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Abstract: This study presents a new technique to improve the indoor localization of a mobile node
by utilizing a Zigbee-based received-signal-strength indicator (RSSI) and odometry. As both methods
suffer from their own limitations, this work contributes to a novel methodological framework in
which coordinates of the mobile node can more accurately be predicted by improving the path-loss
propagation model and optimizing the weighting parameter for each localization technique via
a convex search. A self-adaptive filtering approach is also proposed which autonomously optimizes
the weighting parameter during the target node’s translational and rotational motions, thus resulting
in an efficient localization scheme with less computational effort. Several real-time experiments
consisting of four different trajectories with different number of straight paths and curves were
carried out to validate the proposed methods. Both temporal and spatial analyses demonstrate
that when odometry data and RSSI values are available, the proposed methods provide significant
improvements on localization performance over existing approaches.

Keywords: Zigbee; RSSI; wireless-sensor networks; odometry; convex optimization; self-adaptive
filtering; indoor localization

1. Introduction

Localization has gained a growing interest among researchers and industries due to technological
advancements in wireless sensor networks (WSNs). WSNs are typically made up of a set of small,
low-energy devices called sensor nodes, optionally with a base station for monitoring purposes.
Localization in a WSN is defined as the task of determining real-time coordinates of the sensor nodes,
given that the exact positions of some of the static nodes, also called anchor nodes, are known [1].

The past few decades have witnessed a dramatic increase in the development of indoor localization
due to its applicability in various real-time location-based services and smart monitoring systems,
particularly in buildings and places where the Global Positioning System (GPS) is denied due to
poor satellite reception. Techniques for indoor localization can be generally divided into two broad
categories, namely, radio frequency (RF)- and non-RF-based. The latter technique exploits non-RF
sensors to estimate the movement of a target node and its distance from other nodes. Examples of
these include radar, acoustic, ultrasound, and optical sensors. The RF-based technique, on the other
hand, utilizes received signal strength between two sensor nodes to estimate the distance between
them, hence it is often termed as the received signal strength indicator (RSSI) method. This method
does not require additional hardware for estimation, and is preferable in many cases owing to its
penetrability as compared to the non-RF approaches [2].

Several RF technologies have been proposed and tested in the literature for RSSI-based indoor
localizations, and the most popular ones are WiFi, Bluetooth Low Energy (BLE), Ultrawide Band
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(UWB), and Zigbee. Each of them has its own advantages and disadvantages, and its efficacy greatly
depends on the nature of applications and hardware performance. WiFi, for instance, has become the
simplest solution for localization in buildings with high availability of access points with the highest
data-rate transfer and throughput, but at the cost of high power consumption. Hence, it may not be
suitable for indoor tracking, particularly when sensor nodes are dependent on batteries to operate.
BLE, on the other hand, consumes significantly less power, as the maximum data rate is considerably
lower than that of WiFi, but it has been demonstrated to be more accurate than WiFi when used
for localization due to better estimation on the RSSI-distance model [3]. Both WiFi and BLE signals,
however, are easily perturbed by multipath effects, signal reflections, and even small noise perturbation
due to the inherent structure of narrowband radio waves, which makes precise distance measurement
more difficult to achieve. To address this problem, UWB radio signals have been designed with very
short impulse transmissions to preserve the signal’s integrity and strength, as they are not easily
overlapped with noise or multipath effects. The downsides of UWB are, nonetheless, the high cost of
the equipment and a requirement for dedicated infrastructure [4]. ZigBee is another Bluetooth-like
technology that operates at about a quarter of Bluetooth’s 1 Mbps maximum data rate. The low data
rate makes it unsuitable for applications with high-speed data transmission, but the solution enables
multiyear battery life and connection to a large number of nodes. A detailed comparison between
these technologies can be found in [2,5].

Localizing a mobile node in an indoor environment is relatively more challenging than localizing
a static node as it continuously changes its location with time [6]. Moreover, for RSSI-based localizations,
a node at some places may only receive two RSSI values at certain time instances while moving due
to occlusions from the environment and limitations on the communication modules, such as sudden
transceiver failures, or limited energy and bandwidth. This scenario makes it impossible to localize
if one is to use traditional triangulation or multilateration-based methods. In order to circumvent
this problem, several studies have begun to exploit compressive sensing theory [7] that allows sparse
and noisy signals to be recovered with only a small number of RSSI measurements. Via this theory,
not only can the number of anchor nodes be minimized [8], it is also possible to localize multiple
target nodes at the same time [9]. The work in [9] shows how the compressive-sensing technique
can be adopted along with `1 minimization programs to localize multiple target nodes, where the
results are then validated via a number of simulations. In the case where a sufficiently large number of
anchor nodes are available, fingerprinting is one of the approaches that has been extensively adopted
by many researchers as it is able to construct a radio map from recorded RSSI values during the
offline phase [10,11]. Hence, any changes of signal strength during the online localization phase
are cross-checked with the stored fingerprints to estimate the best location of the target node, either
deterministically [12] or probabilistically [13]. This method is particularly popular for localizing
smartphone or mobile-device users in buildings equipped with many WiFi access points. Nonetheless,
the major challenges that are always associated with this approach are the inherent noise and large
fluctuations of the signal strength due to the time-varying orientation of smartphones or unexpected
obstacles between anchors and users. In this regard, several techniques have been proposed such as
incorporating artificial-intelligence-based methods and using suitable filters to minimize the influence
of multipath effects and interference [14–19]. Specific examples include a reliability-augmented particle
filter, where the uncertainty of a user’s true step length can be compensated [11], and fusing fingerprints
with uncertain mutual distances that are constrained within specific bounds [10].

