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Abstract: The paper suggests a randomized model for dynamic migratory interaction of regional
systems. The locally stationary states of migration flows in the basic and immigration systems are
described by corresponding entropy operators. A soft randomization procedure that defines the
optimal probability density functions of system parameters and measurement noises is developed.
The advantages of soft randomization with approximate empirical data balance conditions are
demonstrated, which considerably reduces algorithmic complexity and computational resources
demand. An example of migratory interaction modeling and testing is given.
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1. Introduction

The mutual influence of migratory processes in regional systems is a problem of growing
significance in the modern world. The socioeconomic statuses of different regions demonstrate
higher heterogeneity in response to rising political and military tension. All these factors cause an
abrupt redistribution of migration flows and regional population variations, thereby increasing the
cost of regional population maintenance [1–4]. Therefore, it is important to develop different tools
(mathematical models, algorithms, and software) for forecasting the distribution of migration flows
with adaptation to their dynamics considering available resources.

The authors of [5] suggested a dynamic entropy model for the migratory interaction of regional
systems. In comparison with biological reproduction, migration mobility is a rather fast process [1,6].
Thus, the short-term dynamics of regional population size are described by the locally stationary state
of a migratory process [7]. The latter can be simulated under the hypothesis that all migrants have
a random and independent spatial distribution over interacting regional systems with given prior
probabilities. The mathematical model of a locally stationary state is given by a corresponding entropy
operator that maps the space of admissible resources into the space of migratory processes [8].

Mathematical modeling and analysis of interregional migration is considered in numerous
publications. First, it seems appropriate to mention the monographs [9,10] that are dedicated to
a wide range of interregional migration problems, including mathematical modeling of migration
flows. Note that the problem of migration touches upon many aspects of socioeconomic, psychological
and political status of the space of migratory movements. Thus, of crucial role is the structural analysis
of inter- and intraregional migration flows [4] and motivations that generate them [2,11]. The results of
structural and motivational analysis of migratory processes are used for computer simulation. There
exist three directions of research in this field, each relying on some system of hypotheses. One of the
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directions involves the stochastic hypothesis about the origin of migratory motivations [12], which is
simulated using agent technologies [13,14]. This direction is adjoined by investigations based on the
thermodynamic model of migration flows [3,8]. Of course, the short list above does not exhaust the
whole variety of migration studies, merely outlining some topics of research.

This paper studies a stochastic version of the model in [5], in which random parameters and
measurement noises are characterized by probability density functions (PDFs). These functions are
estimated using retrospective information on the real dynamics of regional population size with “soft”
randomized machine learning [15]. The learned model was implemented in the form of computer
simulations, i.e., generation of an ensemble of random trajectories with the entropy-optimal PDFs of
the model parameters and measurement noises. The resulting ensemble was used for testing of the
model and also for short-term forecasting.

The method developed below is illustrated by an example of the randomized modeling and
forecasting of the migratory interaction among three EU countries (Germany, France, and Italy—the
system GFI) and two countries as sources of immigration (Syria and Libya—the system SL).

2. Randomized Model of Migratory Interaction

Consider the dynamic discrete-time model of migratory interaction with shared resource
constraints that is presented in [5]. The first sub-model represents migration flows within the system
GFI and is described by the dynamic regression equation

K[(s + 1)h] = (A− E)K[sh] + F(z[sh]), (K, F) ∈ RN , s = 0, K− 1, (1)

where

A = h


1 α2a21 · · · αN aN1

α1a12 1 · · · αN aN2

· · · · · · · · · · · ·
α1a1N α2a2N · · · 1

 , (2)

E = h diag[αn, n = 1, N]. (3)

In these equations, K[sh] denotes the population distribution in the regional system GFI at a
time sh.

At a time sh, the distribution of immigration flows from the regional system SL to the regional
system GFI in terms of an entropy operator is modeled by the second sub-model, which can be
described by a vector function F(z[sh]) with the components

fn[sh] = h
M

∑
j=1

bjn(z[sh])cjn , n = 1, N, s = 0, K− 1, (4)

The variable z, which is the exponential Lagrange multiplier in the entropy-optimal distribution
problem of immigration flows, satisfies the equation

M

∑
k=1

N

∑
n=1

cknbkn(z[sh])ckn = T[sh], (5)

where T[sh] is the amount of a shared resource used by all regions from the system GFI to
maintain immigrants.

In this model, the input data are the amounts T[0], T[h], . . . , T[(K− 1)h]; and the output data are
the regional population distributions K[0], K[h], . . . , K[(K− 1)h].

