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ABSTRACT: The prevalence of type 2 diabetes (T2DM) is increasing globally, creating essential demands for T2DM animal
models for the study of disease pathogenesis, prevention, and therapy. A non-human primate model such as cynomolgus monkeys
can develop T2DM spontaneously in an age-dependent way similar to humans. In this study, a data-independent acquisition-based
quantitative proteomics strategy was employed to investigate the serum proteomic profiles of spontaneously diabetic cynomolgus
monkeys compared with healthy controls. The results revealed significant differences in protein abundances. A total of 95
differentially expressed proteins (DEPs) were quantitatively identified in the current study, among which 31 and 64 proteins were
significantly upregulated and downregulated, respectively. Bioinformatic analysis revealed that carbohydrate digestion and absorption
was the top enriched pathway by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Protein−
protein interaction network analysis demonstrated that MST1 was identified as the most connected protein in the network and could
be considered as the hub protein. MST1 was significantly and inversely associated with FSG and HbA1c. Furthermore, recent lines
of evidence also indicate that MST1 acts as a crucial regulator in regulating hepatic gluconeogenesis to maintain metabolic
homeostasis while simultaneously suppressing the inflammatory processes. In conclusion, our study provides novel insights into
serum proteome changes in spontaneously diabetic cynomolgus monkeys and points out that the dysregulation of several DEPs may
play an important role in the pathogenesis of T2DM.

1. INTRODUCTION
Diabetes mellitus (DM) is a metabolic syndrome in which
pancreatic β-cells fail to meet the body’s need for insulin with
resultant hyperglycemia and increased risk of diabetic
complications.1 The IDF (International Diabetes Federation)
Diabetes Atlas 10th edition estimates that 536.6 million people
globally are living with diabetes (diagnosed or undiagnosed) in
2021, and this number is projected to increase by 46%,
reaching 783.2 million by 2045.2 Type 2 diabetes mellitus
(T2DM) also known as adult-onset diabetes or non-insulin-
dependent diabetes is the most prevalent type of diabetes,
accounting for around 90% of all diabetes cases in the adult
population characterized by insulin resistance (IR) and insulin
secretion defect.3 T2DM is associated with abnormalities in
energy metabolism arising from increasing age, abdominal

obesity, and unhealthy lifestyle.4 Although the DM has been
considered a major global health problem, pathogenesis
associated with T2DM is very complex and not completely
understood.5 Thus, research on T2DM management and
treatment is now one of the most popular areas of interests.
Animal models of diabetes are very useful and beneficial for
biomedical studies, as they offer new insights into human
diabetes and assist in developing appropriate interventions that
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could lead to clinical therapies. To date, rodent models which
represent the predominant species in biomedical research have
already provided important insights into disease mechanisms,
but their predictive value for the efficacy and safety of putative
antidiabetic drugs in humans is limited.6 Similar to humans,
non-human primates (NHPs) such as cynomolgus monkeys
have an increased propensity to developing DM spontaneously,
particularly T2DM relative to increasing age.7 NHP models
show most of the same symptoms as humans, and polygenic
models may replicate human diseases. Therefore, NHP models
can be treated as a critical translational bridge between basic
studies in rodent models and clinical studies in humans.8

Proteomics is an emerging tool that includes a thorough
study of qualitative and quantitative profiling of the proteins
present in different types of clinical specimens, including body
fluids (serum, urine, cerebrospinal fluid, etc.), tissues, and
cells.9 It can be systematically characterized by a large scale of
dynamic changes in protein expression, which can provide
fundamental information for the study of various complicated
diseases, which in turn, allowing the capacity to unravel new
mechanistic explanations and offering a richer source of
potential diagnostic and therapeutic biomarkers associated
with complex metabolic disorders including T2DM.10

Furthermore, a data-independent acquisition (DIA)-based
quantitative proteomics technology has received much
attention in the recent years as it is a new tandem mass
spectrometry method that fragments and analyzes all peptide
ions within a selected mass-to-charge ratio range, even those
with a low abundance. It also has significant advantages for

throughput, quantitative accuracy, and reproducibility, which
have been applied in research studies on biomarkers and basic
and clinical trials for various diseases.11−13 The serum is the
most complex clinical specimen that can be easily obtained,
and most proteins secreted by cells are finally released into the
blood circulation.9 Therefore, serum may contain fundamental
information related to the pathophysiological status of all
tissues and organs. Therefore, serum proteomic analysis is a
valuable approach for identifying protein biomarkers to be
applied in the early detection, diagnosis, surveillance, and
treatment of various diseases, including T2DM.14

The primary objective of the current study was to analyze
the serum proteomic profiles of spontaneously diabetic
cynomolgus monkeys and healthy controls using DIA-based
quantitative proteomics technology and identified protein
components by showing different abundances between the two
groups. These global serum proteomic profiles will provide
fundamental information for further detailed investigations of
the molecular pathophysiological mechanisms of T2DM.

