorFlow 1.10 framework,
Python programming language.

4.1. The Impact of Model Structure on Performance

4.1.1. Introduction of the CWRU Data Set

To validate the previous analyses, 12-kHz drive-end data collected by Case Western Reserve
University (CWRU)’s Bearing Data Center were used. Figure 6 shows the test rig used for data
collection. The data set contains four different categories, namely, normal bearings, bearings with
a faulty ball (ball), bearings with a faulty inner race (inner) and bearings with a faulty outer race (outer).
For each type of fault, there are three fault diameters, 0.007 inch, 0.014 inch and 0.021 inch, respectively.
Thus, there are 10 classifications in this dataset.

Figure 6. Fault simulation test rig of the Case Western Reserve University (CWRU) data set.

Due to the limited experimental data, the overlapping sampling method was used to enhance the
data according to references [35,36], as shown in Figure 7.

Figure 7. Diagram of overlapping sampling.

The data set was divided into four subsets, corresponding to four different loads, namely load 0,
load 1, load 2, and load 3. As shown in Table 1, every category of data subset under each load contained

Sensors 2019, 19, 3109 9 of 17

800 training samples, 100 test samples, and 100 validation samples, for a total of 8000 training samples,
1000 test samples, and 1000 validation samples.

Table 1. Classification of the CWRU bearing fault data subsets under each load.

Training
Samples

Validation
Samples

Test
Samples

Fault Types
(Inches) Labels

800 100 100 Normal 1
800 100 100 Ball 0.007 2
800 100 100 Ball 0.014 3
800 100 100 Ball 0.021 4
800 100 100 Inner 0.007 5
800 100 100 Inner 0.014 6
800 100 100 Inner 0.021 7
800 100 100 Outer 0.007 8
800 100 100 Outer 0.014 9
800 100 100 Outer 0.021 10

Under normal circumstances, bearing vibration signals are affected by the surrounding ambient
noise. The CWRU dataset selected in this study was collected in an environment with a relatively low
level of ambient noise and therefore cannot reflect the performance of the fault diagnosis algorithm
in an actual environment. In addition, there are a number of noise sources in an actual environment,
and it is impossible to obtain training samples under all the conditions in various noise environments.
Therefore, noise was added to the samples in the raw test set to simulate data from actual conditions.
Using the resultant data for testing could produce results closer to those obtained under actual
industrial production conditions. Accordingly, white Gaussian noise from 10 dB to −4 dB was added
to the data to simulate actual conditions. Signal-to-noise ratio (SNR) is defined as in Equation (15),
and was used when adding noise:

SNR = 10 log10

(Psignal

Pnoise

)
(15)

where Psignal and Pnoise are the intensities of the raw and noise signals, respectively.
To examine the noise immunity of the proposed algorithm, the learning model with the highest

accuracy for the validation set in 1000 iterations was selected. Noise-containing data were randomly
generated 10 times for each sample in the test set of the dataset, and were used for testing and
statistically analysing the experimental results, which were represented in the form of the mean.

4.1.2. Experimental Results and Analysis

To verify the analysis of the impact of step length on performance in Section 3.3.2, the data subset
under load 0 was selected for experimentation, with the network structure having 128 hidden units
and 1 layer. We repeated the experiment 10 times with each parameter configuration, and calculated
the mean value of the results, as shown in Table 2.

As the Dx increased, the validation accuracy and test accuracy slightly increased. When Dx

exceeded 256, the accuracy began to decrease due to the smoothing effect caused by the lengthening
of Dx, which made the model less sensitive to the detail change information of the vibration signal.
When Dx increased from 512 to 1024, the increment of noise immunity was greater than the decrement
of feature extraction capability, so the noise immunity ability rebounded. The Dx was set to 64 to
preserve the noise immunity of the model.

The number of hidden units determines the ability of the RNN model to extract feature
information; too few leads to under-fitting, and too many causes over-fitting. The extracted feature
is finally transformed into a vector, which represents the category, through a fully connected layer
as shown in Figure 4b. This process also has a smoothing effect and an impact on noise immunity.

Sensors 2019, 19, 3109 10 of 17

As shown in Table 3, as the number of hidden units increased, the test accuracy first rose and then fell.
The reason for this is that the generalisation ability increased with the complexity of the model, then
decreased due to over-fitting when the number of cells exceeded 128. Unlike the impact of Dx, the
decrement of noise immunity was not due to the reduced feature extraction capabilities, but to the
over-fitting to noise-free training data.