In the field of mobile robotics, non-RF based devices are typically utilized as proprioceptive
sensors in the odometry approach, which is a common technique to localize wheeled mobile robots.
While these sensors can estimate the path and pose of the robot relatively more accurate than by
using the RSSI-based methods, errors due to wheel slippage, sensor drifts, and other environmental
disturbances may inevitably accumulate and eventually deteriorate the tracking performance [20].
To prevent the uncertainties in odometry from growing unbounded, a probabilistic state estimation
was introduced which fuses odometry with other exteroceptive sensors such as sonar, lidar, laser range
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finders, and cameras [21]. The most used algorithms reported in the literature are Markov [22] and
Kalman filter localizations [23] where both rely on probabilistic motion and measurement models.
Markov localization assumes that the map is known and uses fine-grained and metric discretization
of the state space. The configuration space is divided into a number of cells where each cell contains
the probability of the robot to be in that cell. During the prediction and update stages, all cells are
updated; thus, this method entails high computational costs. The Kalman filter, on the other hand,
is computationally less intensive, as the probability distributions of both robot and sensor model are
assumed to be Gaussian; hence, only the mean and variance of the distribution need to be updated at
each time step [24].

As an alternative to the probabilistic-based method where the optimal solution heavily relies on
map accuracy, sensing, and the computational capabilities of the robot, integrating odometry with
WSN-based localizations has also become a new trend in recent years [20,25–27]. This particular
strategy has recently found a wide variety of applications, such as human tracking [14,28–30],
navigational assistance [5], warehouse management [2,31], and monitoring underground areas in
post-disaster environments [32]. In smart buildings where WSN is installed for electrical usage and
environmental monitoring purposes [33], this approach can keep operational costs to a minimum as
no additional hardware is required to assist the odometry-based localization. The work in [27] shows
an example where the RSSI and phase shift of signals from passive UHF-RFID tags, which are installed
in the ceiling of the environment, could be combined with odometry data to improve localization
performance. Fusing WiFi- or BLE-based RSSI with inertial measurement units (IMUs), which typically
consists of an accelerometer and a gyroscope, is also becoming more popular due to the advanced
technology of smartphones and mobile devices [23,29,34]. From the WSN perspective, another notable
benefit of introducing mobility to the network is that it can increase its capability on various aspects,
including flexible topology adjustment and automatic node deployment [35]. In addition, precise
and fast localization of mobile nodes in GPS-denied environments allows several crucial tasks to be
executed, such as search-and-rescue missions and map-building during emergency cases.

While integrating WSN with odometry localizations can be advantageous for compensating
deficiencies from individual methods, suitable fusion techniques must be employed in order to achieve
optimal experimental results without sacrificing the desired design requirements. A number of studies
suggested adopting the Kalman filter and/or its variants [20,36], while others preferred different
approaches due to some disputes over the suitability or effectiveness of the filters particularly for
compensating high variability or uncertainties in the signal strength [18,19]. In practice, however,
the accuracy, dynamic range of the signals and their variations highly depend on the specific hardware
platforms used, the infrastructure impact, as well as spatial or environmental factors, which make any
direct comparison between existing methods less conclusive. In other words, while some techniques
work tremendously well in a particular environment, this does not mean others are less effective in
general. Nonetheless, approaches that have been experimented in the literature often pave the way for
future research in and development of WSN technologies.

The focus of this study is on localizing a continuously moving target node using Zigbee-based
RSSI measurements and odometry when no knowledge of the map or fingerprint database is available.
To the best of the authors’ knowledge, little attention has been paid in the literature to date on
investigating and optimizing the indoor-localization technique for a continuously moving node within
this scope. Plus, many studies on indoor localizations focused on reducing the steady-state position
error. Alternatively stated, when target nodes are in a continuous motion, only their final positions
or their positions while they are stationary have been of interest for performance evaluations. In this
work, we introduce mobility to the target node by using a nonholonomic wheeled mobile robot with
a specific velocity profile. The main contributions of this paper can be stated as follows:

1. a novel approach to compensate for uncertainties in the Zigbee-based RSSI and odometry
localizations for a continuously moving target node;
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2. a new methodological framework to fuse Zigbee-based RSSI and odometry-based localizations
with convex searches on optimal weighting parameters; and

3. a self-adaptive filtering technique that autonomously optimizes the weighting parameter during
the target node’s translational and rotational motions which exhibit different but consistent
error patterns.

The methods proposed in this work are also computationally less onerous as localization is only
corrected using weighting parameters that are updated on the basis of the robot’s rotational velocity.
Several real-time experiments consisting of four different trajectories with different numbers of straight
paths and curves were carried out to validate the proposed techniques. Both temporal and spatial
analyses demonstrated that, when odometry data and RSSI values are available, the proposed methods
provide significant improvements on localization performance over existing approaches that also
include the extended Kalman filter. In addition, we also showed that the new self-adaptive filtering
technique which optimizes the error minimizer when the rotational velocity within a specified range is
detected considerably outperformed the rest.