2. MATERIALS AND METHODS
The overall workflow in this study is presented in Figure 1.
2.1. Materials and Sampling Procedures. Fourteen

serum samples from three spontaneous T2DM cynomolgus
monkeys, combined with 11 matched healthy cynomolgus
monkeys of similar age, were enrolled in this study. The criteria
used for screening of spontaneously diabetic cynomolgus
monkeys were guided by the American Diabetes Association
(ADA): FSG (fasting serum glucose) ≥126 mg/dL (7.0

Figure 1. Experimental design and workflow for the comparison of serum proteomic profiles of spontaneously diabetic cynomolgus monkeys and
healthy controls using a DIA-based quantitative proteomics technology.
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mmol/L) and HbAlc (hemoglobin A1c) ≥ 6.5%. The FSG and
HbAlc levels of healthy cynomolgus monkeys are <101 mg/dL
(5.6 mmol/L) and <5.7%, respectively. Prediabetes is an
almost asymptomatic condition defined as an intermediate
state between diabetes and health. The clinical characteristic
and biochemical data of the 14 cynomolgus monkeys and the
monkey housing conditions have been documented in our
previous study15 and are being followed in this study. All
experimental procedures and handling, care, and treatment of
the monkeys in the current study were approved by the
Institutional Animal Care and Use Committee of Hainan
Jingang Biotech Co., Ltd. and were performed according to the
guidelines of the Association for Assessment and Accreditation
of Laboratory Animal Care. All serum samples were collected,
followed by immediate freezing, transferring to the laboratory,
and being stored at −80 °C before sending to Shenzhen BGI
Co., Ltd., for the follow-up DIA-based quantitative proteomics
tests and analysis.
2.2. Protein Extraction, Quality Control, and Diges-

tion. Approximately 100 μL of serum sample was transferred
into a 5 mL centrifuge tube, and 900 μL (nine times the
volume of the serum sample) of SDS-free protein lysate was
added into the tube for protein denaturation. The final
concentration (10 mM) of DTT (Amresco) was added into
the sample and bathed in water at 37 °C for 30 min. After
returning to room temperature, the final concentration (55
mM) of IAM (Sigma) was added into the sample and reacted
in the dark for 30 min at room temperature. Most of the high-
abundant serum proteins were depleted, and low-abundant
proteins were enriched using the Cleanert-PEP (polar-
enhanced polymer) SPE (solid-phase extraction) column.
The extracted and purified protein samples were further re-
dissolved using 25 μL of 50 mM NH4HCO3, vortexed for 1
min, and then centrifuged for another 1 min. Finally, the
protein concentrations were determined with the Bradford
assay (Bio-Rad, Hercules, CA, USA),16 and the purity of the
extracted proteins was verified by SDS-PAGE on 12% of gels,
followed by Coomassie blue staining.
As for protein digestion, each protein sample (100 μg) was

diluted four times using 50 mM NH4HCO3 and then digested
for 4 h at 37 °C in 2.5 μg of trypsin (trypsin/protein = 1:40(v/
v); Promega). Enzymatic peptides were desalted with a Strata
X column and vacuum-dried prior to the MS process.
2.3. High pH Reversed-Phase Separation. All samples

were equally mixed, and the mixture was diluted in mobile
phase A (5% ACN, pH 9.8) and injected onto a Shimadzu LC-
20AB HPLC system. A Gemini high pH C18 column (5 μm,
4.6 × 250 mm) was used for liquid-phase separation of
samples. Gradient elution was applied with conditions
described as follows: flow rate of 1 mL/min: 5% mobile
phase B (95% ACN, pH 9.8) for 10 min, 5−35% mobile phase
B for 40 min, 35−95% mobile phase B for 1 min, flow phase B
lasted 3 min, and 5% mobile phase B equilibrated for 10 min.
The elution peaks were monitored at a wavelength of 214 nm,
and the fractions were collected every minute. Finally, the
peptide components were combined into a total of 10
fractions, which were then freeze-dried.
2.4. Data-Dependent Acquisition and Data-Inde-

pendent Acquisition Analysis. The dried peptide sample
was re-dissolved with mobile phase A (2% ACN and 0.1% FA)
and centrifuged at 20,000g for 10 min, and the supernatant was
taken for injection. Separation was performed on a Thermo
UltiMate 3000 UHPLC liquid chromatograph. The sample was