Table 2. Experimental results for the effects of different step lengths.

Dx
Params

(KB)
FLOPs
(105)

Training
Time

Test
Time (s)

Validation
Acc(%)

Test
Acc (%)

10 dB
Acc (%)

5 dB
Acc (%)

0 dB
Acc (%)

−4 dB
Acc (%)

1 130 682 6 h 33 m 29 s 2.562 97.1 95.9 84.4 60.5 44.0 18.4
2 131 343 3 h 01 m 48 s 1.194 97.8 96.6 94.1 80.7 47.3 21.6
4 133 174 1 h 32 m 12 s 0.552 98.6 97.1 94.4 81.6 52.4 28.1
8 137 89.8 46 m 14 s 0.312 99.2 98.2 94.8 82.9 56.2 29.2
16 145 47.5 23 m 59 s 0.184 99.3 99.1 98.6 97.3 85.5 49.6
32 161 26.4 13 m 04 s 0.097 99.3 99.3 98.3 97.5 91.0 68.6
64 193 15.8 7 m 58 s 0.054 99.4 99.3 99.0 97.8 91.8 75.5

128 257 10.5 4 m 39 s 0.050 99.4 99.4 98.9 97.2 89.9 74.1
256 385 7.88 3 m 48 s 0.048 99.4 98.9 98.3 96.3 88.8 73.5
512 641 6.56 2 m 30 s 0.048 96.9 96.5 95.6 93.4 85.9 71.2
1024 1153 5.90 2 m 13 s 0.048 96.2 96.0 95.7 94.9 90.7 79.3

Training time denotes the time of training the network on the GPU with batch size equaling 100; Test time
denotes the time of testing the network on the CPU using all the test samples of load 0.

Table 3. Experimental results for the effects of different hidden units.

Dh
Params

(KB)
FLOPs
(104)

Training
Time (s)

Test
Time (s)

Validation
Acc (%)

Test
Acc (%)

10 dB
Acc (%)

5 dB
Acc (%)

0 dB
Acc (%)

−4 dB
Acc (%)

16 5.06 4.10 471 0.047 99.2 98.1 95.4 87.9 70.6 47.4
32 12.13 9.83 471 0.048 99.4 98.9 97.9 94.0 82.4 58.9
48 21.19 17.2 472 0.051 99.4 99.1 98.7 96.7 87.7 67.0
64 32.25 26.2 473 0.051 99.3 99.2 98.6 96.6 88.7 69.5
80 45.31 36.9 475 0.053 99.4 99.2 98.8 97.1 89.5 70.9
96 60.38 49.2 476 0.053 99.4 99.2 98.8 97.2 90.1 72.7
128 96.50 78.6 478 0.054 99.3 99.3 99.0 97.8 91.8 75.5
160 140.63 115 480 0.063 99.4 99.2 98.8 97.4 90.4 74.0
192 192.75 157 482 0.071 99.3 99.1 98.8 97.5 90.3 73.9
224 252.88 206 485 0.075 99.3 99.0 98.8 97.5 90.6 73.8
256 321.00 262 486 0.090 99.1 99.0 98.7 97.6 90.6 73.5

When hidden units increased from 16 to 256, the theoretical calculation increased by 50 times, but
the real training time only increased by less than three percent, and the test time nearly doubled. These
gaps were caused by the following two reasons: (1) The increment of hidden units only brought the
calculation for each moment without increasing the waiting time. (2) The GPU has parallel computing
power; 16 units or 256 units were calculated synchronously, and the time consumed was the same as
that for calculating only one unit. Only when calculating the sum of all the results of each unit did the
calculating time increase slightly.

RNNs can also be stacked like CNNs to build deeper models, as shown in Figure 5b. The number
of hidden units in the network was set to 128 for the experiment due to the highest noise immunity
performance, and the effects of different layer numbers on the model performance are shown in Table 4.

Table 4. Experimental results for the effects of different numbers of layers.

Layer Params
(KB)

FLOPs
(106)

Training
Time (s)

Test
Time (s)

Validation
Acc (%)

Test
Acc (%)

10 dB
Acc (%)

5 dB
Acc (%)

0 dB
Acc (%)

−4 dB
Acc (%)

1 193 1.58 478 0.054 99.3 99.3 99.0 97.8 91.8 75.5
2 386 3.16 684 0.076 99.5 99.3 99.1 98.4 93.6 79.0
3 579 4.74 1126 0.103 99.3 99.0 98.6 97.3 90.6 72.8
4 772 6.32 1332 0.123 99.0 98.7 98.1 96.6 89.8 73.2
5 965 7.91 1792 0.146 98.3 98.0 97.4 96.1 89.6 73.4

Sensors 2019, 19, 3109 11 of 17

The model had the highest test accuracy and noise immunity at two layers due to the appropriate
model complexity. The model with more layers had lower performance caused by over-fitting, and
both space occupancy and calculation delay increased without any increment of test accuracy or
noise immunity.

