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Abstract: The viability and vigor of crop seeds are crucial indicators for evaluating seed quality,
and high-quality seeds can increase agricultural yield. The conventional methods for assessing
seed viability are time consuming, destructive, and labor intensive. Therefore, a rapid and
nondestructive technique for testing seed viability has great potential benefits for agriculture. In this
study, single-kernel Fourier transform near-infrared (FT-NIR) spectroscopy with a wavelength
range of 1000–2500 nm was used to distinguish viable and nonviable supersweet corn seeds.
Various preprocessing algorithms coupled with partial least squares discriminant analysis (PLS-DA)
were implemented to test the performance of classification models. The FT-NIR spectroscopy
technique successfully differentiated viable seeds from seeds that were nonviable due to overheating
or artificial aging. Correct classification rates for both heat-damaged kernels and artificially aged
kernels reached 98.0%. The comprehensive model could also attain an accuracy of 98.7% when
combining heat-damaged samples and artificially aged samples into one category. Overall, the
FT-NIR technique with multivariate data analysis methods showed great potential capacity in rapidly
and nondestructively detecting seed viability in supersweet corn.

Keywords: FT-NIR spectroscopy; supersweet corn; seed quality; nondestructive; single kernel;
viability; discriminant analysis

1. Introduction

Sweet corn (Zea mays L. saccharate Sturt) is one of the most popular vegetables in countries such
as the United States and Canada and is becoming popular in China and other Asian countries due to its
pleasant flavor and high nutritional value [1,2]. This increase in consumer popularity has resulted in
an expansion of its planting scale around the world in recent years. However, the low germination rate
and seedling vigor of sweet corn seed still limit the development of the sweet corn industry to some
extent [3]. Its high soluble sugar content and lower starch content are thought to be the main reasons
that sweet corn seeds deteriorate rapidly compared to field corn seeds, especially during the storage
process [4–7]. The reasoning is that less starch means that less endosperm tissue can be reserved
as an energy source for metabolism. The process of converting sugar to starch during endosperm
development depends on genotype. In particular, supersweet corn seed (with the shrunken-2 allele)
can have much higher soluble sugar content (>20%) but lower starch content than sugar-enhanced
sweet corn seed (se gene) or any other traditional sweet corn seed (su gene) [8]. As a result, supersweet
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corn seeds usually exhibit inferior emergence and seedling vigor compared to other sweet corn
varieties. Research has indicated that the quality of sweet corn seeds decreases within one year, so new
sweet corn seeds, especially supersweet corn seeds, should be used for cultivation every year [9].
In addition, the high soluble sugar content of supersweet corn inhibits the drying of the seed crop in
the field. Thus, artificial drying is necessary after harvesting. However, improper temperatures can
be harmful to supersweet corn seeds, as drying temperature has a significant effect on germination
and storability [10]. For the above reasons, a timely and effective technique for detecting supersweet
corn seed quality is of great significance to reduce the risk of inferior and nonviable seeds entering the
market and sowing process.

However, the conventional methods of detecting seed viability and vigor, such as the germination
test and tetrazolium test (TZ), are time-consuming and destructive to seed samples [11]. The standard
germination test, as the official method, provides a germination rate to estimate the capability of a
seed lot to produce normal plants with good vigor under favorable conditions, and generally, a period
of time is required to follow the operating instructions [12]. The tetrazolium test serves as a faster
alternative technique for assessing seed viability, but this test is destructive as well, and its reliance on
the standard germination test limits its applicability [13].

Near-infrared (NIR) spectroscopy is commonly used as a fast, nondestructive technique for
qualitative and quantitative analyses of organic matter such as agricultural and food products, because
the molecular vibrations of the functional groups in organic compounds, which mainly involve
stretching and bending vibrations among hydrogen bonds such as C-H, O-H, and N-H, have distinctive
overtones; the combination bands have absorption ranges from 780 nm to 2500 nm, namely, the NIR
spectrum. In other words, the spectral absorption characteristics in this region are closely related
to the organic compounds present. Hence, NIR spectroscopy of organic matter can be utilized to
analyze various attributes according to the absorption intensities of specific wavelengths [14]. Since the
1960s, when NIR spectroscopy was successfully utilized by Karl H Norris et al. [15] for the first time
to measure the moisture content of seed kernels, many studies have been performed to detect the
quality of grain seeds by using the NIR spectroscopy technique at the single-seed level. These studies
included nondestructive quantitative detection of chemical characteristics such as moisture, protein,
oil, starch, amino acids, and fatty acids in wheat, corn, soybean, rice, and other seeds. Some other
applications for qualitative discrimination purposes according to specific physicochemical properties,
such as hardness, vitreousness, insect infestation, and mold and toxin infection, have also been studied
in various seeds, and detailed descriptions for most of these assays are well summarized in the present
literature [16–18].