first enriched in the trap column and desalted, followed by
entering into a tandem self-packed C18 column (150 μm
internal diameter, 1.8 μm column size, and 35 cm column
length). Peptides were separated at a flow rate of 500 nL/min
by the following effective gradients: 0−5 min, 5% mobile phase
B (98% ACN and 0.1% FA); 5−120 min, 5−25% mobile phase
B; 120−160 min, 25−35% mobile phase B; 160−170 min, 35−
80% mobile phase B; 170−175 min, 80% mobile phase B; and
175−180 min, 5% mobile phase B. The nanoliter liquid phase
separation end was directly connected to the mass
spectrometer, and the peptides separated by the liquid phase
were sprayed into the nanoESI source and then allowed to
enter a Q-Exactive HF X (Thermo Fisher Scientific, San Jose,
CA) tandem mass spectrometer for data-dependent acquisition
(DDA) and data-independent acquisition (DIA) analyses.
The DDA MS parameters were set as follows: ion source

voltage 1.9 kV, MS scanning range m/z 350−1500; MS
resolution 120,000, maximal injection time (MIT) 100 ms;
MS/MS collision type HCD, collision energy NCE 28; MS/
MS resolution 30,000; MIT 100 ms; and dynamic exclusion
duration 30 s. The start m/z for MS/MS was fixed to 100. The
precursor for MS/MS scan was satisfied: charge range from 2+
to 6+ and top 20 precursors with intensity over 5 × 104. AGC
was set as follows: MS 3 × 106 and MS/MS 1 × 105.
The DIA MS parameters were set as follows: ion source

voltage 1.9 kV, MS scanning range m/z 400−1250; MS
resolution 120,000; and MIT 50 ms. For MS/MS scan, the
scanning range m/z 400−1250 was equally divided into 45
continuous windows, and fragment ions were scanned in an
Orbitrap with a resolution of 30,000. The MS/MS collision
type was also selected as HCD, and MIT was in the auto
mode. The collision energy was in the distributed mode: 22.5,
25, and 27.5, AGC was set as 1 × 106.
2.5. Protein Identification and Quantitative Analysis.

DDA data were processed and analyzed by MaxQuant (version
1.5.3.30). The peptide/protein entries that satisfied FDR (false
discovery rate) ≤ 1% were used to construct the final spectral
library, and the retrieved database was Uniprot_mcf_irt.fasta
(77,481 sequences). Parameters are listed as follows: (1)
enzyme: trypsin; (2) minimal peptide length: 7; (3) FDR at
the protein and PSM level: 0.01; (4) fixed modifications:
carbamidomethyl (C); (5) variable modifications: oxidation
(M); acetyl (protein N-term); glutamine (Q) to pyro-
glutamate (N-term Q); and deamidated (NQ). The DIA MS
data were analyzed by the Spectronaut (version
12.0.20491.14.21367), which uses iRT peptides for retention
time (RT) calibration. Based on the Target-decoy model
applicable to sequential window acquisition of all theoretical
mass spectra (SWATH-MS), the false-positive control was
performed with 1% of FDR. Finally, the significant differences
of serum proteome were statistically analyzed by MSstats
(version 3.2.1).17 After carrying out error correction and
normalization on each sample, the DEPs between the groups
were selected according to the absolute value of fold change (|
FC|) ≥ 1.5 and p value < 0.05 as the criteria for significant
differences. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the
PRIDE18 partner repository with the dataset identifier
PXD036971.
2.6. Bioinformatics Analysis. Identified DEPs were

annotated and classified into the pathway by Gene Ontology
(GO) (http://www.geneontology.org) and the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) PATHWAY
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Figure 2. Cluster analysis of the identified DEPs. The X-axis of the graph is the sample names, and the Y-axis is the protein names which can also be
downloaded from https://www.uniprot.org/. Since several protein IDs are matching the same protein names, these protein names are added with
the protein IDs in the graph to distinguish from each other. Heatmap showed the clustered data, where each colored cell represents a protein
abundance value. Black represents proteins with a higher expression level, red represents proteins with a lower expression level, and green
represents proteins with an intermediate expression level.
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database (http://www.genome.jp/kegg/pathway.html), re-
spectively. The possible functions of serum proteins were
predicted by Eukaryotic Orthologous Groups (KOG) software,
and the WoLF PSORT software was used to predict the
subcellular localization of the identified DEPs. The STRING
database (STRING 11.0) was used to perform the protein−
protein interaction (PPI) network, which is important to
deepen our understanding of the pathogenesis of various
diseases and hasten the appropriate interventions.

