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Abstract

The interaction radius r plays an important role in the collective behavior of many multi-

agent systems because it defines the interaction network among agents. For the topic of

intervention on collective behavior of multi-agent systems, does r also affect the intervention

performance? In this paper we study whether it is easier to change the convergent heading

of the group by adding some special agents (called shills) into the Vicsek model when r is

larger (or smaller). Two kinds of shills are considered: fixed-heading shills (like leaders that

never change their headings) and evolvable-heading shills (like normal agents but with care-

fully designed initial headings). We know that with the increase of r, two contradictory effects

exist simultaneously: the influential area of a single shill is enlarged, but its influence

strength is weakened. Which factor dominates? Through simulations and theoretical analy-

sis we surprisingly find that r affects the intervention performance differently in different

cases: when fixed-heading shills are placed together at the center of the group, larger

r gives a better intervention performance; when evolvable-heading shills are placed together

at the center, smaller r is better; when shills (either fixed-heading or evolvable-heading) are

distributed evenly inside the group, the effect of r on the intervention performance is not sig-

nificant. We believe these results will inspire the design of intervention strategies for many

other multi-agent systems.

Introduction

In recent years, collective behavior has drawn a lot of attention from scientists in many areas.

It is a significant feature of self-organized multi-agent systems (MASs) where agents usually

interact with each other based on local rules, i.e., each agent interacts with its neighbors. At the

macroscopic level, new phenomenon will emerge in MASs which can not be found in a single

agent, such as flocking of birds [1, 2], schooling of fishes [1], crowd panic [3], swarm intelli-

gence [4], pattern formation [5, 6], synchronization [7–9], etc.
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A classic example is the Vicsek model [10], a self-driven multi-agent model proposed by

Vicsek et al. This model consists of autonomous agents with discrete time update rule: at each

time step, velocity of all agents are updated as the vector average velocity of its neighbors with

some random perturbation added and at the same time. At the same time, each agent updates

its position following its velocity. The neighborhood is defined based on the interaction radius

r, which means the distance between any two neighboring agents should be less or equal to r.
In other words, agents only interact with their neighbors within a distance of r. They found an

interesting phenomenon: if the density of the group is high and the noise is small, headings of

all agents will converge to a same value and reach consensus. That means, with a larger interac-

tion radius r, i.e., the interaction network gets more links, the group will be more likely to

reach consensus.

In fact, the interaction radius has a big impact on the collective behavior of many other self-

organized MASs. For example, Couzin et al. [11] found that as the alignment radius increases,

agents will present different collective behavior such as swarm, torus, and consensus in a self-

organizing animal group. Zúñiga and Krishnamachari [12] studied the optimal transmission

radius for flooding in large scale wireless sensor networks. They found that there exists an

intermediate transmission radius which minimizes the settling time for large scale wireless net-

works. Bagchi et al. [13] investigated the transmission radius condition that can achieve con-

nectivity in duty-cycled wireless sensor networks. Shen et al. [14] calculated the optimal radius

for caching scheme which achieves significant performance improvement in power saving,

network throughput and load balance.

Another important issue is the intervention of collective behavior of MASs: if the self-orga-

nized collective behavior is not what we expect, how can we intervene the system and change

the collective behavior? One way is to redesign the MAS [15–17] or put some local control in

the system (pinning control) [18, 19]. The other way is nondestructive, which is called ‘soft

control’ [20] proposed by Han et al. It has been successfully applied in some MASs: lead the

group to converge to an expected heading of the Vicsek’s model [20, 21]; promote cooperation

of multi-person prisoner’s dilemma game models [22, 23]; change the convergent opinion

value in the weighted Degroot model [24]. The soft control method does not change local rules

of the already-existing agents in the system, but adds one or several special agents, called shills,

into the group. Shills can be redesigned and controlled, but they are treated as normal agents

by normal ones. Therefore normal agents do not need to pay special attention to shills, they

are not aware of the intervention. Shills can only affect their neighboring agents with normal

influential power. For those MASs whose neighborhood is defined based on the interaction

radius r, r not only has significant effect on the collective behavior of self-organized system,

but it might also affect the soft control performance.