The remainder of the paper is organized as follows: Section 2 explains the indoor localization
framework and strategies, which begins with a brief description on the system architecture and the
path-loss propagation model, followed by the RSSI-based localization method, odometry, and the
main proposed strategies involving convex optimizations when both the RSSI-based method and
odometry are hybridized. Section 3 presents the experimental results, qualitative and quantitative
performance evaluations and discussions. Results of the proposed methods are then concluded and
further discussed in Section 4 with future works. For notations and abbreviations that are frequently
used in this manuscript, readers are referred to the last section before the references.

2. Indoor Localization Framework and Strategies

2.1. System Architecture and Path-Loss Propagation Model

Zigbee is a low-cost wireless communication technology based on the IEEE 802.15.4 standard, which
is often used to create personal area networks. Due to its low power consumption and secure networking
capabilities, it is often preferable for wireless control and monitoring in smart-building technologies.

In this study, we use XBee embedded modules with the Zigbee protocol to create four
transmitters that are placed at preassigned positions, and one receiver which is the target node
to be localized. In order to introduce mobility to the target node and to verify the proposed indoor
localization strategies, NSBot2, which is a nonholonomic wheeled mobile robot was built with ATMega
microcontrollers connected to the target node as shown in Figure 1.

With regard to control mechanism, NSbot2 was preprogrammed with closed-loop cascade control
where its motion was constrained to constant translational and rotational velocities. This technique
does not just allow the robot to travel along various types of planned path, but it also enables each
experiment with a specific path to be repeated with minimal variations.

The basic idea for indoor localization with RSSI is that the target node to be localized stays at
a fixed coordinate, and the RSSI from different anchor nodes with known positions are measured. RSSI
values can be converted into distances using a path-loss model [37], which are then used with the
triangulation, multilateration, or trilateration method to estimate the position of the target node [38].

One of the most commonly used path-loss propagation models in a WSN is the log-distance
function. Via this model, the value of RSSI, β (in dBm) can be theoretically expressed as follows [39]:

β(d) = β0 − 10γ log10(
d
d0

) (1)

where d (in m) is the distance between transmitter (anchor node) and receiver (target node), d0 is the
free space reference distance, typically 1 m, γ is the path-loss exponent coefficient, and β0 is the RSSI
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value when the transmitter and the receiver are 1 m apart, which in this case is found to be −38 dBm.
The theoretical value for γ with some calibrations is 1.8. From Equation (1), the distance d can be
simply retrieved with:

d(β) = d0 × 10
β0−β
10γ . (2)

In real situations, when the target node is continuously moving, the effects of noise from multipath
propagation, signal occlusions, and diffractions can be undesirably amplified. Hence, the theoretical
RSSI-distance relation in Equation (1) may no longer be sufficient to predict the actual path-loss model.
In order to estimate the real distance for a continuously moving node more accurately, sampled data
for β are collected when the transmitter is placed at a fixed coordinate, and the receiver, named Node
M, is moved at a speed of approximately 20 cm/s from d = 100 cm until d = 500 cm. This is illustrated
in Figure 2.

Figure 1. NSBot2: A nonholonomic wheeled mobile robot equipped with ATMega microcontrollers
and Zigbee radio modules with IEEE 802.15.4 standard.

Figure 2. Experimental setup to estimate real path-loss model of the mobile node.

A curve-fitting method is then utilized to generate an improved path-loss propagation model, β f ,
as follows:

g =
n ∑n

i=1(βi log10 qi)−∑n
i=1 βi ∑n

i=1 log10qi

n ∑n
i=1(log10 qi)2 − (∑n

i=1 log10 qi)2 ,

h =
∑n

i=1 βi − g ∑n
i=1(log10 qi)

n
,

β f (q) = h + g log10(q).

(3)

where q = d/d0; and n is the number of sampled data.

2.2. RSSI-Based Localization

In this work, four transmitters were configured as anchor nodes (Anchors A, B, C, and D); hence,
four distance values can be obtained at each time instance from the path-loss propagation model.
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They are also placed at points where any three of them are always noncollinear, which ensures the
feasibility of the trilateration method at each time instance.

Consider (x, y) as the unknown coordinate of the mobile node, and (xj, yj) with j = 1, 2, 3 be the
first three coordinates from three different anchor nodes received by the mobile node. Let dj be the
estimated distance from Node M to (xj, yj), and[

α1 γ1

α2 γ2

] [
x
y

]
=

[
δ1

δ2

]
(4)

where
α1 = −2x1 + 2x2, α2 = −2x2 + 2x3,

γ1 = −2y1 + 2y2, γ2 = −2y2 + 2y3,

δ1 = d2
1 − d2

2 + x2
2 − x2

1 + y2
2 − y2

1,

δ2 = d2
2 − d2

3 + x2
3 − x2

2 + y2
3 − y2

2.