As shown in the above experiments, all the analyses of the impact of network structure and step
length on performance were verified. As Dx increased, the calculation delay decreased, the accuracy
first rose then fell, and the noise immunity increased. As Dh increased, the calculation delay on the
CPU decreased, and both the accuracy and noise immunity increased then decreased. As the number of
layers increased, the calculation delay increased, and both the accuracy and noise immunity increased
then decreased. The trend of performance was almost the same as assumed in Section 3. The proposed
method had the most satisfactory result for fault diagnosis on the CWRU data set in the condition that
Dx was equal to 64, Dh was equal to 128, and layer was equal to 2.

4.2. The Universality of the Proposed Method

In the previous experiments, the analyses of the impact of network parameters on the performance
were verified, and the proposed method had a satisfactory result on the CWRU data set. However,
the mechanical system in the CWRU bearing data experiment was relatively simple, and the fault was
also caused by human damage, whose vibration characteristics may be different from that of natural
wear in an actual production environment. To verify the universality of the model, extra experiments
were performed using the IMS data set, which was collected in a more complex mechanical system
with natural wear faults. LSTM and GRU were used for experimental comparison to verify whether
the simplification of the cell structure would reduce the network performance.

4.2.1. Introduction of the IMS Data Set

This dataset was provided by the Center for Intelligent Maintenance Systems (IMS), University of
Cincinnati, and shared on the website of the Prognostic Data Repository of NASA [37]. The structure of
the mechanical system is shown in Figure 8, and the data records the entire wear process of the bearing.

Figure 8. Test rig and sensor placement of the Center for Intelligent Maintenance Systems (IMS) dataset.

Sensors 2019, 19, 3109 12 of 17

The bearings experienced “increase–decrease–increase” degradation trends. This behaviour was
due to the “self-healing” nature of the damage [38]. First, the amplitude of vibration increased because
of the impact caused by the initial surface defect (e.g., spalling or cracks). Then, the initial defect was
smoothed by continuous rolling contact, leading to the decrease of the impact amplitude. Finally,
the damage spread over a broader area, and the vibration amplitude increased again. During the
self-healing period, the amplitude of the fault bearing was similar to that of the normal bearing, making
it difficult to detect the fault during the self-healing period, as shown in Figure 9.

Figure 9. The root mean square (RMS) values in dataset 2 of IMS.

At the end of the experiment, the inner race defect, outer race defect, and roller element defect
were detected manually [34]. As shown in Figure 9, the red curve indicates the wear process of the
outer race defect in bearing 1. The self-healing appeared after the failure on the fifth day, and its
amplitude was basically the same as that of the normal bearing (green curve). In order to increase the
difficulty of diagnosis, we chose the bearings in the self-healing period as fault data, and the normal
bearing with similar amplitude as normal data. Also, a length of 1024 was directly sampled as a sample
instead of overlapping sampling due to the relatively sufficient size of the IMS data set. The fault data
categories are shown in Table 5.

Table 5. Classification of the IMS bearing fault data set.

Training Validation Test Fault Types Labels

1600 200 200 Normal 1
1600 200 200 Roller 2
1600 200 200 Outer 3
1600 200 200 Inner 4

4.2.2. Experimental Results and Analysis

In order to verify whether the simplification of the cell structure had too much of a negative
impact on performance, a comparison experiment was performed using GRU and LSTM with the
same number of hidden units and almost-calculated quantities.

The comparison results of the CWRU data set are shown in Tables 6 and 7. When the number of
hidden units was 128 and the number of layers was 1, neither the test accuracy nor noise immunity of
GRU1 and LSTM1 were improved much compared with LLRNN. However, the parameter quantity of
GRU1 increased by one-half and that of LSTM1 increased by one time, the test delay of GRU1 increased
by 50%, and that of LSTM1 increased by 25%. The GRU1 had less calculation than the LSTM1 but the

Sensors 2019, 19, 3109 13 of 17

calculation delay of GRU1 was higher than that of LSTM1. This is because the four gates of the LSTM1

were independent and could be calculated in parallel, while the calculation of gt in GRU1 must wait
for the output of rt, as shown in Figure 2c, resulting in more calculation time than LSTM1.