In this paper, we will study the problem of “whether and how the interaction radius r
affects the performance of soft control based on the Vicsek model”. As we know the interac-

tion radius r is an important factor for consensus of the Vicsek model. Tang et al. [25] pro-

posed that as long as the interaction radius satisfies some conditions, the linearized Vicsek

model will reach consensus with large probability. Later, Liu et al. [26] gave the similar condi-

tion for the Vicsek model. Furthermore, Chen et al. [27] studied the smallest interaction radius

for the synchronization behavior of the Vicsek model.

As a starting point, this paper is based on specific cases of the Vicsek model: n normal

agents with initial heading θ0 are randomly placed inside an M ×M periodic boundary square

area. It means the group has reached consensus (heading θ0). Now the intervention purpose is

to change the consensus heading. Using the soft control idea, one or several shills with initial

heading θs are added into the group. Two scenarios are considered: (i) evolvable-heading-shill,
which means the shill will be affected by its neighbors and its heading is updated following the
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same update rule as normal agents, so the group will converge to θ0 which will be on average

inside the interval between θ0 and θs (0 = θ0 < avg. θ0 θ< θs) if the population is suitably large

[26]. In this scenario, changing the interaction radius r will change the convergent heading

value of the system. Therefore, we use the change of convergent heading of normal agents

Δθ (Δθ = θ0 − θ0) to measure the soft control performance. Larger Δθmeans better soft control

performance; (ii) fixed-heading-shill, which means the shill’s heading is fixed during evolu-

tion. They are persistent, like the leader in [28]. Therefore, the group will eventually converge

to θs. In this scenario, changing the interaction radius r will not change the convergent heading

value but it will change the number of convergent time steps (relaxation time) T. So we use

T to measure the soft control performance. Smaller Tmeans better soft control performance.

In each of these two scenarios, two strategies are considered: (i) centered, which means shills

are staying together and initially placed at the center of the square, so they are neighbors of

each other; (ii) distributed, which means shills are regularly distributed inside the square, so

they are separated. Therefore, we have 4 combinations of different scenarios and strategies.

Then our problem of “how does the interaction radius affect the soft control performance” is

split into two specific sub-problems:

(1) what is the optimal interaction radius that can maximize the change of convergent

heading of normal agents Δθ = θ0 − θ0, i.e., roptimal ¼ arg max
r

DyðrÞ, in the ‘evolvable-head-

ing-shill’ scenario for both strategies?

(2) what is the optimal interaction radius that shills can lead normal agents to converge

to θs with the smallest number of time steps, i.e., roptimal ¼ arg min
r

TðrÞ, in the ‘fixed-head-

ing-shill’ scenario for both strategies?

We find answers to the above two problems through simulations and some related theoreti-

cal analysis: for the centered fixed-heading-shill case, larger r leads to better soft control perfor-

mance (smaller T); for the centered evolvable-heading-shill case, smaller r gives better soft

control performance (larger Δθ); for the distributed strategy (both in the fixed-heading-shill
and the evolvable-heading-shill scenarios), the effect of r on the control performance is not sig-

nificant. On the other hand, we also find some interesting results by comparing the distributed
strategy and the centered strategy: for the fixed-heading-shill scenario, the distributed strategy

outperforms the centered strategy; while for the evolvable-heading-shill scenario, the centered
strategy outperforms the distributed strategy because of the ‘reciprocal team’ effect—the neigh-

boring evolvable-heading shills support and interact with each other.

There are some related studies about intervention on flocking models. Kyriakopoulos et al.

[29] studied the response of flocks, described as hydrodynamic equation which contains the

Vicsk model, to a small homogeneous external field of amplitude h. The function of external

field is like the fixed-heading shill, if the external field is constructed by continuously adding

the same number of fixed-heading shills to the neighborhood of every normal agent. On the

other hand, the fixed-heading shill with velocity v> 0 in our approach can be regarded as a

moving local external field. However, our fixed-heading shills methods is different to external

field in general. Shills are more like an agent than external field because they are moving and

their influential area is decided by the interaction neighborhood radius r as same as that of all

normal agents. Even though in the distributed strategy, normal agents usually do not have the

same number of neighboring fixed-heading shills, especially when v> 0. That makes the ‘exter-

nal field’ constructed by fixed-heading shills very complicated. Pearce et al. [30] considered

some leaders (informed individuals [31]), who update their headings by taking average of the

heading of their neighbors and with a biased specific direction, based on the Vicsek model.