2.7. Statistical Analysis. All data were expressed as mean

± SD and analyzed using Student’s t-test to conduct the

differences between the two groups. The enumeration data

were expressed as the number of samples and the composition

ratio and analyzed using either the Pearson’s χ-squared test or

Fisher’s exact test. Statistical significance was set at p < 0.05.

Figure 3. Volcano plot. The X-axis of the graph is the protein fold change (T2DM/control) (log2), and the Y-axis is the corresponding −log10 (P-
value). The red dots indicate the significantly upregulated proteins, the green dots indicate the significantly downregulated proteins, and the gray
dots indicate proteins without significant changes. The protein names of the top six DEPs based on the P value of upregulated (ATP synthase
subunit b, ribosomal protein lateral stalk subunit P1, α-1,4 glucan phosphorylase, peptidyl-prolyl cis−trans isomerase, β-mannosidase, and fibulin-1)
and downregulated (protein AMBP, leptin, serpin family A member 6, α-albumin, TTR, and macrophage stimulating 1) proteins are marked on the
figure, respectively.

Figure 4. Up- or downregulation of differential proteins in GO punctuational classification. The X-axis represents the GO annotation entry and the
Y-axis represents the number of differential proteins with up- or downregulation.
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3. RESULTS
3.1. Characterization of Quantitative Protein Detec-

tion. DIA-based proteomic analyses of 14 serum samples of
cynomolgus monkeys were carried out in this study. As a
result, 8658 peptides and 1021 proteins were tentatively
identified (Tables S1 and S2). After calculating the fold change
and P value through the MSstats software package, 972
proteins were further identified. Two filtration criteria (fold
change > 1.50 or fold change < 0.67 and P value < 0.05) were
used to get significantly differentially expressed proteins
(DEPs). Compared with the healthy cynomolgus monkey
group (healthy group), a total of 95 DEPs (including 9 DEPs
with only one intensity in the disease group) were detected in
the spontaneously diabetic cynomolgus monkey group (disease
group), of which 31 were upregulated and 64 were
downregulated (Figures 2 and 3 and Table S3). Among the
upregulated proteins, the ATP synthase subunit b with a P-
value of 3.6 × 10−4 showed the greatest difference between the
two groups. The ATP synthase subunit b belongs to the
mitochondrial ATPase complex catalytic core to produce ATP
and plays an important role in maintaining the energy
homeostasis in the cells. Among the downregulated proteins,
protein AMBP (α-1-microglobulin/bikunin precursor) was the
most different protein with a P-value of 5.9 × 10−4. Protein
AMBP is the precursor of α-1-microglobulin (A1M) and
bikunin, a protein involved in the scavenging and metabolism
of free radical and oxidizing residues.
3.2. GO Functional Annotation of the DEPs. GO is an

international standard gene function classification system that
provides a timely updated standard vocabulary (controlled
vocabulary) to comprehensively describe the properties of
genes and gene products in organisms. Therefore, GO analysis
is widely used to describe the molecular function of protein
sets. In the present study, we carried out GO functional
annotation analysis of the identified DEPs. Based on these
results, we generated GO functional classification maps to
discriminate the up- and downregulated proteins (Figure 4 and

Table S4). All identified DEPs were analyzed for GO
annotation based on the three categories of biological process
(BP), cellular component (CC), and molecular function (MF).
For GO enrichment analysis for DEPs, 24, 13, and 10 terms
were participated in BP, CC, and MF, respectively. In BP,
DEPs were mainly involved in the cellular process, metabolic
process, and biological regulation. A total of 56 DEPs
participated in the cellular process and included 21 upregulated
and 35 downregulated proteins. In the cellular process, the
most different protein was ATP synthase subunit b with a P-
value of 3.6 × 10−4. In CC, DEPs were mainly related to
organelle, extracellular region, and extracellular region part
categories. A total of 62 DEPs were involved in organelle, with
20 upregulated and 42 downregulated proteins. ATP synthase
subunit b with a P-value of 3.6 × 10−4 was also the most
different protein in the organelle. In MF, DEPs mainly played a
role in binding, followed by the catalytic activity and molecular
function regulation. A total of 54 DEPs were involved in
binding, among which 16 were upregulated and 38 were
downregulated. The most different protein was protein AMBP
with a P-value of 5.9 × 10−4 in binding. In general, the DEPs
from the serum samples of spontaneous T2DM cynomolgus
monkeys were participated in GO enrichment analysis more
extensively.
3.3. KOG Function Classification of the DEPs. We

predicted the possible functions of the identified DEPs and
generated functional classification statistics by using the
Eukaryotic Orthologous Groups (KOG) database, a database
for the orthologous classification of eukaryotic proteins. In our
KOG functional classification, all the DEPs were annotated
into 23 KOG terms (Figure 5 and Table S5). The top-ranked
functional clusters included four terms in cellular processes and
signaling group (signal transduction mechanisms, posttransla-
tional modification, protein turnover, and chaperones, defense
mechanisms, and extracellular structures), followed by two
terms in the metabolism group (carbohydrate transport and
metabolism and inorganic ion transport and metabolism).