With the improvement of the available instrumentation and analytical techniques in the last
decade, some researchers have dedicated themselves to detecting seed viability and vigor by using
NIR spectroscopy [18]. Viability detection studies of the seeds of grains [19–24], vegetables [11,25–30],
and fruit [31–33] have successfully used NIR spectroscopy or a related technique to discriminate
nonviable from viable seeds with high prediction accuracies. To the best of our knowledge, no research
has been published to date regarding the use of NIR spectroscopy for supersweet corn seed
viability detection.

In this study, it was assumed that deterioration in the viability of supersweet corn seeds was
caused by either excessive heating during the drying process or improper storage conditions, which
resulted in seed death. Microwave heating and artificial aging experiments were designed to
simulate seed viability loss during the above two processes. Fourier transform near-infrared (FT-NIR)
spectroscopy was utilized to distinguish the treated supersweet corn seeds from the untreated ones
because of its significant advantages, such as high signal-to-noise ratio, high-resolution, and accurate
frequency determination by measuring all wavelengths simultaneously. This study mainly aimed
to verify the feasibility of using NIR spectroscopy to recognize damaged supersweet corn seeds
caused by overheating and accelerated-aging treatments. Furthermore, various preprocessing methods
were tested on the embryo-side and endosperm-side spectra when establishing the partial least
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squares discrimination analysis (PLS-DA) models to determine optimized models for different
detection purposes.

2. Materials and Methods

2.1. Seed Selection and Deterioration Treatment

Three hundred seeds selected from Huameitian No. 8, a favorable supersweet corn variety
with the sh2sh2 genotype, were used in this study. Huameitian No. 8, which was bred by the
College of Agriculture, South China Agricultural University, contains high soluble sugar content
ranging from 21.12 to 22.09% [34,35]. The seed materials were provided by Guangdong South China
Agricultural University Seed Industry Company Limited, with an initial seed germination rate of over
95%. After excluding cracked, broken, and discolored seed kernels, 300 seed kernels were selected
randomly and divided into three groups evenly (100 per group). The first group was subjected to a
deterioration treatment, combining the methods of Wang et al. [36] and Lohumi et al. [31] as follows:
the moisture content of the seeds was tempered to 20% in a sealed Erlenmeyer flask for three days
before treatment, and then, the seeds were put into a plastic bag and treated by incubation for seven
days in a water bath maintained at 45 ◦C. After treatment, the seeds were dried to their initial moisture
content by incubation at 20 ◦C. The second group was subjected to a microwave treatment by following
the method of Agelet et al. [22]. The seed samples were treated three times intermittently for 30 seconds
each time, ensuring that no exterior changes could be recognized by the naked eye but achieving a
notable effect on seed germination capability. The third group was used as the control group (with no
treatments). In addition, all seed materials were placed at an environmental temperature of 25 ± 1 ◦C
and relative humidity of 50 ± 3% for 10 days; the spectrometer was placed in the same conditions
before collecting the spectral data to reduce the impact of environmental factors on the spectra.

2.2. FT-NIR Spectroscopy Acquisition

A diffuse reflection measurement mode was applied in this research to capture the NIR
spectroscopy of individual supersweet corn seed kernels (Figure 1). Because the embryo portion
strongly correlates to seed viability and the endosperm has the function of storing energy components
for germination, which expresses as vigor, both sides of each kernel were scanned. As variations in
seed curvature [37], shape [16], roundness, and thickness [24] were found that would add spectroscopic
variance, which was irrelevant to any compositional change in the seeds, an integrating sphere was
utilized to improve the signal-to-noise ratio, addressing the problem of heterogeneity among the
seed kernels.

Figure 1. Schematic of Fourier transform near-infrared (FT-NIR) spectroscopy diffuse reflection
measurement mode with integrating sphere (left) and structure of supersweet corn kernel (right).
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Three hundred seeds in total were scanned seriatim using an Fourier transform infrared spectrometer
(Antaris II FT-NIR Analyzer; Thermo Scientific Co., Waltham, MA, USA). Single supersweet corn seeds
were placed in a special sample cup designed for small solid particles. The spectrum of each kernel
was scanned in the wavelength range from 10,000 to 4000 cm−1 (1000–2500 nm) at 4 cm−1 intervals
(a 0.6 nm resolution at 1250 nm). The NIR reflectance spectra were expressed in the form of log(1/R),
where R is the reflectance. The average spectrum from 32 successive scans of each individual seed was
obtained for further analysis.

2.3. Germination Test

The germination test was conducted following the guidelines of the International Seed Testing
Association (ISTA) [12] to determine seed viability after spectral data collection. All seed samples
were stored in a climatic cabinet at 25 ◦C. The viability of all seeds was checked daily during the
seven-day germination process. Seeds with a 5-mm length germ were counted as germinated (viable)
and otherwise as nonviable. The seeds in the control group had a germination rate as high as 98%.
However, the germination rates of the seeds that had been subjected to the overheating and artificial
aging treatments were quite low, only 2% and 5%, respectively. Although these seeds had the ability
to germinate, they were also marked as nonviable due to their weak roots, which could no longer
support healthy seedlings.