They studied how the flock responses to the leadership. Their approach has some essential dif-

ferences with our paper. First, these leaders who are biased to turn toward a specific angle are
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different from our shills: fixed-heading shills always head to a fixed desired direction; evolv-
able-heading shills follow the same updating rule as normal agents but with well-designed ini-

tial headings. Second, [30] considered the Vicsek model with a fixed interaction radius r = 1;

while in this paper a wider range of r is investigated to study the impact of r on the control per-

formance. Third, because the dynamic of leaders is different from the shills, the conclusions

on linearity are different: [30] found that the group shows a linear response to leadership;

while in this paper we will show that the response of the group to shills is not linear.

Methods

The basic model

Vicsek et al. proposed a self-propelled multi-agent model in 1995 [10]. Suppose there are n
agents (xi(t), θi(t)), labelled from 1 to n, are placed inside an M ×M periodic square area,

where xi(t) denotes the position of agent i at time t and θi(t) denotes the heading of agent i at

time t. The velocity of agent i at time t is defined by vi(t) = (v cos(θi(t)), v sin(θi(t))) is con-

structed to have an constant absolute value v and a heading given by the angle θi(t) 2 (−π, π].

The neighborhood of agent i is defined as

NiðtÞ ¼ fjjkxjðtÞ � xiðtÞk� r; j ¼ 1; � � � ; ng; ð1Þ

where r is a given interaction radius. This means two agents are neighbors if the distance

between them is not larger than r.
For any agent i, its position and heading are updated by Eqs (2)–(3) below:

xiðt þ 1Þ ¼ xiðtÞ þ viðtÞ; ð2Þ

yiðt þ 1Þ ¼ hyðtÞir þ diðtÞ; ð3Þ

where hθ(t)ir denotes the average direction of the velocities of neighbors of agent i. In other

words, hθ(t)ir has the following form:

hyðtÞir ¼ arctan

X

j2NiðtÞ

sinðyjðtÞÞ
X

j2NiðtÞ

cosðyjðtÞÞ

0

B
B
@

1

C
C
A ð4Þ

with some necessary regulations reflecting heading of (−π, π]. In Eq (3), δi(t) represents noise

and it is a random number chosen with a uniform probability from the interval [−η/2, η/2].

Here is the evolution process of the Vicsek model: after the initial heading and the position

of each agent are given, all agents update their headings using Eqs (1)–(4) at every discrete

time step t = 1, 2, � � �. The simulation results in Vicsek’s paper [10] show that if the density is

large and noise is small, the group will reach consensus. In Liu’s paper [26], they prove that

without noise, the Vicsek model will almost surely reach consensus for any r> 0 and v> 0.

Model with shills

Suppose the group has reach consensus (heading θ0). Now we want to change the consensus

heading. Then we add l (l� 1) shills with heading θs into the group and reset the clock as t = 0.

Therefore we now have θi(0) = θ0 for i = 1, 2, � � �, n. Because normal agents regard shills as nor-

mal ones while updating their headings, the neighborhood of all agents should be redefined as

follows:

NiðtÞ ¼ fjj k xjðtÞ � xiðtÞ k� r; j ¼ 1; � � � ; ~ng for i ¼ 1; � � � ; ~n; ð5Þ
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where ~n ¼ nþ l is the total number of agents, agent 1, 2, � � �, n are normal agents, agent n + 1,

n + 2, � � �, n + l are shills. The absolute value of the velocities of shills is also set to be v here.

After adding shills into the system, normal agents will evolve following Eqs (2)–(5).

The effect of interaction radius r
Since the neighborhood is decided based on r, the neighborhood graph might be different if r
is different. Therefore, r also has significant impact on the effect of soft control. For any r, two

factors describe how much the influence of one shill bring to the system: the influential area S
and the influence strength P. The influential area S is the number of normal agents which are

affected by one shill, i.e., S = πr2 ρn, where ρn is the density of normal agents. The influence

strength P is the influence that one shill puts on its neighboring agents. The measurement for

P is much more complicate than S, because from the second step, headings of normal agents

might not be the same, and headings of evolvable-heading shills are no longer θs. So for simplic-

ity, we consider P only for the first step influence in an ideal case: suppose the initial heading

θ0 of normal agents neighboring to the shill is zero, then we have P ¼ arctan sin ys
Sþcos ys

� �
. Lager P

means more powerful influence strength that one shill puts on its neighboring normal agents.