(5)

The coordinate of the mobile node can then be retrieved via Cramer’s rule as follows:

x =

∣∣∣∣∣δ1 γ1

δ2 γ2

∣∣∣∣∣∣∣∣∣∣α1 γ1

α2 γ2

∣∣∣∣∣
=

δ1γ2 − δ2γ1

γ2α1 − γ1α2
, y =

∣∣∣∣∣α1 δ1

α2 δ2

∣∣∣∣∣∣∣∣∣∣α1 γ1

α2 γ2

∣∣∣∣∣
=

α1δ2 − α2δ1

γ2α1 − γ1α2
. (6)

2.3. Odometry

Odometry is a process of estimating the position change of a mobile robot on the basis of data
from motion sensors. For this research, the encoders on both wheels of the mobile robot were used
to estimate the path taken as well as the heading direction. Figure 3 illustrates the robot’s position
with respect to two different frames, namely [X, Y] and [XR, YR]. [X, Y] denotes the world coordinate
system, whereas [XR, YR] represents the robot-attached frame. The robot’s translational velocity, v,
and rotational velocity, ω, can be written as follows [24]:

v =
(ωr + ωl)r

2
, (7)

ω =
(ωr −ωl)r

D
, (8)

where r is the radius of the wheel, D is the azimuth length between wheels, and ωr and ωl represent
the angular velocities of the right and left wheels respectively. Let (xc, yc) be the center of the robot,
(xn, yn) be the current coordinate based on the [XR, YR] plane, (x, y) be the current coordinate based
on the [X, Y] plane, and θ be the robot’s heading angle with respect to the X axis. The relation between
(x, y), (xn, yn), and (xc, yc) can be written as:[

x
y

]
= J(θ)

[
xn

yn

]
+

[
xc

yc

]
(9)

where

J(θ) =

[
cos θ − sin θ

sin θ cos θ

]
. (10)

The movement of the robot can be decomposed into linear velocities with respect to the X and Y axes,
i.e., ẋ and ẏ, which have a relation with linear and angular velocities as follows:
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ẋ
ẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

 [ v
ω

]
. (11)

Figure 3. Overview of mobile robot in [X, Y] and [XR, YR] frames.

Let f (x, y, θ) = (x0, y0, θ0) be the previous position of the robot. When the robot is only driving
forward in the XR-axis direction, only translational velocity v is non-zero, and θ = θ0. Hence, we have
ẋ = v cos θ0 and ẏ = v sin θ0. The current update on f is then obtained by integrating ẋ and ẏ, which
leads to

x = vts cos θ0 + x0,

y = vts sin θ0 + y0,

where ts is the sampling time. When the robot steers, the trajectory is a circular arc with a radius
ρ = v/ω, i.e.,

ρ =
D(ωr + ωl)

2(ωr −ωl)
, (12)

The current heading angle of the robot can be calculated as θ =
∫ ts

0 ωdt = ωts + θ0. The position of the
robot can therefore be estimated withx

y
θ

 =

[
J(θ) 0

0 1

]  ρ sin(ωts)

ρ(1− cos(ωts))

ωts

+

x0

y0

θ0

 . (13)

2.4. Improved Localization Techniques

Both the RSSI- and odometry-based localization methods have their own advantages and
disadvantages. With regard to the RSSI method, a notable stumbling block when operating indoors
is signal-strength attenuation that occurs via various mechanisms such as diffraction, reflection,
and scattering due to environmental obstacles like walls. Odometry, on the other hand, is susceptible
to measurement errors that are typically caused by wheel slip and sensor drift. To compensate for the
deficiencies of individual methods, a preliminary set of experiments were conducted to investigate
the accuracy of each method and to search for optimal weighting parameters before both localization
techniques are fused. Figure 4 illustrates the experimental setup where the four anchor nodes are
placed at the vertices of a square with

(xA, yA) = (−1,−1), (xB, yB) = (4,−1), (xC, yC) = (4, 4), and (xD, yD) = (−1, 4).
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Figure 4. Illustration of the experimental setup from top view (not to scale).

As our focus was on localizing a continuously moving robot, we took into account the transient
error defined by

e(t) =
√
(x(t)− xr(t))2 + (y(t)− yr(t))2, (14)

where (x, y) represents the observed coordinate of the robot, while xr(t) and yr(t) indicate the actual
position of the robot in the x and y directions respectively, which were obtained by using a camera.
The localization error for the whole trajectory was then defined as

ET(x, y) =
∫ t f

t0

e(τ)dτ, (15)

where t0 and t f are the initial and final execution time respectively. To increase the localization accuracy
of the RSSI-based method, we propose the following lemma, which is based on the improved path-loss
model and a recursive implementation of moving average filter:

Lemma 1. Let βa, βb, βc, and βd be the RSSI values based on the path-loss model estimated by Equation (3)
for Anchors A, B, C, and D, respectively, and R be the number of points in the average that is selected a priori.
Given

βr(0), βr(1), . . . , βr(R− 1), r = a, b, c, d (16)

and

β̃r(R) =
1
R

R−1

∑
k=0

βr(k), r = a, b, c, d, (17)

the following equations are then equivalent:

β̃r(i) =
1
R

R

∑
j=1

βr(i− j), , i ≥ R + 1, r = a, b, c, d (18)

β̃r(i) = β̃r(i− 1) + Qβr(i− 1)−Qβr(i− (R + 1)) , i ≥ R + 1, Q = 1/R, r = a, b, c, d (19)

Proof. From Equation (18), we have
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β̃r(i) = Q[βr(i− 1) + βr(i− 2) + . . . + βr(i− (R− 1)) + βr(i− R)]. (20)

It also follows that

β̃r(i− 1) = Q[βr(i− 2) + βr(i− 3) + . . . + βr(i− R) + βr(i− (R + 1)]. (21)

Equation (20) can then be restructured into

β̃r(i) = β̃r(i− 1)−Qβr(i− (R + 1)) + Qβr(i− 1), (22)

which is also equivalent to Equation (19).