Figure 5. KOG function classification of the DEPs. The X-axis displays the DEP count and the Y-axis displays the KOG terms.
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3.4. KEGG Pathway Analysis of the DEPs. To explore
the functions of the DEPs in physiological or pathological
status, we conducted KEGG pathway analysis to further
characterize the biological functions of the identified DEPs. As
shown in Figure 6 and Table S6, the 95 identified DEPs were
involved in 35 pathways, among which the top 8 involving
more than 10 proteins were related to signal transduction,
cancers, immune system, viral infectious diseases, immune
diseases, bacterial infectious diseases, parasitic infectious
diseases, and digestive system. All the identified DEPs could
also be further divided into six KEGG pathway classification,
including cellular processes, environmental information pro-
cessing, genetic information processing, human diseases,
metabolism, and organismal systems. According to the results
shown in Figure 7, the upregulated proteins were annotated to
13 major pathways. In turn, downregulated proteins were
annotated to 25 major pathways; the more proteins involved
pathways were the “PI3K-Akt signaling pathway” and
“Epstein−Barr virus infection”. Among them, thyroid hormone
synthesis, starch and sucrose metabolism, and carbohydrate
digestion and absorption were the top three biological
functions for the DEP sets (Figure 8), and the most enriched
KEGG pathway was carbohydrate digestion and absorption.

3.5. Subcellular Localization of the DEPs. We
performed WoLF PSORT software to predict the subcellular
localization of the identified DEPs (Figure 9 and Table S7) in
the present study. The results demonstrated that the
extracellular, nucleus, cytosol, and mitochondria were the
most represented structures.
3.6. Protein−Protein Interaction Network of the

DEPs. The PPI network analysis can provide valuable
information about the interaction between proteins and help
to identify core proteins. The interaction relationship of DEPs
was evaluated with the STRING PPI database, and the top 100
interactions with confidence was used to construct the
interaction map (Figure 10 and Table S8), in which circled
nodes represent proteins (red nodes represent proteins with
upregulation and blue nodes represent proteins with down-
regulation), the size of the circle indicates the density of
relationship, and the connections between nodes represent
protein interactions.
The PPI network of DEPs includes 39 nodes (8 upregulated

proteins and 31 downregulated proteins) and 58 edges
(interactions). The hub proteins were selected based on its
relations with other proteins, and several highly connected
proteins were identified, for example, macrophage stimulating
1(MST1), a liver-derived serum glycoprotein involved in cell

Figure 6. KEGG pathway classification of the DEPs. The X-axis displays the DEP count, and the Y-axis displays the name of biological functions
which were classified into six KEGG pathway categories, including cellular processes, environmental information processing, genetic information
processing, human diseases, metabolism, and organismal systems.
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proliferation and differentiation, containing the most edges and
representing the top hug protein (highly connected protein
with 11 edges). Moreover, apolipoprotein C-III, transthyretin
(TTR), α-2-HS-glycoprotein, and serpin family A member 6
were the other hub proteins with eight edges of each.
Furthermore, while analyzing the Pearson correlation

coefficient and the significance testing between MST1 and
FSG, HbA1c by the Statistical Package for Social Sciences
(SPSS 22.0 version), we observed that MST1 was significantly
negatively correlated with FSG and HbA1c (r = −0.782, p =
9.42 × 10−4 and r = −0.821, p = 3.24 × 10−4, respectively)
(Figure 11).