Apparently, P decreases with the increase of S. From this simplified analysis, there is a tradeoff

between P and S.

Smaller (or larger) interaction radius r has both the negative and positive effects when we

consider of how much influence of one shill brings to the group:

• The positive effect for smaller r: the influence that one shill puts on its neighboring agents

P is larger. With the increase of r, S becomes larger which makes P smaller.

• The negative effect for smaller r: the influence area of one shill S is smaller. This means

there are less normal agents directly influenced by one shill.

Therefore, if the positive effect of smaller r dominates, smaller r will give better soft control

performance. Otherwise, larger r will give better performance. But which effect dominates?

And in what circumstances?

To answer above questions, we consider our study in the circumstance of two different soft

control strategies (centered and distributed) in two scenarios (fixed-heading-shill and evolvable-
heading-shill):

• Centered: l shills are initially centered inside an M ×M periodic boundary square. This

means all shills are initially located in the same position, the center point of the square

(example is Fig 1a).

• Distributed: l shills are initially regularly distributed inside an M ×M periodic boundary

square (example is Fig 1b). In this way, the M ×M square is evenly divided into l small

squares, where each of them initially locates one shill. These shills will not be neighbors of

each other if r is not large enough.

When l shills are initially placed at the center, they will have strong influence on their neigh-

boring normal agents. These shills act like a ‘core’, the neighboring normal agents will align

with the ‘core’ quickly and become ‘virtual shills’ in some sense. The ‘core’ and the ‘virtual

shills’ form an ‘alliance’ in the center. When l shills are distributed in the area, their influence

is evenly distributed among the group, the ‘core’ effect of each shill is much weaker.

Two scenarios are:

Interaction radius and intervention performance
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• Fixed-heading-shill: l fixed-heading shills with heading θs are added into an M ×M periodic

boundary square. It means headings of shills are not affected by their neighbors. They are

always equal to θs.

• Evolvable-heading-shill: l evolvable-heading shills with initial heading θs are added into an

M ×M periodic boundary square. It means headings of shills are initialized as θs, and then

they will be updated following Eqs (2)–(5) without noise, just like normal agents.

If l evolvable-heading shills are initially distributed inside the group, each of them will be

easily affected by its neighboring normal agents and lose the shill effect within the first few

steps. But if they are initially placed together at the center, they will interact with each other

and become a reciprocal team, which forms a strong ‘alliance’ around them. We call this the

‘reciprocal team’ effect, which becomes significant with the increase of the number of neigh-

boring evolvable-heading shills in the team. It cannot be found in the fixed-heading-shill sce-

nario, because these shills do not interact with each other.

Results and discussions

To study effects of interaction radius on the soft control performance based on the Vicsek

model, a number of simulations are performed for four combinations of two strategies (cen-
tered and distributed) in two scenarios (fixed-heading-shill and evolvable-heading-shill). And

then we extend this study to the linearized Vicsek model and the non-periodic boundary

model cases. Some related discussions and theoretical analysis are given.

Here are settings of simulations in this section: v = 0.03 which is the same as the setting of

[10]; η = 0.02; θ0 = 0. n normal agents with initial heading θ0 are randomly placed inside the

M ×M square. Soft control performance is measured as the average of 100 runs on random

position distributions of normal agents. For each simulation, we add l shills into the system.

For the centered strategy, all l shills are initially placed at the same position (example is Fig 1a

Fig 1. Examples of initial positions of adding 25 shills into a group of 225 normal agents inside a 15 × 15 square. Blue dots represent normal agents.