The dynamic model in Equations (1)–(5) contains the following parameters:

• αn ∈ [0, 1], n = 1, N, as the shares of mobile population in system regions;
• ain ∈ [0, 1], (i, n) = 1, N, as the prior probabilities of individual migration in the system GFI ;
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• bkn, k = 1, M, n = 1, N, as the prior probabilities of individual immigration from region k of the
system SL to region n of the system GFI ; and

• ckn, k = 1, M, n = 1, N, as the normalized 1 specific generalized cost of immigration maintenance.

Normalization means that 0 < ckn < 1, k = 1, M, n = 1, N.
The parameters form three groups: mobility, migratory movements within the system GFI , and

immigratory movements from the system SL to the system GFI . All these characteristics are specified
by the regions of both systems. The dimensionality of the parametric space is reduced using the same
approach as in [5]. The whole essence is to assign a relative regional differentiation of all parameters
except for the weights b1 (mobility) and b2 (internal migration) of these groups, which are considered
as model variables.

This approach leads to the parametric transformation

αn = b1mn, ain = b2hin, (6)

(i, n) = 1, N; k = 1, M,

where mn and hin are given parameters which characterize the relation of variables.
Then, the dynamic model of migratory interaction in Equations (1)–(5) takes the form

K[(s + 1)h] = (b1b2 Ã− b1Ẽ)K[sh] + F̃(z[sh]), (7)

with the matrix

Ã = h


1 m2h21 · · · mNhN1

m1h12 1 · · · mNhN2

· · · · · · · · · · · ·
m1h1N m2h2N · · · 1

 (8)

and the diagonal matrix
Ẽ = h diag[mn, n = 1, N]. (9)

The vector F̃(µ, z)[sh] consists of the components

f̃n(z[sh]) = h
M

∑
k=1

qkn(z[sh])ckn , n = 1, N, s = 0, K− 1. (10)

For each time sh, the variable z satisfies the equation

M

∑
k=1

N

∑
n=1

cknqkn(z[sh])ckn = T[sh], s = 0, K− 1, (11)

i.e., there exist K values z = z∗[sh], s = 0, K− 1.
The randomized version of this model is described by Equations (7)–(11) but some parameters

(variables) have random character. These are two randomized parameters, b1 and b2, as well as
the variable z = b3, all of the interval type. More specifically, the parameters b1 and b2 belong to
the intervals

B1 = [b−1 , b+1 ], B2 = [b−2 , b+2 ]. (12)

The interval B3 of the variable b3 is given by Equation (11).

Theorem 1. Let the parameters bkn and ckn in Equation (11) be positive and ckn ∈ [0, 1]. Then, the solution b∗3
of this equation belongs to the interval

B3 = [b−3 , b+3 ], (13)
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where

b−3 =

(
T[sh]

MNcmaxbmax

)1/cmax

; b+3 =

(
T[sh]

MNcminbmin

)1/cmin

; (14)

cmin = min
kn

ckn, cmax = max
kn

ckn; bmin = min
kn

bkn, bmax = max
kn

bkn.

The proof is postponed to the Appendix A.
Therefore, the randomized dynamic model in Equations (7)–(11) includes three random

parameters b = {b1, b2, b3} of the interval type that are defined over the three-dimensional cube
with faces (Equations (12) and (13)), i.e.,

B =
3⊗

j=1

Bj. (15)

The probabilistic properties of the randomized parameters are described by a continuously
differentiable PDF W(b).

By assumption, real distributions of regional population sizes contain errors that are simulated by
a random vector ξ̄[sh] ∈ RN with the interval components

ξ̄[sh] ∈ Ξs =
[
ξ̄−[sh], ξ̄+[sh]

]
. (16)

The probabilistic properties of this vector are described by a continuously differentiable PDF Q(ξ̄).
The measured output of the randomized model has an additive noise,

v[sh] = K[sh] + ξ̄[sh]. (17)

3. Characterization of Empirical Risk and Measurement Noises

Construct a synthetic functional J[W(b), Q(ξ̄)] that depends on the PDFs of the model parameters
and measurement noises for assessing in quantitative terms the empirical risk (the difference between
the regional population distribution generated by the model in Equations (7)–(11) and the real
counterpart) and the guaranteed power of these noises. The functional must have components
characterizing an intrinsic uncertainty of randomized machine learning (RML) procedures, the
approximation quality of empirical balances (the empirical risk) and the worst properties of the
corresponding random interval-type noises.