4. DISCUSSION
Due to the increase in the prevalence of DM globally, the
diabetic animal models are believed to play an important role
in elucidating the pathogenesis mechanisms and therapeutic
agents of human DM and its complications.19 Preclinical
studies mainly focus on rodent models including rats and
especially mice to gain insights into the pathological
mechanisms of DM. However, until now, there is no single
model which can mimic the development of DM as in
humans,20 and nonrodent models of DM are urgently needed
as a valuable supplement to rodents for both practical and
physiological reasons with respect to humans.21 Therefore,

numerous lines of evidence highlight the value of NHPs in
bridging the translational gap between basic studies in rodents
and clinical studies in humans.22 The NHP model such as the
cynomolgus monkey can develop T2DM spontaneously in an
age-dependent way which is influenced by overweight and
obesity and is characterized by IR, progressive hyperglycemia,
and increased inflammation status similar to that observed in
human T2DM.23

The human T2DM was previously defined using FSG and 2
h serum glucose (PPG) level measured during an oral glucose
tolerance test. Although these items have been considered the
gold standard for diagnosing diabetes, the disadvantages
include the requirement of subject fasting. Glycosylated
hemoglobin (HbA1c) is accepted as the best marker of
mean glycemia level over the preceding 2−3 months,24 and the
main advantages of the test can be obtained without fasting.
Thus, HbA1c with a cut-point ≥6.5% was recommended by
the International Expert Committee on the Diagnosis and
Classification of Diabetes to diagnose DM in July of 2009 and
incorporated into the 2010 American Diabetes Association
Standards of Medical Care in Diabetes.25 Nowadays, the
defined diagnostic criteria of cynomolgus monkeys with DM
have not been agreed upon.26−28 Taking the translational
medicine into consideration, our study adopted the following
T2DM definitions: FSG ≥ 7.0 mmol/L (126 mg/dL) and

Figure 7. Up- and downregulation differential protein pathway classification. The X-axis represents the pathway annotation entry, and the Y-axis
represents the number of differential proteins with up- or downregulation.
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HbA1c ≥ 6.5%. In the present study, we found three
spontaneously type 2 diabetic cynomolgus monkeys within
the relatively small sample size which lend credence that a
small percentage of cynomolgus monkeys may develop T2DM
spontaneously.29

Proteomic studies would be capable of fostering a better
understanding of disease processes, develop new biomarkers
for diagnosis and early detection of disease, discover cellular
pathways associated with the disease of interest, and accelerate
drug development.30 As far as we know, this was the first DIA-
based proteomic analysis of serum samples of spontaneous
T2DM cynomolgus monkeys compared with healthy controls.

In the current study, it is aimed to investigate the
characteristics of serum proteomic profiles between the two
groups, and the results evidenced the alterations of serum
proteomic profiles in spontaneous T2DM cynomolgus
monkeys. As a result, a total of 95 DEPs were quantitatively
identified, among which 31 and 64 proteins were significantly
upregulated and downregulated, respectively. Furthermore, we
compared the results with human studies and showed some
similar results that lower the level of TTR in patients with
diabetes compared with normal subjects, although the sample
size is very limited.31

Figure 8. Significantly enriched pathway. This figure shows the metabolic pathway in which the differential proteins are significantly enriched. The
X-axis shows the enrichment factor (RichFactor) which represents the number of differential proteins annotated to the pathway divided by all the
proteins identified in the pathway. The larger the value, indicating the greater the proportion of differential proteins annotated to the pathway. The
size of the circle represents the number of differential proteins annotated to the pathway.

Figure 9. Subcellular localization of the DEPs. The X-axis represents the subcellular structure term, and the Y-axis represents the protein count.
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We made an attempt to assign possible functions to the 95
identified DEPs using the GO functional annotation. The
functional annotation of gene products, both proteins and
RNAs, is a major endeavor that requires a judicious mix of
manual analysis and computational tools. GO is one of the
most widely used tools for functional annotation, particularly
in the analysis of data from high-throughput experiments.32 In
the present study, we showed that the BP of the cellular
process, the CC of the organelle, and the MF of the binding
gained the highest counts based on GO term analysis.
Furthermore, ATP synthase subunit b was the most different
protein both in the BP of the cellular process and the CC of
the organelle. ATP synthase which is found in the inner
membrane of the mitochondria is the central enzyme of energy
metabolism in most organisms.33 In this study, as part of ATP
synthase, ATP synthase subunit b was upregulated in the
serum of spontaneously diabetic cynomolgus monkeys,
implying that the pathogenesis of T2DM might be relevant

to the ATP synthesis and energy consumption. In addition,
protein AMBP (α-1-microglobulin/bikunin precursor) was the
most different protein in the MF of binding. AMBP is a
precursor protein processed proteolytically into bikunin and α-
1-microglobulin (A1M).34 A1M is a conserved tissue house-
keeping protein secreted from the liver and most other
epithelial cells, presented in blood and all tissues at remarkably
constant concentrations,35 and has a physiological role as a
protective antioxidant, operating by clearing extravascular
fluids of free radicals and heme groups and transporting
them to the kidneys for degradation.36 In this study, protein
AMBP was downregulated in the serum of spontaneously
diabetic cynomolgus monkeys, implying that the pathogenesis
of T2DM might be relevant to oxidative damage, the result
that is consistent with the previous research that decreased
oxidative capacity and mitochondrial aberrations are major
contributors to the development of IR and T2DM.37