Red stars represent shills. Short lines connected to the blue dots or red stars represent their headings. Here initial headings of all normal agents are set as

zero and initial headings of shills are π/2. (A) Centered shills; (B) Distributed shills.

https://doi.org/10.1371/journal.pone.0192738.g001

Interaction radius and intervention performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0192738 February 15, 2018 6 / 19

https://doi.org/10.1371/journal.pone.0192738.g001
https://doi.org/10.1371/journal.pone.0192738


with M = 15 and l = 25); for the distributed strategy, each shill is initially placed at the center of

every Mffi
l
p � Mffi

l
p square (example is Fig 1b with M = 15 and l = 25). In [10], Vicsek et al. proposed

an order parameter �ðtÞ ¼ 1

~nv

P~n

i¼1

viðtÞ
�
�
�
�

�
�
�
�, where vi(t) = (v cos θi(t), v sin θi(t)), to measure the

consensus level. In our simulations, the system is regarded as consensus when 1 − ϕ(t)� 10−4,

then the simulation is terminated.

Fixed-heading-shill scenario

In this subsection, we add l fixed-heading shills with heading θs into an M ×M square with

periodic boundary. The number of convergent time steps T is used to measure the soft control

performance. We find that r has big impact on the value of T in the following simulations.

Fig 2 shows avg. T for different θs,M and ρn with η = 0.02, and has the following results

(results are also hold for η = 0.1 (see S1 Fig for details)):

• For the centered strategy, larger r gives better soft control performance (smaller avg. T).

Although smaller r has positive effect, there is a big delay of shill influence for normal agents

located far away from shills. Therefore it needs more time steps to spread the shill effect to

all normal agents. In this case, the negative effect overcomes the positive effect of smaller r,
so larger r gives better soft control performance.

• For the distributed strategy, the effect of r on the soft control performance is not significant.

In this case, the positive effect and the negative effect of smaller r are balanced in some way,

so T varies very little while r changes. The mean-field analysis is given in S1 Appendix.

Then we investigate the finite system size effect. The system size is the number of normal

agents n (n = ρn M2). Fig 3a and 3c show that avg. T and M approximately obey positive power

function regardless of r. Fig 3b and 3d show that in general the avg. T increases with the

increase of ρn. This is because more normal agents are needed to be influenced with the

increase of ρn. But in Fig 3b, there is a special phenomenon when r and ρn are small: avg. T
decreases with the increase of ρn. This is because the neighborhood graph is too sparse that it

takes more time steps for the shill influence to spread to all normal agents.

Furthermore, in Fig 4 we compare the performance between centered and distributed strate-

gies, and investigate whether adding l shills can improve the soft control performance by the

factor of l comparing to the case of adding one shill. We find the following results with θs = π/4

(results are also hold for other θs (see S2 Fig for details)):

• Distributed strategy (blue line) outperforms centered strategy (green line).

• 25 centered shills (green line) do not enhance 25 times of the soft control performance of one

single shill (red line).

We compare the number of convergent time steps of adding 25 centered shills with 1/25 of

the number of convergent time steps of adding one shill. We find that the number of conver-

gent time steps of adding one shill is smaller than 25 times of the number of convergent time

steps of adding 25 centered shills. Therefore, the performance of l fixed-heading shills is less

than the linear superposition.

Evolvable-heading-shill scenario

In this subsection, we add l evolvable-heading shills with initial heading θs into an M ×M
square with periodic boundary. These shills will be affected by neighboring normal agents and

Interaction radius and intervention performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0192738 February 15, 2018 7 / 19

https://doi.org/10.1371/journal.pone.0192738


Fig 2. Soft control performance (avg. T) for different θs, ρn and M in the fixed-heading-shill scenario with l = 25.

https://doi.org/10.1371/journal.pone.0192738.g002
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update their headings during evolution like normal ones but without noise. Given θ0 = 0 and

θ0 < θs in our simulations, heading of agents in the group will converge to value θ0 (0 < avg.

θ0 < θs) if the population is suitably large [26]. Therefore, the change of convergent heading of

normal agents Δθ (Δθ = θ0 − θ0 = θ0) is used to measure the soft control performance. Larger

Δθmeans better performance of soft control. We find that r has big impact on the value of Δθ
in the following simulations.