Table 6. Experimental results of various methods in the CWRU dataset.

Method Layer Dh
Params

(KB)
FLOPs
(106)

Training
Time (s)

Test
Time (s)

Load 0
Acc (%)

Load 1
Acc (%)

Load 3
Acc (%)

Load 4
Acc (%)

LLRNN 1 128 193 1.58 478 0.054 99.3 99.7 99.8 99.7
GRU1 1 128 289 2.37 518 0.081 99.2 99.2 99.5 99.6
LSTM1 1 128 386 3.15 486 0.068 99.7 99.7 99.8 99.8
GRU2 1 100 193 1.58 502 0.070 99.2 99.1 99.2 99.4
LSTM2 1 84 195 1.60 467 0.061 99.2 99.4 99.7 99.6
GRU3 2 64 193 1.58 987 0.074 99.3 99.3 99.6 99.6
LSTM3 2 53 195 1.59 788 0.067 99.4 99.5 99.7 99.7

Reference [12] - - 50371 145 876 0.865 99.6 99.6 99.7 99.8
Reference [13] - - 565 80.8 586 0.584 99.7 99.6 99.8 99.7
Reference [14] - - 206 10.1 873 0.515 99.8 99.7 99.7 99.8
Reference [15] - - 367 200 2992 5.752 99.7 99.6 99.8 99.7
Reference [6] - - - - 37 7.288 82.3 83.5 85.8 88.3

LLRNN denotes the network structure using JANET cell with Dx = 64, Dh = 128, and layer = 1. GRU1 and
LSTM1 denotes the network structure using GRU and LSTM cells with the same Dx , Dh and layer as LLRNN.
GRU2 and LSTM2 denote the network structure using GRU and LSTM cells under layer = 1 and Dx = 64 with
approximately the same amount of calculation as LLRNN. GRU3 and LSTM3 denote the network structure
using GRU and LSTM cells under layer = 2 and Dx = 64 with approximately the same amount of calculation
as LLRNN.

Table 7. Noise immunity of various methods in the CWRU dataset.

Method
load 0 Acc (%) load 1 Acc (%) load 2 Acc (%) load 3 Acc (%)

10 dB 5 dB 0 dB 10 dB 5 dB 0 dB 10 dB 5 dB 0 dB 10 dB 5 dB 0 dB

LLRNN 99.0 97.8 91.5 99.5 98.7 94.0 99.7 99.4 95.1 99.5 98.3 91.2
GRU1 99.0 97.9 91.8 99.2 98.9 94.1 99.5 99.0 91.8 99.6 98.9 90.3
LSTM1 99.1 98.1 92.1 99.5 99.3 93.5 99.9 99.7 93.1 99.7 99.7 91.5
GRU2 98.1 97.1 89.9 99.0 98.5 91.4 99.1 98.1 91.5 99.1 97.7 89.1
LSTM2 98.3 96.7 89.5 99.3 98.5 91.6 99.2 98.7 92.1 99.0 98.2 89.3
GRU3 99.0 97.8 91.1 99.2 98.5 92.5 99.3 98.8 93.0 99.3 98.4 91.5
LSTM3 99.1 97.8 90.6 99.3 98.7 92.2 99.4 99.1 94.4 99.3 98.5 92.7

Reference [12] 92.9 78.3 33.3 93.5 82.4 35.6 95.9 86.3 37.5 96.9 88.3 38.3
Reference [13] 97.5 92.4 56.0 98.2 93.4 57.4 98.5 94.4 57.8 98.9 95.2 58.1
Reference [14] 96.2 86.4 61.2 96.7 87.6 61.7 97.1 88.4 62.1 97.2 88.7 63.8
Reference [15] 77.1 54.8 36.9 78.6 58.1 35.3 75.3 55.8 37.9 79.6 54.6 39.2
Reference [6] 80.5 77.4 43.8 81.5 73.4 40.5 80.5 77.4 43.8 81.5 74.8 42.3