If the values of βr are subject to Gaussian noise, the effects from the noise can be suppressed via
Equation (19) in Lemma 1, which consequently leads to a smoother localization when d(β̃r), which
represents the Euclidean distance from Node M to the respective anchor node (calculated using
Equation (2)) that is used with the trilateration method in Equations (4)–(6). The recursive filtering
method in Equation (19) allows fast computation for real-time implementation which is desirable in
our case as the target node considered is continuously moving.

Throughout the paper, we write βT as the localization via the theoretical path-loss model as in
Equation (1) with the filtering technique in Equation (19), βN as the localization based on Lemma 1,
and Od as the localization based on the odometry approach as described in Section 2.3. The localization
technique using raw RSSI values with the theoretical path-loss model alone was omitted in this work
due to its worse performance.

For the preliminary experiment, the robot was initially placed at (0, 0), and moved in a square-like
trajectory with three turns until it reached its initial position again. The improved path-loss model
for each anchor node via Equation (3) gave (hA, hB, hC, hD) = (−38.2,−38.9,−38.4,−37.0) and
(gA, gB, gC, gD) = (−8.39,−8.91,−9.65,−11.6), where hi and gi indicate the values of h and g for
Anchor i, respectively. The robot’s trajectories based on Od, βT and βN (with R set to 5) as well as the
actual trajectory from the preliminary experiment, are outlined in Figure 5.
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Figure 5. Spatial-localization error analysis in XY-plane.
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An immediate observation from the figure is that the actual trajectory is slightly skewed compared
to the path estimated from Od after the first turn (approximately at (xr, yr) = (2, 0)), and the localization
error becomes higher after the second turn, which then accumulates until the robot stops. Trajectories
based on βN and βT , on the other hand, were clearly worse than the odometry approach, as can be
seen from the scattered plots. Nevertheless, both showed an interesting pattern, whereby plots were
less scattered during instances when the robot steered at each turn, and relatively more scattered when
the robot moved in a straight line. A possible justification for this is that less noise is captured when
Node M stays within a place for more than a threshold of time. In other words, localization errors
based on RSSI methods are minimal when the mobile node does not move too fast.

In order to investigate the response of e(t) when the robot steers, we introduce an indicator
variable, φ, which takes the value of 1 when the rotational velocity goes beyond a specified threshold,
and 0 otherwise. This can be mathematically described by

φ =

{
0 if |ω| ≤ εw

1 if |ω| > εw
, (23)

where the threshold value εw = 0.1 rad/s was selected to avoid capturing any small temporary steering
motion during translational movement. Temporal data for the localization error analysis with respect
to φ are shown in Figure 6. From the figure, it is clearly seen that localization error from βT was, in
most instances, higher than that from βN and Od. Another observation is that, although the error from
Od was generally lower than that from βT and βN , the error from βN was either almost similar or lower
than that of Od when φ = 1. Numerical analysis on ET for all the three methods is recorded in Table 1
for a set of three tests, and it is shown that ET from βN was the lowest when φ = 1, even though Od
beats the rest in terms of total ET .

0 5 10 15 20 25 30 35 40
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1

1.5
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Od T N

Figure 6. Position of NSBot2 in terms of x, y and θ based on odometry (top); temporal localization-error
analysis (bottom).

Preliminary analysis of the above localization error indicates that performance can be improved
by hybridizing Od and βN , and may be further enhanced by considering the value of φ. This, however,
requires a search on the optimal weighting parameters that can minimize the localization error when
both Od and βN are hybridized. To this end, the following proposition is introduced:
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Table 1. Numerical analysis on localization error from preliminary experiment.

Test
ET (Total) ET When φ = 1 ET When φ = 0

Od βT βN Od βT βN Od βT βN

1 820.2 2032.1 1195.3 232.8 439.6 87.2 580.8 1532.1 1014.3
2 825.0 2004.1 1045.1 233.9 479.6 97.0 591.1 1524.4 948.1
3 821.5 2221.4 1205.3 184.5 422.1 67.4 637.0 1799.3 1137.9

Average 822.2 2075.7 1101.1 219.3 457.0 81.7 603.0 1618.6 1033.4

Proposition 1. Define [
x(t)
y(t)

]
=

[
µ 1− µ

µ 1− µ

] [
x1(t) y1(t)
x2(t) y2(t)

]
, (24)

where (x1, y1) and (x2, y2) correspond to the estimated coordinates obtained from βN and Od respectively.
If there exists

µ∗0 = arg min
µ∈[0,1]

∫ t f

t0

[(x(τ)− xr(τ))
2 + (y(τ)− yr(τ))

2]1/2dτ (25)

where (xr, yr) denotes the reference coordinate, then the new estimated coordinate (x, y) of the mobile node with
µ = µ∗0 has a smaller localization error than that from Od and/or βN alone.

Proof. The integral term on the right-hand side of Equation (25) corresponds to localization error,
ET from Equations (14) and (15) when µ = 0, ET reduces to that of Od, whereas when µ = 1, ET reduces
to that of βN . Hence, the existence of µ∗0 is also equivalent to the existence of a minimum ET in the
search space of µ.

Figure 7 shows the resulting ET which is represented by OβN when µ from Equation (24) is varied
between its minimum and maximum values for the three tests. Due to the convexity of the search,
the minimum value of ET can be attained for each case with weighting parameter µ = µ∗0 which
has a variance of less than 0.1. It is also worth to note that µ and 1− µ correspond to the weighting
parameters for βN and Od, respectively, hence µ∗0 acts as the error minimizer when both methods
are combined.
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Figure 7. Optimal parameter of µ from Proposition 1 for three tests.