Fig 3. System size effect on soft control performance (avg. T) in the fixed-heading-shill scenario with l = 25. The system size is n = ρn M2. (A) and

(C) show how soft control performance (avg. T) change when n increases (by increasingM with fixed ρn); (B) and (D) show how soft control

performance (avg. T) change when n increases (by increasing ρn with fixedM).

https://doi.org/10.1371/journal.pone.0192738.g003
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Fig 5 shows avg. Δθ for different θs,M and ρn with η = 0.02, and has the following results

(results are also hold for η = 0.1 (see S1 Fig for details)):

• For the centered strategy, smaller r gives better soft control performance (larger Δθ).

This is unlike the result in the fixed-heading-shill scenario. It is because the smaller r gives

stronger ‘reciprocal team’ effect. While in the fixed-heading-shill scenario, there is no ‘recip-

rocal team’ effect.

• For the distributed strategy, the effect of r on the soft control performance is not significant.

This is similar to what we have found in the fixed-heading-shill scenario. It is worth mention-

ing that for θs> π/2, increasing θs decreases Δθ. This is caused by the nature of the updating

rule of agents—each agent updates its heading by taking average direction of the velocities of

its neighbors. The mean-field analysis is given in S1 Appendix.

Fig 4. Comparisons of different soft control strategies in the fixed-heading-shill scenario.

https://doi.org/10.1371/journal.pone.0192738.g004
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Fig 5. Soft control performance (avg. Δθ) for different θs, M and ρn in the evolvable-heading-shill scenario with l = 25.

https://doi.org/10.1371/journal.pone.0192738.g005
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Then we investigate the finite system size effect. The system size is n = ρn M2. Fig 6a and 6c

show that avg. Δθ and M approximately obey negative power function regardless of r. Fig 6b

and 6d show that avg. T and ρn approximately obey negative power function regardless of r.
Again, to compare the soft control performance between centered and distributed strategies,

study the linear superposition property, and demonstrate the importance of ‘reciprocal team’

effect, we compare the performance (Δθ) for four situations in Fig 7 with θs = π/4 (results are

also hold for other θs (see S2 Fig for details)):

Fig 6. System size effect on soft control performance (avg. T) in the evolvable-heading-shill scenario with l = 25. (A) and (C) show how soft control

performance (avg. Δθ) change when n increases (by increasing M with fixed ρn); (B) and (D) show how soft control performance (avg. Δθ) change when

n increases (by increasing ρn with fixedM).

https://doi.org/10.1371/journal.pone.0192738.g006
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• Centered strategy (green line) outperforms distributed strategy (blue line).

It is because the significant ‘reciprocal team’ effect strongly strengthen the shill effect for the

centered strategy.

• Centered (interactive) shills (green line) outperform centered non-interactive shills (purple

line).

This pattern shows the importance of the ‘reciprocal team’ effect. Interactive shills have the

‘reciprocal team’ effect, while non-interactive shills do not. Without the ‘reciprocal team’

effect, the performance (purple line) is much worse (than the green line) and the pattern is

more like the single shill case (red line). Therefore, the interactions among evolvable-heading
shills significantly enhance the soft control power.

• 25 centered shills (green line) v.s. one single shill (red line) for small r.
Unlike the result in the fixed-heading-shill scenario, we find that the performance of adding

Fig 7. Comparisons of different soft control strategies in the evolvable-heading-shill scenario with ρn = 1 and θs = π/4.

https://doi.org/10.1371/journal.pone.0192738.g007
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25 centered shills is much better than 25 times of adding one centered shill when r is smaller

than a critical point rc0
. This can be regarded as a ‘1 + 1> 2’ phenomenon, and shows how

important it is for shills to stay together and support each other when their headings are

evolvable (not persistent), especially when r is small. This means that the significant ‘recipro-

cal team’ effect brings in a nonlinear enhancement for the soft control power especially

when r< rc0
. When r> rc0

, increasing numbers of neighboring normal agents of shills will

strongly dilute the shill influence in first few steps. Notice that the critical point rc0
varies

with different initial heading of shills (see S3 Fig for details).