1. Uncertainty. In accordance with the general concept of RML, the first component among the
listed ones is an entropy functional that describes the level of uncertainty:

H[b), Q(ξ̄)] = −
∫
B

W(b) ln W(b)db−
∫

Ξ
Q(ξ̄) ln Q(ξ̄)dξ̄. (18)

The two other functional components are constructed using Hölder’s vector and matrix norms
(The vector norm has the form ‖a‖∞ = maxn |an|; the matrix norm, the form ‖A‖∞ = maxij |aij|.) [16].

2. Approximate empirical balances. First, consider a characterization of the empirical risk. For the
model in Equations (7)–(11), the deviation between the output and real data vectors is given by

ε̄[sh] =
(
b1b2 Ã− b1Ẽ

)
Y[sh] + F(b3[sh])− Y[sh], s = 0, K− 1. (19)

Using well-known inequalities for the matrix and vector norms, it is possible to write

‖ε̄[sh]‖∞ ≤ ‖
(
b1b2 Ã− b1Ẽ

)
‖∞‖Y[sh]‖∞ + ‖F(b3[sh])‖∞ + ‖Y[(s + 1)h]‖∞ =

= ϕ(b1, b2, b3, s), s = 0, K− 1. (20)
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Introducing the average matrix and vector norms over the observation interval,

ϕ(b1, b2, b3) ≤ h

(
1
K

K−1

∑
s=0

max
n

yn[sh]

)(
b1 max

n
mn + b1b2 max

i,j
hij

)
+

+
1
K

K−1

∑
s=0

max
n

yn[(s + 1)h] + MNcmaxbmax(b3)
cmax . (21)

The parameters b1 and b2 take values within the intervals B1 and B2 (Equation (12)) while the
parameter b3 within the interval

B3 = [

(
Tmax

MNcmaxqmax

)1/cmax

,
(

Tmax

MNcminqmin

)1/cmin

], (22)

where
Tmax = max

s
T[sh]. (23)

Denote

U1 = h

(
1
K

K−1

∑
s=0

max
n

yn[sh]

)
max

n
mn; U2 = h

(
1
K

K−1

∑
s=0

max
n

yn[sh]

)
max

i,j
hij;

U3 = MNhcmaxbmax; U4 =
1
K

K−1

∑
s=0

max
n

yn[(s + 1)h]. (24)

Then, the function ϕ(b1, b2, b3) takes the form

ϕ(b1, b2, b3) = b1U1 + b1b2U2 + (b3)
cmax U3 + U4. (25)

Note that the coefficients U1, . . . , U4 are determined by real data on regional population
distributions and also by the characteristics of internal migration within the system GFI and
immigration flows from the system SL.

The equality in Equation (25) defines a function ϕ(b1, b2, b3) of random variables. Let its
expectation be the characteristic of the empirical risk, i.e.,

r[W(b)] =
∫
B

W(b)ϕ(b)db, (26)

where B = B1 ⊗B2 ⊗B3 and the intervals B1 and B2 have given limits. At the same time, the limits of
the interval B3 are specified by the equalities in Equation (22).

Power of noises. The measurement noises are simulated by random vectors ξ̄[sh] ∈ RN , s = 0, K− 1.
The components of these vectors may have different domains (ranges of values) at different times
s = 0, K− 1. For each time, introduce the Euclidean norm ‖ξ̄[sh]‖2

N and its expectation

ns[Q(ξ̄[sh])] =
∫

Ξ
Q(ξ̄[sh])‖ξ̄[sh]‖2

Ndξ̄[sh]. (27)

The average expectation of this norm over the time interval has the form

n̄s[Q(ξ̄[sh])] =
1
K

K−1

∑
s=0

ns[Q(ξ̄[sh])]. (28)

If the measurement noises are the same on the observation interval, then the noise power
functional can be written as
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n̄s[Q(ξ̄[sh])] = n[Q(ξ̄)] =
∫

Ξ
Q(ξ̄)‖ξ̄‖2

Ndξ̄. (29)

This formula involves the Euclidean norm for a quantitative characterization of the noise power.
However, it is possible to choose other norms depending on problem specifics.

4. Soft Randomized Estimation of Model Parameters

The model characteristics and measurement noises are estimated using a learning data collection:
the real cost of immigrants maintenance T[0], . . . , T[(K− 1)h] (input data) and the real distributions of
regional population sizes Y[0], . . . , Y[(K− 1)h] (output data).