In order to boost te localization performance, the following corollary is proposed by making the
result in Proposition 1 self-adaptive to the value of φ.

Corollary 1. Let (x, y) be defined as in Equation (24), t f be the final execution time, and

µ∗1 = arg min
µ∈[0,1]

k f

∑
k=1

∫ tk f

tk0

[(x(τ)− xr(τ))
2 + (y(τ)− yr(τ))

2]1/2dτ (26)

where k is the k-th time φ = 1 during t ∈ [0, t f ], k f is the total number of times φ = 1, and tk f − tk0 is the
duration when φ = 1 for the k-th time φ = 1. If Equation (26) is feasible, the localization performance can then
be further improved by setting µ = µ∗0 when φ = 0, and µ = µ∗1 when φ = 1.

Proof. If Equation (26) is feasible, then the total localization error from the estimated new coordinate
(x, y) during φ = 1 is smaller than that from Od and βN when µ = µ∗1 . Hence, combining with the
error when µ = µ∗0 whenever φ = 0 results in a smaller total error than that when µ = µ∗0 for any value
of φ.

The resulting values of ET when φ = 1 (represented by OβN) for the three tests are shown in
Figure 8. From the figure, it is observed that the minimum values of ET could be obtained with the
minimizer µ∗1 where its variance is also less than 0.1. The values of µ∗0 and µ∗1 for all the three tests, along
with the corresponding ET from Proposition 1 and Corollary 1, are recorded in Table 2. Compared
to the minimum values of ET in Table 1, which were obtained via Od method alone, the resulting ET
from Proposition 1 and Corollary 1 were significantly reduced for each test. It is also clear that the best
performance was achieved via Corollary 1 due to the introduced self-adaptive filtering method, which
varies the error minimizer according to the value of φ.

The next section presents a new set of experiments with various trajectories where Proposition 1
and Corollary 1 are applied with the mean values of µ∗0 and µ∗1 from Table 2.
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Figure 8. Optimal parameter of µ from Corollary 1 when φ = 1 for three tests.

Table 2. Analysis of localization error and optimal values of µ for Proposition 1 and Corollary 1.

Test
Optimal µ ET (cms)
µ∗

0 µ∗
1 Proposition 1 Corollary 1

1 0.73 0.15 745.88 654.62
2 0.66 0.10 719.05 655.59
3 0.67 0.14 704.86 619.85

Average 0.69 0.13 723.26 643.35

3. Experiment Results, Performance Evaluation, and Discussion

For the new set of experiments, localization performance was evaluated on four different
trajectories (Trajectories 1–4) with different numbers of straight paths and curves. For each trajectory,
two objects (chairs) were randomly placed in the experimental area as illustrated in Figure 9, and the
value of R was increased to 8 for both βT and βN to compensate for the increased multipath effects.
Results obtained by Lemma 1, Proposition 1, and Corollary 1 were then compared with those from
the theoretical path-loss model, as well as the extended Kalman filter approach, which is an existing
method from the literature for sensor fusion. For clarity purposes, we used Oβp to denote Proposition 1,
Oβc to denote Corollary 1, and EK f to represent the extended Kalman filter.
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Figure 9. Overview of the experimental setup for performance evaluations. Chairs were randomly
placed in the experimental area.

For the first trajectory, i.e., Trajectory 1, a similar path as in the preliminary experiment was
selected, and the localizations of Node M in the XY-plane via the aforementioned techniques were
plotted with different colors as indicated by the legends in Figure 10. The corresponding temporal
analysis on localizations of Node M in x- and y-directions is presented in Figure 11, while the
corresponding error along with the x, y and θ positions of the robot (based on odometry) are shown
in Figure 12. The mobile robot was initially placed at (0, 0), and chairs were placed at locations as
indicated by the maroon boxes. As seen in Figure 10, localizations that were only based on the RSSI
methods (i.e., βT and βN) were relatively more scattered as compared to the other four techniques.
The EK f method, despite showing a smooth trajectory (grey line), resulted in localization that was
relatively too far from the actual position, which can also be clearly seen in Figure 11. It was also
observed that Oβp and Oβc gave better location estimation for Node M from its initial until final
positions. A much closer estimation to the actual position can be seen via Oβc, particularly when the
robot steered at each edge of the trajectory.

Referring to the bottom plot of Figure 12, errors due to Od and Oβp in the first rotational motion
(φ = 1) were much smaller as compared to errors due to other methods. However, in the second,
third, and fourth rotational movements, the error from Od was considerably larger than those from βN ,
Oβp, and Oβc, which was a consequence from accumulated errors due to wheel slippage after each
turn. In order to provide better evaluation, the experiment for Trajectory 1 was repeated five times,
and the numerical results on localization error for each method are compared in Table 3. From the table,
the sensor-fusion method via EK f recorded the highest error, while Oβc recorded the lowest. Besides
that, a positive impact can be seen from the result of βN where the error was marginally lower than that
from Od due to the increased value of the filter coefficient R from Lemma 1 for this experiment. We can
also conclude that βN provides a huge improvement over βT for the comparison between RSSI-based
methods, and fusing βN with Od as described in Proposition 1 (i.e., Oβp) significantly reduces the
localization error. A further error reduction was accomplished through Oβc, which prioritized βN’s
localization at each turn via the self-adaptive filtering approach.