Fig 8. Soft control performance of different strategies in different scenarios based on two different models (the Vicsek model and the linearized

Vicsek model) with non-periodic boundary. ρn = 1,M = 15, l = 25, v = 0 and η = 0.02. (A) Fixed-heading-shill scenario for the Vicsek model. (B)

Evolvable-heading-shill scenario for the Vicsek model. (C) Fixed-heading-shill scenario for the linearized Vicsek model. (D) Evolvable-heading-shill
scenario for the linearized Vicsek model.

https://doi.org/10.1371/journal.pone.0192738.g008
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Extension to the linearized Vicsek model

Jadbabaie et al. [28] proposed the linearized Vicsek model by changing Eq (4). For any agent i,
its heading is updated as the average heading of its neighboring agents:

hyðtÞir ¼
1

jNiðtÞj

X

j2NiðtÞ

yjðtÞ; ð6Þ

where |Ni(t)| is the number of agent i’s neighbors.

The simulation results for the linearized Vicsek model is similar for these of the Vicsek

model and we give theoretical analysis for these patterns (see S2 Appendix for details).

Extension to non-periodic boundary model

What we have studied above are for periodic boundary cases (based on both the Vicsek model

and the linearized Vicsek model). For non-periodic boundary cases, agents located near the

boundary have less neighboring agents. Our earlier conference paper [32] has shown some

simulation results for the non-periodic boundary Vicsek model with zero absolute velocity for

n = 200 and l = 25. To be consistent with the parameter settings of this paper, we re-do simula-

tions for the non-periodic boundary Vicsek model with zero velocities and noise (Fig 8a and

8b) and the non-periodic boundary linearized Vicsek model with v = 0 (Fig 8c and 8d).

Patterns for non-periodic boundary cases are similar but not exactly the same as patterns

that we have found in the periodic boundary cases because of the boundary effect. But they

share similar patterns in many ways: (i) for the centered fixed-heading-shill case, larger r gives

better soft control performance when r is smaller than a relatively large value (r< rc1
); (ii) for

the centered evolvable-heading-shill case, smaller r gives better soft control performance except

a short interval of r in the middle (rc3
< r< rc4

); (iii) for the distributed strategy (in both the

fixed-heading-shill and the evolvable-heading-shill scenarios), the effect of r on the soft control

performance is not significant; (iv) the centered strategy outperforms the distributed strategy in

the evolvable-heading-shill scenario; the distributed strategy outperforms the centered strategy

for small r (r< rc2
) in the fixed-heading-shill scenario. The ‘reciprocal team’ effect are also

found.

Conclusions

Based on a classic multi-agent system model, the Vicsek model, we study the effect of the inter-

action radius on the soft control performance. Then we extend the approach to the linearized

Vicsek model and the non-periodic boundary model cases. We consider two different soft con-

trol strategies (centered and distributed) in two scenarios (fixed-heading-shill or evolvable-head-
ing-shill). We obtain the following results (see Fig 9 for details) through simulations and

analysis:

Fig 9. Main conclusions.

https://doi.org/10.1371/journal.pone.0192738.g009
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1. Answer to the question of “how does the interaction radius affect the performance of soft

control based on the Vicsek model” (with periodic boundary) is shown as conclusion 1 in

Fig 9.

To explain these results, we analyze and discuss the positive and negative effects of the

smaller/larger interaction radius r on the soft control performance. These two effects are

competitive: the positive effect of smaller r—there will be fewer connections among normal

agents, so the strength of influence that a shill puts on a neighboring normal agent will be

stronger since the normal agent has fewer neighbors; the negative effect of smaller r—the

influential circle of a shill is smaller, so fewer normal agents are directly influenced by a sin-

gle shill. These two factors (the shill’s influential area and the shill’s influence strength) are

contradictory: as one falls, another rises. Therefore, there is a tradeoff between the negative

and positive effects of smaller/larger r on the soft control performance. The optimal value

of r is different for different strategies and scenarios. And we give mean-field analysis for

the distributed strategy.

2. Another interesting question is: should we place shills together at the center or distribute

them evenly among the group while considering different r? We find the following answers

regardless of r (shown as conclusion 2 in Fig 9): (i) for the fixed-heading-shill scenario, the

distributed strategy outperforms the centered strategy; (ii) for the evolvable-heading-
shill scenario, the centered strategy outperforms the distributed strategy. Fixed-heading
shills are persistent individuals. They affect their neighbors but never be affected. While

evolvable-heading shills are not that ‘strong-minded’. They interact with their neighbors

and will be affected by them. Therefore, it will make a big difference if evolvable-heading
shills are staying together to support each other—this is called the ‘reciprocal team’ effect,

which brings in a nonlinear enhancement for the soft control power. We can see that the

soft control performance is much worse in the centered non-interactive evolvable-heading-
shill case where interactions among evolvable-heading shills are removed. This interesting

phenomenon can be concluded from anther aspect: the performance of l fixed-heading shills

is worse than linear superposition; the performance of l evolvable-heading shills is better

than linear superposition when r is small.