Figure 10. PPI network of the DEPs.
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Furthermore, we also made an effort to identify the potential
signaling pathways that might exist among the DEPs using
KEGG pathway analysis, one of the most commonly used
method for the integration and interpretation of high-
throughput proteomic and genomic data. In the present
study, we had discovered three signaling pathways, including
carbohydrate digestion and absorption, starch and sucrose
metabolism, and thyroid hormone synthesis showing signifi-
cant enrichment. Among them, the carbohydrate digestion and
absorption pathway was the top enriched KEGG pathway. The
DEPs involved in this pathway included one upregulated
(ATPase Na+/K+ transporting subunit α 4) and three
downregulated proteins. Interestingly, all these three down-
regulated proteins were α-amylase, despite the various
sequences of amino acids present in them. Na+/K+-ATPase,
a well-characterized membrane ion transporter composed of
two functional subunits (α and β) and one regulatory γ
subunit,38 plays a central role in the regulation of intracellular
and extracellular cations (i.e., low Na+ and high K+) and
cellular homeostasis. Impaired erythrocyte Na+/K+-ATPase
activity has been implicated in the pathogenesis of DM.39 The
relation of elevated ATPase Na+/K+ transporting subunit α 4
and decreased erythrocyte Na+/K+-ATPase activity needs to be
further elucidated in future studies. α-Amylase is a hydrolase
enzyme that catalyzes the hydrolysis of internal α-1,4-
glycosidic linkages in starch to yield low molecular weight
products such as glucose and maltose, causing postprandial
hyperglycemia and blood glucose levels to rise.40,41 It is

regarded as a well-known therapeutic target for antidiabetic
agents to design the drug and provide an alternate approach for
the treatment of T2DM. Inhibition of this enzyme leads to
inhibition of starch breaking and results in lower levels of
blood glucose.42 Whether the downregulated α-amylase in the
study was associated with the overnight fasting status needs to
be further studied. Additionally, it is of note that the PI3K-Akt
signaling pathway was involved with top numbers of DEPs (11
downregulated and 1 upregulated), even though no significant
difference was observed between the groups (p = 0.26).
Accumulating evidence has shown that the PI3K-Akt signaling
pathway plays a critical role in IR, and IR occurs in hepatic
cells when the insulin receptor substrate-1 (IRS-1)/phospha-
tidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling
pathway is downregulated.43,44 Thus, the impaired PI3K-Akt
signaling pathway caused IR and IR also exacerbated the PI3K-
Akt signaling pathway. Finally, the vicious circle would lead to
the development of T2DM.45

It is well known that proteins usually do not work alone but
rather interact with each other to perform various functions.
PPI network analysis approaches are a useful strategy for
accelerating our understanding of molecular crosstalk and the
BPs underlying T2DM pathogenesis, especially due to the
complex nature of this disease. For the PPI network, hub
proteins are defined as the most connected nodes within the
network; thus, they are responsible to sustain network
connectivity.46 It is important to note that macrophage

Figure 11. Pearson correlation coefficient (r) and p-value (p) between MST1 and FSG (A) and HbA1c (B) in 14 cynomolgus monkeys,
respectively.
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stimulating 1 (MST1) was the most important hub protein
with 11 edges in the PPI network in this study.
MST1, also known as macrophage-stimulating protein

(MSP) and hepatocyte growth factor-like protein (HGFL),
was originally discovered by Dr. E. J. Leonard in 1976 as an
endogenous serum protein that is mainly secreted by the
hepatic cells and is released into the circulating blood as a
biologically inactive pro-MSP, which is then cleaved by various
enzymatic systems to form biologically active proteins
occurring during blood coagulation and local inflammation.47