For Trajectory 2, which follows a triangle-like path, the corresponding localizations and error
plots are depicted in Figures 13–15, while the numerical results are presented in Table 4. Although
there were only three curves involved, the same trend could be observed whereby Od and Oβp showed
smaller errors than the rest in the first rotational motion, but the error due Od ratcheted up afterwards
as it was accumulated. In this case, however, the duration during the rotational motion was slightly
smaller than that from the first trajectory; hence, competitive performance between Od and βN could
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be seen from the numerical results of Tests 1–5. Comparing the average errors in Table 4, the method
with the worst performance appeared to be similar to that from the first trajectory, which was EK f ,
followed by βT , βN , and Od. Both Oβp and Oβc, on the other hand, exhibited the same performance as
in the previous experiment.
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Figure 10. Localization of Node M in the XY-plane for Trajectory 1 experiment.
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Figure 11. Localization of Node M in x- and y- directions for Trajectory 1.
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Figure 12. Trajectory 1: Position of NSBot2 in terms of x, y and θ based on odometry (top); temporal
localization-error analysis (bottom).

Table 3. Localization error for Trajectory 1. The least error for each row is written in bold.

Test
ET (cms)

βT βN Od EK f Oβp Oβc

1 1626.46 714.81 829.46 4812.55 567.82 515.03
2 1688.04 805.23 820.20 4797.16 559.83 505.08
3 1791.86 800.84 815.10 4596.16 561.28 528.16
4 1709.85 742.91 825.03 4809.81 551.35 505.43
5 1523.49 709.03 820.03 4775.22 545.40 496.28

Average 1667.94 754.56 821.96 4758.18 557.14 510.00

Table 4. Localization error for Trajectory 2. The least error for each row is written in bold.

Test
ET (cms)

βT βN Od EK f Oβp Oβc

1 1669.58 771.25 693.48 4014.31 475.44 432.16
2 1797.22 658.41 787.65 3918.32 524.67 472.28
3 1754.16 836.44 720.32 3812.33 522.02 474.16
4 1656.05 672.98 710.22 3772.11 500.73 442.78
5 1841.64 845.08 699.23 3645.27 542.61 479.06

Average 1743.73 756.83 722.18 3832.47 513.09 460.09

Another random trajectory with six linear motions alternating with six rotational motions was
designed for Trajectory 3, and the corresponding localizations and error plots are illustrated in
Figures 16–18. In this case, the number of curves involved and the duration for rotational movement
were relatively higher than those from the previous two trajectories and, as predicted, the approach
via Od worsened as the error piled up after each turn. This is also shown numerically in Table 5, which
presents a slightly different trend, where the error due to Od for each test was constantly higher than
that from βN . The proposed optimal sensor-fusion methods nevertheless led to the best performance,
with error due to Oβc being the least.
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Figure 13. Localization of Node M in xy-plane in Trajectory 2.
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Figure 14. Localization of Node M in x- and y-directions in Trajectory 2.
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Figure 15. Trajectory 2: Position of NSBot2 in terms of x, y and θ based on odometry (top); and temporal
localization-error analysis (bottom).
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Figure 16. Localization of Node M in xy-plane in Trajectory 3.
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Figure 17. Localization of Node M in x- and y-directions in Trajectory 3.
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Figure 18. Trajectory 3: Position of NSBot2 in terms of x, y and θ based on odometry (top); and temporal
localization-error analysis (bottom).
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Table 5. Localization error for Trajectory 3. The least error for each row is written in bold.

Test
ET (cms)

βT βN Od EK f Oβp Oβc

1 1856.12 654.20 782.06 3008.95 573.20 522.96
2 1841.73 726.68 780.11 3010.13 596.72 543.36
3 1916.94 746.36 795.12 3040.33 582.61 531.27
4 1836.61 675.28 786.34 3029.90 559.14 503.21
5 1879.49 644.47 795.12 3040.33 583.79 510.86

Average 1866.18 689.40 787.75 3025.93 579.09 522.33

For the last trajectory, Trajectory 4, a continuous rotational motion was assigned to NSBot2 to form
a circle-like path. The corresponding localizations and error plots are depicted in Figures 19–21, while
the numerical results are presented in Table 6. As can be seen in Figure 19, localizations based on βN
and Oβc were closer to the actual trajectory, whereas those from other methods clearly drifted. In this
case, the trajectory via Od became much worse in comparison with the last three paths due to wheel
slippage, and as φ = 1 for t ∈ [0, t f ], Oβp prioritized Od, which consequently led to a higher localization
error. The numerical results for this last experiment are recorded in Table 6, which shows a significantly
small error from βN as compared to those from Od, Oβp, EK f , and βT . Interestingly, although Od led to
a huge localization error in this scenario, the self-adaptive filtering method introduced in Corollary 1
resulted in a further improvement for each test, as highlighted in the last column of Table 6.
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Figure 19. Localization of Node M in xy-plane in Trajectory 4.
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Figure 20. Localization of Node M in x- and y-directions in Trajectory 4.
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Figure 21. Trajectory 4: Position of NSBot2 in terms of x, y and θ based on odometry (top); and temporal
localization-error analysis (bottom).