3. We extend our study to the linearized Vicsek model, and we find similar results. Besides

simulations, we also give mathematical analysis to these patterns in the evolvable-heading-
shill scenario with v = 0 and prove that these results are true for v> 0 under some condi-

tions. We also extend our study to the non-periodic boundary model and find its patterns

are similar but not exactly the same as patterns that we have found in the periodic boundary

cases because of the boundary effect. The ‘reciprocal team’ effect are also found in non-peri-

odic boundary cases.

This paper explores a new question which is about the relationship between the interaction

radius and the intervention performance in different cases. It will help intervention on collec-

tive behavior of MASs in a more efficient and effective way. We believe this study can be

extended to other MASs, especially MASs whose neighborhood relationships are also defined

by interaction radius.

Supporting information

S1 Fig. Three-dimensional plot for soft control performance with respect to r for different

θs based on the Vicsek model with ρn = 1, M = 15, v = 0.03 and η = 0.1. The simulation termi-

nates when 1 − ϕ(t)� 10−3.
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S2 Fig. The soft control performance for different θs (θs = π/4, π/2 and 3π/4) with ρn = 1

and M = 15. (A) is for the fixed-heading-shill scenario; (B) is for the evolvable-heading-shill sce-

nario.

(EPS)

S3 Fig. The critical point rc0
varies with different θs in the evolvable-heading-shill scenario.

(A) is the pattern for the comparison of the soft control performance between 25 centered shills

and 25 times of one single shill in the evolvable-heading-shill scenario. (B) is the r − θs projec-

tion of (A). Soft control performance is measured as the average of 500 runs on random posi-

tion distributions of normal agents.

(EPS)

S1 Appendix. Mean-field analysis for the distributed strategy soft control performance in

the Vicsek model.

(PDF)

S2 Appendix. Simulations and analysis for the soft control performance based on the line-

arized Vicsek model.

(PDF)

S1 File. This file contains the data used in figures.

(7Z)

Author Contributions

Conceptualization: Jing Han.

Data curation: Caiyun Wang.

Formal analysis: Caiyun Wang, Jing Han.

Funding acquisition: Jing Han.

Investigation: Caiyun Wang.

Methodology: Caiyun Wang, Jing Han.

Supervision: Jing Han.

Validation: Caiyun Wang.

Visualization: Caiyun Wang.

Writing – original draft: Caiyun Wang, Jing Han.

Writing – review & editing: Caiyun Wang, Jing Han.

References
1. Reynolds CW. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH computer

graphics. 1987 Aug 1; 21(4):25–34. https://doi.org/10.1145/37402.37406

2. Morse DH. Ecological aspects of some mixed-species foraging flocks of birds. Ecological monographs.

1970 Feb 1; 40(1):119–168. https://doi.org/10.2307/1942443

3. Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic. Nature. 2000 Sep 28;

407(6803):487–490. https://doi.org/10.1038/35035023 PMID: 11028994

4. Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems. Oxford uni-

versity press; 1999.

5. Meinhardt H, Meinhardt H. Models of biological pattern formation. London: Academic Press; 1982.

Interaction radius and intervention performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0192738 February 15, 2018 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192738.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192738.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192738.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192738.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192738.s006
https://doi.org/10.1145/37402.37406
https://doi.org/10.2307/1942443
https://doi.org/10.1038/35035023
http://www.ncbi.nlm.nih.gov/pubmed/11028994
https://doi.org/10.1371/journal.pone.0192738


6. Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik. 1972 Dec 1; 12(1):30–39.

https://doi.org/10.1007/BF00289234 PMID: 4663624

7. Arenas A, Dı́az-Guilera A, Kurths J, Moreno Y, Zhou C. Synchronization in complex networks. Physics

reports. 2008 Dec 31; 469(3):93–153. https://doi.org/10.1016/j.physrep.2008.09.002
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