Under a structure of one layer with parameter quantity and calculation amount similar to LLRNN,
the performances of GRU2 and LSTM2 were slightly lower than that of LLRNN, while the delay
of LSTM2 was 13% higher and that of GRU2 was 30% higher. In the cell structure work flow, the
calculation of the LSTM2 activation function tanh brought calculation and computational delays,
resulting in the calculation time of LSTM2 being longer than that of LLRNN. Under the structure of
two layers with the parameter quantity and calculation amount similar to LLRNN, the performances of
GRU3 and LSTM3 were improved compared with GRU2 and LSTM2. Although the performance was
similar to that of LLRNN, the delay of LSTM3 increased by 24% and that of GRU3 increased by 37%.
As shown in Table 6, CNN-based models [12–15] gained competitive performance in no-noise test data,
but they took up more storage and consumed more computing time due mainly to the over-complexity
of the network structure. Although reference [14] had similar parameters to LLRNN, its theoretical
calculation was six times greater and its real computing time was approximately ten times greater
compared with the proposed method. Besides, the accuracies of CNN models fell rapidly in the
noisy environment while the accuracy of LLRNN still exceeded 90%, as shown in Table 7. The model
structure and training method of SVM both differ from those for neural networks, so it is meaningless

Sensors 2019, 19, 3109 14 of 17

to discuss the training time of reference [6]. Not only were the test accuracies and noise immunities
of SVM much lower than those of LLRNN, but also the test time of the former was dozens of times
greater than that of the latter. The primary reason is that the multi-category task of SVM is broken
down into several binary tasks, which results in extra computation.

The experimental results of the IMS data set are shown in Table 8. The self-repair of the mechanical
system made the data characteristics of the faulty bearing similar to those of the normal bearing.
Although the test accuracy gained satisfactory results, the complexity of the system made the data more
difficult to distinguish in high-noise environments. The test accuracy in the simulation environment of
0 dB was lower than that of the CWRU data set at least 6%. Like the experimental results of the CWRU
dataset, the performance of LLRNN was not worse than any structure using LSTM or GRU.

Table 8. Experimental results of various methods in the IMS dataset.

Method Layer Dh
Params

(KB)
FLOPs
(106)

Training
Time (s)

Test
Time (s)

Test
Acc (%)

10 dB
Acc (%)

5 dB
Acc (%)

0 dB
Acc (%)

−4 dB
Acc (%)

LLRNN 1 128 193 1.58 360 0.052 99.5 99.1 97.6 85.2 63.6
GRU1 1 128 289 2.37 462 0.075 99.6 99.7 98.6 84.2 60.8
LSTM1 1 128 386 3.15 373 0.063 99.6 99.3 97.9 85.1 63.7
GRU2 1 100 193 1.58 462 0.067 99.3 98.6 98.4 82.4 59.0
LSTM2 1 84 195 1.60 357 0.056 99.3 98.3 97.0 84.5 62.4
GRU3 2 64 193 1.58 790 0.062 99.5 98.8 98.0 83.8 59.2
LSTM3 2 53 195 1.59 638 0.058 99.6 99.5 98.3 85.5 63.6

Reference [12] - - 50,371 145 1006 1.344 99.7 98.5 97.0 87.1 60.3
Reference [13] - - 565 80.8 615 0.473 99.8 97.9 95.4 87.2 61.2
Reference [14] - - 206 10.1 723 0.436 99.8 89.6 60.6 26.1 25.3
Reference [15] - - 367 200 2441 4.657 99.7 96.6 82.4 61.1 35.6
Reference [6] - - - - 32 3.497 76.0 72.8 57.7 50.2 28.9

In contrast to the experimental results of the CWRU data, two CNN models gained competitive
noise immunity. However, their computing time was still much higher than that of proposed method.
The other two still could not work in a noisy environment—especially reference [14], whose prediction
accuracy was similar to random guess in a severely noisy environment, at around 25%. The SVM
model also behaved poorly; its performance was similar to that in the CWRU data set. However,
its test time was much lower than that in the CWRU data set. Because there are four categories of IMS
data and the quantity of decomposed binary tasks is only four-tenths that of CWRU, it had much
less calculation. According to the results of the above experiments, the ingenious simplification of
the JANET cell did not cause serious performance degradation. The calculation delay of LLRNN was
at least 10% lower than any network structure using LSTM or GRU while maintaining a satisfactory
performance. Compared with some CNN and SVM models, the proposed method not only gained
higher prediction accuracy and noise immunity, but also spent the least amount of computing time.