A summary of the average localization errors from the four experiments is presented in Table 7,
along with total duration for rotational motion ∆tr (in seconds and percentage, i.e., with respect
to total execution time t f ). From the summarized numerical results, the performance via Oβc was
consistently the highest regardless of the value of ∆tr. On the contrary, the approach via EK f was
the worst for all trajectories. This signifies that, while the extended Kalman filter usually results in
a better performance particularly for sensor fusions, the error is likely to overshoot when localizing
a mobile node at a certain speed range. This finding may be explained by the fact that a moving
node leads to (possibly highly) nonlinear responses, as exemplified by the previous temporal analyses
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which could eventually make it unsuitable for localization via this approach. A closer inspection of
Od and βN shows that the error via Od was lower than that via βN when ∆tr was sufficiently small as
can be observed in Trajectory 2. As ∆tr became slightly higher, βN and Od became more competitive.
Nevertheless, βN is advantageous when the mobile node is in full rotational movement, as revealed in
the last experiment. From the table, it is also apparent that the proposed sensor-fusion techniques via
Oβp and Oβc led to significant improvements for the first three trajectories, which involved rotational
motions with durations of less than 37% of the total execution time. When the duration is sufficiently
large, as typified by Trajectory 4, the performance can be further enhanced via Oβc. This desirable
outcome is conclusively due to the optimization of µ in Corollary 1, which searches for the best error
minimizer during the rotational motion.

Table 6. Localization error for Trajectory 3. The least error for each row is written in bold.

Test
ET (cms)

βT βN Od EK f Oβp Oβc

1 995.60 133.49 1600.46 1547.17 1014.26 117.60
2 980.29 127.60 1598.23 1501.31 1017.25 124.19
3 990.35 149.62 1498.61 1487.52 1018.15 132.50
4 1003.9 136.12 1599.17 1523.21 1011.81 111.10
5 1004.0 131.40 1587.87 1500.23 1018.33 128.50

Average 994.83 135.65 1576.87 1511.89 1015.96 122.78

Table 7. Summary of average localization errors for Trajectories 1–4.

Trajectory
Rotational Motion Average ET (cms)
∆tr (s) ∆tr /t f (%) βT βN Od EK f Oβp Oβc

1 10.39 26.0 1667.94 754.56 821.96 4758.18 557.14 510.00
2 8.87 22.2 1743.73 756.83 722.18 3832.47 513.09 460.09
3 12.92 36.9 1866.18 689.40 787.75 3025.93 579.09 522.33
4 16.00 100 994.83 135.65 1576.87 1511.89 1015.96 122.78

4. Discussion and Conclusions

This study presents a new technique to improve indoor localization of a mobile node by utilizing
Zigbee-based RSSI and odometry. In this work, a nonholonomic wheeled mobile robot was designed
with capabilities to estimate its own location and movement from odometry data as well as RSSI values
of four anchor nodes at once. As both localization methods suffer from their own limitations, this work
contributes to a new methodological framework in which coordinates of the mobile node can more
accurately be predicted by improving the path-loss propagation model and optimizing the weighting
parameters for each localization technique prior to fusion. Simple convex searches are also introduced
to find optimal error minimizers during the robot’s translational and rotational motions. In order to
validate the proposed methods, several real-time experiments consisting of four different trajectories
with different numbers of straight paths and curves, were carried out. Numerical and experiment
results demonstrated that when both odometry data and RSSI values are available, Proposition 1 and
Corollary 1 provide significant improvements to localization performance over the existing approaches.
Corollary 1 in particular emerges as the best approach as it generalizes Proposition 1 and Lemma 1
with the additional self-adaptive filtering method, which autonomously optimizes the error minimizer
when the rotational velocity within a specified range is detected.

While the proposed localization methods performed well in the considered scenarios, problems
might arise when localizing a mobile node in buildings with multiple walls and moving objects. In this
case, it is also expected that RSSI signals may be further degraded due to increased multipath effects.
For future work, these conditions should be considered, and in order to alleviate effects from multipath
interference, the proposed methods in the current work could be combined with other approaches,
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such as time of arrival (TOA), angle of arrival (AOA), as well as phase-shift measurement from anchor
nodes. For localizing multiple mobile nodes, the proposed self-adaptive filtering approach could also
be integrated with the compressive-sensing technique that only requires a small number of anchor
nodes as demonstrated via simulations in [9]. The aforementioned methods may, however, exhibit
different error patterns and behavior while the target node is moving; hence, modifications on the
optimization techniques and the positions of the anchor nodes are required to maximize performance.
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Notations and Abbreviations

The following notations and abbreviations are frequently used in this manuscript:

WSN wireless sensor network
GPS global positioning system
RSSI received-signal-strength indicator
γ path-loss exponent coefficient
v, ω translational velocity, rotational velocity
ωr, ωl right-wheel speed, left-wheel speed
x, y, θ NSBot2’s position in x- direction, y- direction, and heading angle
ts sampling time (in odometry)
µ weighting parameter
µ∗0 , µ∗1 optimal weighting parameters (error minimizer when φ = 0, error minimizer when φ = 1)
e transient error (in cm)
ET total error (in cms)
φ indicator for rotational motion
OβN ET based on Proposition 1/Corollary 1 (only in Section 2.4)
βT localization via Zigbee-based RSSI method with theoretical path-loss model and a moving

average filter in Equation (19)
βN localization via Zigbee-based RSSI method as described in Lemma 1
Od localization via odometry
EK f localization via extended Kalman filter
Oβp localization via Proposition 1
Oβc localization via Corollary 1
t, t f , ∆tr time, execution time, total duration of rotation (in seconds)
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