In accordance with the general procedure of soft randomized machine learning [15], the optimal
probability density functions W(b) (model parameters) and Q(ξ̄) (measurement noises) are calculated
by the constrained minimization of the synthetic functional J[W(b), Q(ξ̄)] that contains the
following functionals:

• the entropy

H[W(b)] = −
∫
B

W(b) ln W(b)db−
∫

Ξ
Q(ξ̄) ln Q(ξ̄)dξ̄; (30)

• the average empirical risk over the observation interval

r[W(b)] =
∫
B

W(b)(b1U1 + b1b2U2 + (b3)
cmax U3 + U4)db; (31)

and
• the average error norm

n[Q(ξ̄)] =
∫

Ξ
Q(ξ̄)

N

∑
i=1

ξ2
i dξ̄. (32)

The soft randomized learning algorithm has the form

J[W(b), Q(ξ̄)] = H[W(b)]− r[W(b)]− n[Q(ξ̄)]⇒ max, (33)∫
B

W(b)db = 1,
∫

Ξ
Q(ξ̄)dξ̄ = 1.

The solution of this problem is the optimal PDFs under maximal uncertainty, for the model
parameters of the form

W∗(b) =
exp (b1U1 − b1b2U2 − (b3)

cmax U3 −U4)

P , (34)

where
P =

∫
B

exp (b1U1 − b1b2U2 − (b3)
cmax U3 −U4) db, (35)

and for the measurement noises of the form

Q∗(ξ̄) =
exp

(
−∑N

i=1 ξ2
i

)
Q , (36)

where

Q =
∫

Ξ
exp

(
−

N

∑
i=1

ξ2
i

)
dξ̄. (37)

In the case of soft randomization, there is no need for solving the empirical balance equations,
which have high complexity and computational intensiveness due to the presence of integral
components. Here, computational resources are required for the normalization procedure of the
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resulting PDFs. On the other hand, the morphology of the optimal PDFs depends on a specific choice of
the approximate data balancing criterion and a numerical characterization of the measurement noises.

5. Randomized Forecasting of Dynamic Migratory Interaction

Consider randomized forecasting of dynamic migratory interaction using the principle of soft
randomization. Let Tpr = [s0h, sprh] be the forecasting interval and assume the initial state (the regional
population distribution at the initial time s0h) coincides with the real distribution, i.e., K[s0h] = Y[s0h].
The shared cost of the system GFI to maintain immigrants is distributed in accordance with a given
scenario. For each scenario, the value Tmax and also the interval B3 in Equations (12), (22), and (23)
are determined.

The forecasted trajectories are constructed using the randomized model in Equations (7), (10),
and (11)

K[(s + 1)h] =
(
b1b2 Ã− b1Ẽ

)
K[sh] + F[sh | b3],

F[sh | b3] = {
M

∑
k=1

bkn(b3)
ckn , n = 1, N}, (38)

s = s0, spr, K[s0h] = Y[s0h].

The randomized parameters b1, b2, and b3 take values within the corresponding intervals with the
probability density function W∗(b) (Equation (34)).

An ensemble of the forecasted trajectories for the model’s output is obtained taking into account a
random vector ξ̄ ∈ Ξ with the PDF Q∗(ξ̄)(Equation (36)):

v[sh] = K[sh] + ξ̄, s = s0, spr. (39)

For each scenario T[s0h], . . . , T[sprh], an ensembleK of random forecasting trajectories is generated
via sampling (the transformation of a PDF into a corresponding sequence of random vectors of length
I) of the optimal PDFs of the model parameters and measurement noises for each time sh. The resulting
ensemble allows deriving empirical estimates of different numerical characteristics as follows:

• the average trajectory

K̄[sh] =
1
I

I

∑
i=1

K(i)[sh], s = s0, spr; (40)

• the variance trajectory

σ̄2[sh] =
1

I − 1

I

∑
i=1
‖K(i)[sh]− K̄[sh]‖2, s = s0, spr; (41)

• the variance pipe, i.e., the set of random trajectories that almost surely (since an ensemble consists
of a finite number of trajectories, the matter concerns not probability but its empirical estimate)
belong to the domain

D = {K[sh] : K̄[sh]− σ̄2[sh] ≤ K[sh] ≤ K̄[sh] + σ̄2[sh], s = s0, spr}; (42)

• the empirical probability distribution and its dynamics on the forecasting interval

P
(
K[sh] ≤ ∆, s = s0, spr

)
=

I∆

I
, (43)

where I∆ denotes the number of vectors K[sh] whose components are smaller than ∆; and
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• the median trajectory K̂[sh], s = s0, spr, which satisfies the equation

P(K[sh]) = 0, 5; s = s0, spr. (44)

The ensemble K can be used to calculate other characteristics, e.g., α-quantiles, confidence
probabilities, etc.