Thus, MST1 has a chance to meet various cells via the
circulating blood and exhibits multiple biological functions,
including promoting migration and phagocytosis by activating
macrophages and regulating the inflammatory response of
macrophages.48,49 MST1 exerts its biological activities upon
binding to its receptor, the transmembrane tyrosine kinase
Recepteur d’Origine Nantais (RON; also known as MST1R)
which is ubiquitously expressed in different cell types, and is
currently the only known receptor for MST1.50 The MSP-
RON signaling pathway exerts multiple biological effects,
including generating oncogenic variants and activating down-
stream pathways, resulting in tumorigenesis, proliferation,
angiogenesis, invasion, and resistance to chemotherapy in
various types of cancers,51 exhibiting the anti-inflammatory and
anti-lipogenic properties by activating the AMPK signaling
pathway in hepatocytes and macrophages,52 and suppressing
hepatic gluconeogenesis which is tightly balanced by opposing
stimulatory (glucagon) and inhibitory (insulin) signaling
pathways.53 Our present study demonstrated that MST1 was
downregulated in the serum samples of spontaneous T2DM
cynomolgus monkeys compared to the healthy controls and
significantly high negatively correlated with FSG and HbA1c,
respectively. The results of the present study are consistent
with one human cohort study (the Cohort on Diabetes and
Atherosclerosis Maastricht (CODAM) study), demonstrating
that the serum MST1 level tested by ELISA was inversely
associated with the FSG concentration.54 Taken together, in
view of the combined involvements in both suppression of
inflammation and amelioration of lipid−glucose metabolism, as
a potential candidate biomarker, MST1 has a significant
research value and can provide novel diagnostic and
therapeutic target in the area of metabolic syndrome, including
T2DM. Furthermore, spontaneously diabetic cynomolgus
monkeys may be the suitable animal models to further
evaluate the precise role and the relevant mechanisms of
MST1.
Additionally, apolipoprotein C-III, TTR, α-2-HS-glycopro-

tein, and serpin family A member 6 were the other hub
proteins with downregulation in the present study. Apolipo-
protein C-III (apoC-III) is a small atherogenic and
proinflammatory protein that is synthesized predominantly in
the liver and secreted into the plasma and found on the surface
of lipoproteins (very low-density lipoprotein, low-density
lipoprotein and high-density lipoprotein).55 As a key regulator
of plasma triglyceride levels, apoC-III may also influence the
risk of DM, not only by causing hypertriglyceridemia but also
by stimulating the apoptosis of pancreatic β-cell, inducing IR,
and promoting inflammation.56 Human studies demonstrated
that elevated apoC-III levels were strongly associated with
T2DM.57 Our results were inconsistent with this conclusion,
and the explanation may be related to the normal plasma
triglyceride levels in both spontaneously diabetic cynomolgus
monkeys and the healthy controls. TTR is a highly conserved

homotetrameric thyroxine transport protein synthesized
predominantly in the liver and choroid plexus and exists in
the plasma and/or cerebrospinal fluid of vertebrates and
involved in the regulation of glomerular filtration of retinol-
binding protein 4 (RBP4) and in the maintenance of the
protein level in plasma.58,59 Many human studies have shown
the association between plasma TTR levels and the risk of
T2DM, but the results were not consistent with each other;
only a few lines of evidence reported that the plasma level of
TTR is high in T2DM, but the relation with the diabetic
condition is not clear.60,61 α-2-HS-glycoprotein, also known as
fetuin-A (Fet-A), is a hepatic secretory glycoprotein and
reversibly binds the insulin receptor tyrosine kinase in the
peripheral tissues, thereby inhibiting the insulin-induced
intracellular signal cascade and producing peripheral IR.62

Human prospective studies on Fet-A and incidence of DM
have so far yielded contradicting results; some systematic
reviews reported an increased risk of T2DM with higher Fet-A
concentrations, some other studies opposed the causality of
these associations. Serpin family A member 6 is one member of
serpin family (serine protease inhibitor), and serpins play
significant roles in numerous physiological processes and are
known to control key steps in the inflammatory, coagulation,
and complement systems.63 In sum, the possible reasons
behind the contradicting results involved in the human and
cynomolgus monkey studies could be possibly explained by the
differences in species and sample size and variations in
detection techniques and analytical methods. Further studies
are required to resolve the contradicting findings and explore
the underlying mechanisms. Additionally, considering all the
above information, the DEPs discussed in the study
demonstrated an important role in the pathogenesis of
T2DM and provided possible directions for future research
studies, including as potential molecular targets for the
treatment of DM.
Nonetheless, a few noteworthy limitations of our study

should be recognized. First, due to the relative rarity of
naturally occurring DM in cynomolgus monkey colonies, the
sample size of the study was relatively small. Second, the
differential proteins identified were not confirmed with the
alternative assays. Therefore, in the future, studies with larger
sample sizes should be conducted with permitted conditions,
and the targeted proteins are needed to be further verified by
other analytical methods such as ELISA assay or multiple
reaction monitoring, while the latter is increasingly gaining an
advantage over the former method because of its multiplexing
capability.64,65 Last, longitudinal studies may be followed up in
pre-diabetic cynomolgus monkeys to identify the predictive
value of MST1 on progression to T2DM.
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