5. Conclusions

In this paper, a low-delay lightweight recurrent neural network (LLRNN) model is proposed
for mechanical fault diagnosis, which is an end-to-end processing model. From input data to output
diagnostics, the process executes automatically without any manual involvement. Thus, the diagnostic
quality is not dependent on expert experience. According to the work flow of the JANET cell structure,
this paper analysed the influence of several factors (e.g., Dx, steps, Dh, and layers) on the performance
of the model, including accuracy, noise immunity, and calculation delay. The relationship between
these factors and performance was verified in the experiment. The proposed method obtained the
highest accuracy and noise immunity performance when layer = 2, Dx = 64, and Dh = 128. This could
give some guidance to model design in related fields. The experimental results of the two data sets
CWRU and IMS prove that the simplified structure of LLRNN could achieve performance comparable
to any network model using LSTM or GRU, and the computational delay decreased by at least 10%,
which is more suitable for real-time fault detection systems.

Sensors 2019, 19, 3109 15 of 17

The proposed method still requires some improvements due to the data dependencies of the
RNN work flow. As shown in Figure 5b and Equation (3), the calculation of ht must wait for ht−1.
Let tgate denote the time consumed in calculating each gate. Although the GPU has parallel computing
power, it could only calculate each gate synchronously with the limitation of data dependencies.
Ignoring the consumption of communication between each gate, the time consumed each moment
could approximate tgate. When dealing with time series data with length of steps, the GPU must wait
steps times caused by the data dependencies, so the time of calculating each data sample is tgate× steps.
If the dependence between ht and ht−1 could be eliminated, the calculation of each moment could be
performed independently and the GPU could fully utilise its parallel computing power without any
waiting. The calculation of steps moments could be dealt with at the same time. Consequently, the
time of calculating each data sample could be further reduced to approximately tgate. Now that the
CPU of the edge device is basically multi-core and has certain parallel computing capabilities, it means
that the test time could decrease as well.

Author Contributions: Conceptualization, W.L.; Validation, W.L.; Writing—original draft, W.L.; Writing—review
and editing, L.Y., and P.G.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

LLRNN Low-Delay Lightweight Recurrent Neural Network
LSTM Long Short-Term Memory Network
AutoEncoder Automatic Encoder
DT-CWT Dual Tree-Complex Wavelet Transform
CWTS Continuous Wavelet Transform Scalogram
AI Artificial Intelligence
CHMM Coupled Hidden Markov Model
k-NN k-Nearest Neighbour
WPT Wavelet Packet Transform
SVM Support Vector Machine
CNN Convolutional Neural Network
RNN Recurrent Neural Network
GRU Gated Recurrent Unit
RUL Remaining Useful Life
FFT Fast Fourier Transform
JANET Just Another NETwork
FLOPs FLOating-Point Operations
CPU Central Processing Unit
GPU Graphics Processing Unit

References

1. Yin, S.; Li, X.; Gao, H.; Kaynak, O. Data-Based Techniques Focused on Modern Industry: An Overview.
IEEE Trans. Ind. Electron. 2015, 62, 657–667. [CrossRef]

2. Qiao, W.; Lu, D. A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis—Part I: Components
and Subsystems. IEEE Trans. Ind. Electron. 2015, 62, 6536–6545. [CrossRef]

3. Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mech. Syst.
Signal Process. 2018, 107, 241–265. [CrossRef]

4. Zhou, H.; Chen, J.; Dong, G.; Wang, H.; Yuan, H. Bearing fault recognition method based on neighbourhood
component analysis and coupled hidden Markov model. Mech. Syst. Signal Process. 2016, 66–67, 568–581.
[CrossRef]

5. Jung, U.; Koh, B.H. Wavelet energy-based visualization and classification of high-dimensional signal for
bearing fault detection. Knowl. Inf. Syst. 2015, 44, 197–215. [CrossRef]

http://dx.doi.org/10.1109/TIE.2014.2308133
http://dx.doi.org/10.1109/TIE.2015.2422112
http://dx.doi.org/10.1016/j.ymssp.2017.11.024
http://dx.doi.org/10.1016/j.ymssp.2015.04.037
http://dx.doi.org/10.1007/s10115-014-0761-z

Sensors 2019, 19, 3109 16 of 17

6. Gangsar, P.; Tiwari, R. Multi-fault Diagnosis of Induction Motor at Intermediate Operating Conditions
using Wavelet Packet Transform and Support Vector Machine. J. Dyn. Syst. Meas. Control 2018, 140, 081014.
[CrossRef]

7. Zhou, Z.; Feng, J. Deep Forest. arXiv 2018, arXiv:1702.08835v1.
8. Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review.