6. Example

The appearance of territories with low economic status always causes the growth of immigration.
The early 2000s were remarkable for the formation of several such territories in Northern and Central
Africa, the Near East, Afghanistan, etc. As a result, tens of millions of migrants moved to the EU as
the level of life in these territories dropped below the subsistence minimum. The EU countries have
to allocate considerable financial resources for their filtering and accommodation, which are often
unacceptable. An example below illustrates the use of soft randomization for estimating and forecasting
of immigration flows from Syria (1) and Libya (2) (the system SL) to Germany (1), France (2), and
Italy (3) (the system GFI).

1. Randomized model, parameters, measurement errors, time intervals, and real data collections. Choose
the randomized mathematical model (Equation (25)) with the normalized variables

pn[sh] =
Kn[sh]
Kmax

, n = 1, 3. (45)

This gives

pn[(s + 1)h] = (1− b1mn)pn[sh] + hb1b2

3

∑
i=1,i 6=n

mihin pi[sh] + h fn[sh],

fn[sh] =
M

∑
i=1

binbcin
3 , n = 1, 3, (46)

T[sh] =
3

∑
n=1

2

∑
i=1

cinbinbcin
3 .

The state variables of the system GFI and also the immigration flows from the system SL are
normalized, i.e.,

0 ≤ pn[sh] ≤ 1, 0 ≤ fn[sh] ≤ 1, n = 1, N. (47)

The variable z∗ characterizes the entropy operator of the immigration process and satisfies the last
equation in Equation (46). The values of the parameters mi, hin, bin, and cin are combined in Table 1,
where columns are different values of corresponding parameter. Recall that the two lowest rows of
Table 1 indicate the values of the parameters cin. By assumption, the regions of both systems have the
same specific cost.

Table 1. Values of relative parameters.

mn 0.43 0.50 0.40

h1n 0 0.3 0.3
h2n 0.3 0 0.3
h3n 0.5 0.4 0
b1n 0.4 0.3 0.3
b2n 0.3 0.1 0.4
c1n 0.4 0.4 0.3
c2n 0.4 0.4 0.3
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In accordance with this table, mmax = 0.5, hmax = 0.5, bmin = 0.3, bmax = 0.4, and cmax = cmin =

c = 0.5. The measurement errors of population sizes ξ̄[sh] ∈ R3 (in normalized units) belong to
the intervals

ξ̄[sh] ∈ Ξ = [ξ̄−, ξ̄+], ξ±n = 0.01, (48)

and by assumption they have the same limits for times sh.
The normalized observation (model output) has the form

v[sh] = p[sh] + ξ̄[sh]. (49)

The random parameter model in Equation (46) was employed for estimating parameter
characteristics and testing on corresponding time intervals with step h = 1year:

• Test = 2009–2013 as the estimation interval; and
• Ttst = 2014–2018 as the testing interval.

2. Entropy estimation of PDFs of model parameters and measurement noises (interval Test). This problem
was solved using available data on regional population distribution for Germany (n = 1), France
(n = 2), and Italy (n = 3) and also on the shared cost of immigrants maintenance on the estimation
interval (see Table 2 and UNdata service at https://data.un.org/).

Table 2. Input and output data collections.

Year 2009 2010 2011 2012 2013

s 0 1 2 3 4
Y1[s] 81.90 81.77 80.27 80.42 80.64
y1[s] 1.00 0.998 0.980 0.982 0.985
Y2[s] 62.47 62.80 63.11 63.41 63.70
y2[s] 0.762 0.767 0.771 0.774 0.778
Y3[s] 59.39 59.53 59.63 59.71 59.75
y3[s] 0.725 0.727 0.728 0.729 0.726

T[s] (billion) 0.093 0.094 0.095 0.096 0.097

In this model, the random parameters b1, b2, and b3 take values within the intervals

b1 ∈ B1 = [1.0, 2.5]; b2 ∈ B2 = [0.5, 1.8], b3 ∈ B3 = [0.3, 1.5]. (50)

In accordance with Equation (24),

U1 = 0.5; U2 = 0.5; U3 = 1.2; U4 = 0.986. (51)