Mech. Syst. Signal Process. 2018, 108, 33–47. [CrossRef]
9. Ahmed, H.; Wong, M.; Nandi, A. Intelligent condition monitoring method for bearing faults from highly

compressed measurements using sparse over-complete features. Mech. Syst. Signal Process. 2018, 99, 459–477.
[CrossRef]

10. Lu, C.; Wang, Z.Y.; Qin, W.L.; Ma, J. Fault diagnosis of rotary machinery components using a stacked
denoising autoencoder-based health state identification. Signal Process. 2017, 130, 377–388. [CrossRef]

11. Junbo, T.; Weining, L.; Juneng, A.; Xueqian, W. Fault diagnosis method study in roller bearing based on
wavelet transform and stacked auto-encoder. In Proceedings of the 27th Chinese Control and Decision
Conference (2015 CCDC), Qingdao, China, 23–25 May 2015; pp. 4608–4613. [CrossRef]

12. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis
Method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [CrossRef]

13. Liu, R.; Meng, G.; Yang, B.; Sun, C.; Chen, X. Dislocated Time Series Convolutional Neural Architecture:
An Intelligent Fault Diagnosis Approach for Electric Machine. IEEE Trans. Ind. Electron. 2017, 13, 1310–1320.
[CrossRef]

14. Sun, W.; Yao, B.; Zeng, N.; Chen, B.; He, Y.; Cao, X.; He, W. An Intelligent Gear Fault Diagnosis Methodology
Using a Complex Wavelet Enhanced Convolutional Neural Network. Materials 2017, 10, 790. [CrossRef]
[PubMed]

15. Guo, S.; Yang, T.; Gao, W.; Zhang, C. A Novel Fault Diagnosis Method for Rotating Machinery Based on
a Convolutional Neural Network. Sensors 2018, 18, 1429. [PubMed]

16. Denil, M.; Shakibi, B.; Dinh, L.; Ranzato, M.; De Freitas, N. Predicting Parameters in Deep Learning.
In Proceedings of the Advances in Neural Information Processing Systems 26 (NIPS 2013), Lake Tahoe, NV,
USA, 5–8 December 2013, pp. 2148–2156.

17. Gao, L.; Guo, Z.; Zhang, H.; Xu, X.; Shen, H.T. Video Captioning With Attention-Based LSTM and Semantic
Consistency. IEEE Trans. Multimed. 2017, 19, 2045–2055. [CrossRef]

18. Zhang, Y.; Lu, X. A Speech Recognition Acoustic Model Based on LSTM -CTC. In Proceedings of
the 2018 IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China,
8–11 October 2018; pp. 1052–1055. [CrossRef]

19. Palangi, H.; Deng, L.; Shen, Y.; Gao, J.; He, X.; Chen, J.; Song, X.; Ward, R. Deep Sentence Embedding Using
Long Short-Term Memory Networks: Analysis and Application to Information Retrieval. IEEE/ACM Trans.
Audio Speech Lang. Process. 2016, 24, 694–707. [CrossRef]

20. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
21. Zhang, S.; Wu, Y.; Che, T.; Lin, Z.; Memisevic, R.; Salakhutdinov, R.; Bengio, Y. Architectural complexity

measures of recurrent neural networks. In Proceedings of the Advances in Neural Information Processing
Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 1830–1838.

22. Arjovsky, M.; Shah, A.; Bengio, Y. Unitary evolution recurrent neural networks. In Proceedings of the
33rd International Conference on Machine Learning (ICML 2016), New York, NY, USA, 19–24 June 2016;
pp. 1120–1128.

23. Ororbia, A.G.; Mikolov, T.; Reitter, D. Learning Simpler Language Models with the Differential State
Framework. Neural Comput. 2017, 29, 3327–3352. [CrossRef]

24. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Gated Feedback Recurrent Neural Networks. In Proceedings
of the 32nd International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015;
pp. 2067–2075.

25. Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to Monitor Machine Health with Convolutional Bi-Directional
LSTM Networks. Sensors 2017, 17, 273. [CrossRef]