Then, the soft RML procedure yields the following optimal PDFs of the model parameters and
measurement noises:

W∗(b) =
exp

(
−0.5b1 − 0.5b1b2 − 1.2b0.5

3 − 0.986
)

W ,

Q∗(ξ̄) =
exp

(
−∑3

n=1 ξ2
n

)
Q , (52)

where

W =
∫
B1

∫
B2

∫
B3

exp
(
−0.5b1 − 0.5b1b2 − 1.2b0.5

3 − 0.986
)

db1db2db3,

Q =
3

∏
n=1

∫ 0.01

−0.01
exp(−ξ2)dξ. (53)

https://data.un.org/
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The two-dimensional sections of the three-dimensional PDFs of the model parameters are shown
in Figure 1a–c, while the graphs of the PDFs of the measurementnoises in Figure 2.
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3. Model testing. The randomized model in Equation (49) with the optimal PDFs in Equations (52)
and (53) was tested using the above data on regional population sizes from the UNdata service
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(https://data.un.org/) (see Table 3). This table also presents the testing results in terms of the
ensemble-average trajectories p̄1[sh], p̄2[sh], and p̄3[sh].

Table 3. Input and output data collections.

Year 2014 2015 2016 2017 2018

s 0 1 2 3 4
Y1[s] 81.489 81.707 82.063 82.386 82.674
y1[s] 0.985 0.988 0.993 0.996 1.000
p̄1[sh] 0.986 0.615 0.743 0.639 0.999
Y2[s] 64.190 64.457 64.791 65.134 65.484
y2[s] 0.721 0.472 0.564 0.529 0.708
p̄2[sh] 0.722 0.695 0.707 0.691 0.715
Y3[s] 59.585 59.504 59.504 59.509 59.516
y3[s] 0.775 0.609 0.562 0.699 0.650
p̄3[sh] 0.776 0.617 0.607 0.705 0.628

T[s] (billion) 0.097 0.097 0.097 0.098 0.098

Testing was performed via sampling of the randomized interval parameters with the PDFs in
Equations (52) and (53) and construction of the corresponding trajectories by Equation (49). Figure 3a–c
shows ensembles of such trajectories v1[sh], v2[sh], v[sh] as well as the ensemble-average trajectories
v̄1[sh], v̄2[sh], v̄3[sh] (Graph 1); the real trajectories y1[sh], y2[sh], y3[sh] of regional population sizes
(Graph 2); and the limits of the variance pipes p̄∗1 [sh]± σ1, p̄∗2 [sh]± σ2, p̄∗3 [sh]± σ3 (Graph 3).

(a) (b)

(c)

Figure 3. (a) v̄1[4], (b) v̄2[4], (c) v̄3[4].

https://data.un.org/
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The testing accuracy was estimated in terms of the relative root-mean-square error

δn =

√
∑4

s=0 ( p̄n[sh]− yn[sh])2√
∑4

s=0( p̄n[sh])2 +
√

∑4
s=0(yn[sh])2

. (54)

In the example under study, it constituted 4.6% (Region 1), 3.5% (Region 2), and 2.6% (Region 3).

7. Conclusions

This paper has developed a mathematical model for dynamic migratory interaction of regional
systems with locally stationary states described by corresponding entropy operators. The model
incorporates random parameters, and their probabilistic characteristics—the probability density
functions of system parameters and measurement noises—have been calculated using soft randomized
machine learning. An example of migratory interaction modeling and testing has been given.

Funding: This work was supported by Russian Science Foundation (project No. 17-11-01220).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Proof of Theorem 1. Consider the function

ϕ(z) = µ
M

∑
k=1

N

∑
n=1

cknqkn(z[sh])ckn , (A1)

which appears on the left-hand side of Equation (19). Taking advantage of the obvious inequalities,

ϕ−(z) = MNµcminqmin(z)cmin < ϕ(z) < MNµcmaxqmax(z)cmax = ϕ+(z). (A2)

The variables are 0 < cmin < 1, 0 < cmax < 1, cmin < cmax, and cmin < ckn < cmax. Consider
the equations

ϕ−(z) = T[sh], ϕ(z) = T[sh], ϕ+(z) = T[sh]. (A3)

The functions ϕ−(z), ϕ(z), and ϕ+(z) are strictly convex. Therefore, the solutions of these
equations has the relationship

z− < z∗ < z+, (A4)

which concludes the proof of Theorem 1.
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