26. Park, D.; Kim, S.; An, Y.; Jung, J. LiReD: A Light-Weight Real-Time Fault Detection System for Edge
Computing Using LSTM Recurrent Neural Networks. Sensors 2018, 18, 2110. [CrossRef]

http://dx.doi.org/10.1115/1.4039204
http://dx.doi.org/10.1016/j.ymssp.2018.02.016
http://dx.doi.org/10.1016/j.ymssp.2017.06.027
http://dx.doi.org/10.1016/j.sigpro.2016.07.028
http://dx.doi.org/10.1109/CCDC.2015.7162738
http://dx.doi.org/10.1109/TIE.2017.2774777
http://dx.doi.org/10.1109/TED.2017.2654460
http://dx.doi.org/10.3390/ma10070790
http://www.ncbi.nlm.nih.gov/pubmed/28773148
http://www.ncbi.nlm.nih.gov/pubmed/29734704
http://dx.doi.org/10.1109/TMM.2017.2729019
http://dx.doi.org/10.1109/ICCT.2018.8599961
http://dx.doi.org/10.1109/TASLP.2016.2520371
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco_a_01017
http://dx.doi.org/10.3390/s17020273
http://dx.doi.org/10.3390/s18072110

Sensors 2019, 19, 3109 17 of 17

27. Yuan, M.; Wu, Y.; Lin, L. Fault diagnosis and remaining useful life estimation of aero engine using LSTM
neural network. In Proceedings of the 2016 IEEE International Conference on Aircraft Utility Systems (AUS),
Beijing, China, 10–12 October 2016; pp. 135–140.

28. Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long Short-Term Memory Recurrent Neural Network for Remaining
Useful Life Prediction of Lithium-Ion Batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [CrossRef]

29. Cui, Q.; Li, Z.; Yang, J.; Liang, B. Rolling bearing fault prognosis using recurrent neural network.
In Proceedings of the 29th Chinese Control And Decision Conference (CCDC), Chongqing, China,
28–30 May 2017; pp. 1196–1201. [CrossRef]

30. Wang, W.; Qiu, X.; Chen, C.; Lin, B.; Zhang, H. Application Research on Long Short-Term Memory
Network in Fault Diagnosis. In Proceedings of the 2018 International Conference on Machine Learning and
Cybernetics (ICMLC), Chengdu, China, 15–18 July 2018; Volume 2, pp. 360–365. [CrossRef]

31. Liu, H.; Zhou, J.; Zheng, Y.; Jiang, W.; Zhang, Y. Fault diagnosis of rolling bearings with recurrent neural
network-based autoencoders. ISA Trans. 2018, 77, 167–178. [CrossRef]

32. Der Westhuizen, J.V.; Lasenby, J. The unreasonable effectiveness of the forget gate. arXiv 2018,
arXiv:1804.04849.

33. Case Western Reserve University. Bearing Data Center. Available online: http://csegroups.case.edu/
bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website (accessed
on 10 July 2019).

34. Qiu, H.; Lee, J.; Lin, J.; Yu, G. Wavelet filter-based weak signature detection method and its application on
rolling element bearing prognostics. J. Sound Vib. 2006, 289, 1066–1090. [CrossRef]

35. Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic
mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016,
72, 303–315. [CrossRef]

36. Chen, K.; Zhou, X.; Fang, J.; Zheng, P.; Wang, J. Fault Feature Extraction and Diagnosis of Gearbox Based on
EEMD and Deep Briefs Network. Int. J. Rotating Mach. 2017, 2017, 9602650. [CrossRef]

37. Acoustics and Vibration Database. NASA Bearing Dataset. Available online: https://ti.arc.nasa.gov/tech/
dash/groups/pcoe/prognostic-data-repository/ (accessed on 10 July 2019).

38. Williams, T.; Ribadeneira, X.; Billington, S.A.; Kurfess, T.R. Rolling element bearing diagnostics in
run-to-failure lifetime testing. Mech. Syst. Signal Process. 2001, 15, 979–993. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TVT.2018.2805189
http://dx.doi.org/10.1109/CCDC.2017.7978700
http://dx.doi.org/10.1109/ICMLC.2018.8527031
http://dx.doi.org/10.1016/j.isatra.2018.04.005
http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
http://dx.doi.org/10.1016/j.jsv.2005.03.007
http://dx.doi.org/10.1016/j.ymssp.2015.10.025
http://dx.doi.org/10.1155/2017/9602650
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
http://dx.doi.org/10.1006/mssp.2001.1418
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Application of RNN in Fault Detection
	Introduction of JANET

	The Proposed Method
	Model Structure
	Network Structure
	Model Analysis
	The Parameters and Calculation of Different Cell Structures
	Analysis of Step Length

	Experiment and Analysis
	The Impact of Model Structure on Performance
	Introduction of the CWRU Data Set
	Experimental Results and Analysis

	The Universality of the Proposed Method
	Introduction of the IMS Data Set
	Experimental Results and Analysis

	Conclusions
	References