2.4. Dataset and Model Verification

The spectral vectors combined with category variables were imported into the Unscrambler
software (Camo AS, Trondheim, Norway) for organization purposes. MATLAB (MathWorks, Natick,
MA, USA) with PLS Toolbox v.8.2.1 (Eigenvector Research Inc., Wenatchee, WA, USA) was used to test
the various spectral preprocessing and to calculate the correspondence classification models.

Six hundred spectra, which were collected from both the embryo side and endosperm side of
three hundred kernels, were utilized in this study to establish models for predicting seed viability
under each type of treatment. In total, three kinds of models were built as Figure 2 shows, namely,
heat-damaged versus normal (Model A and D), artificially aged versus normal (Model B and E),
and heat-damaged and artificially aged versus normal (Model C and F).

Figure 2. The workflow chart of sample sets: (1) Model A and D for heated-damaged detection;
(2) Model B and E for artificially aged detection; and (3) Model C and F for comprehensive
discrimination. Note: aSN, spectra of normal samples; bSH, spectra of heated-damaged samples;
and cSA, spectra of artificially aged samples.
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For each of these six sample types, one-fourth of the samples (one spectrum chosen from every
four spectra in the database) was segregated as a validation set, while the remaining three-fourths
were utilized as a calibration set for calibrating the discriminant models. In other words, the validation
set consisted of samples that were not used to calibrate the models. As a result, when calibrating
models for detecting heat-damaged or artificially aged kernels individually, the number of samples in
the calibration set was 150 (75 viable and 75 nonviable), and the number of samples in the validation
set was 50 (25 viable and 25 nonviable). In addition, when calibrating models to detect the two types
of nonviable seeds simultaneously, the heat-damaged samples and the artificial-aged samples merged
into one group as nonviable. In this case, the number of samples in the calibration set went up to 225
(75 viable and 150 nonviable), and number of validation samples also went up to 75 (25 viable and
50 nonviable). It should be noted that the spectra collected from different sides of kernels would not
appear in a same model, these two-sides spectra were used separately for different analyses purposes.

Two verification methods were applied in this study to verify the performance of the calibration
models. On the one hand, 10-fold cross-validation was used to verify whether the model had been
fitted or underfitted. Different subsets were determined through random selection of samples in the
calibration set. The averaged accuracy results of five iterations were reported for the cross-validation
results. On the other hand, Y-scrambling randomization tests were also applied to verify whether
there was chance correlation in our models. In the case of the Y-scrambling randomization tests,
a random mean distribution generating function was used to randomize the dependent (Y) values.
Then, the same preprocessing methods and parameters obtained from the best model were tested
on the randomized dataset for calibration and validation purposes. The classification results of
100 iterations were used to evaluate model performance. If the classification accuracy of the new model
was much lower than the model based on the original data, it can be concluded that the original model
is reasonable [38].

2.5. Spectral Data Preprocessing

Spectral data usually contains systemic noise caused by instrument drift and environmental
changes that do not contribute to the analysis of the specific property. Correcting the raw spectral
data through various preprocessing methods can effectively improve the accuracy and robustness of
the model. Smoothing methods are known to reduce the high-frequency part of the noise for each
spectrum, and all spectra were subjected to a Savitzky–Golay smoothing treatment (21-point width
and third-order polynomial) in advance in this study. Normalization can be used to convert all spectral
data to approximately the same scale; a maximum normalization algorithm, which sets the maximum
of each row to 1 and divides each variable by its maximum absolute value, was applied in this study.
Multiplicative scatter correction (MSC) can handle both the additive and multiplicative effects of
light scattering in spectral data, and thus, the offset shifts caused by path-length variations, particle
size, or any other similar effects can be successfully treated with MSC. This study used the mean
spectrum as a reference when processing MSC, as is common practice. The Savitzky–Golay 1st and
2nd derivatives were applied to correct for baseline effects in the spectra for the purpose of removing
nonchemical effects and creating robust calibration models, and a 21-point window and a third-order
polynomial were applied for all derivatives preprocessing. Derivatives may also aid in resolving
overlapping bands, and thus, they can provide a better understanding of the data, emphasizing small
spectral variations not evident in the raw data. The selection of a suitable preprocessing method
should always be considered in relation to the successive modeling stage.

2.6. Partial Least Squares Discriminant Analysis

PLS-DA, which adds a threshold to classify samples, is a modified version of partial least
squares regression (PLSR). This method is commonly used in NIR spectroscopy applications due to
its advantages in addressing collinearity problems and overlapping phenomena in NIR spectroscopy
analyses. On one hand, it assigns greater weights to the variables that are highly correlated to response
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variables than to others, and then, the characteristic wavelengths can be easily found within the whole
spectral range. On the other hand, redundant information and noise can be removed to a large extent,
while creating latent variables that are orthogonal to each other but at the same time most correlated to
response variables. The PLS-DA model is explained as follows:

Y = XB + E (1)

where Y is a matrix (a vector when only one response variable is present) that relates to the actual
category properties of the samples, X is an n × m matrix that holds the predictor (spectral matrix)
values for each sample, B is matrix of regression coefficients for the predictor values, and E is the
residual matrix of the portion that has not been explained in X and Y.

To find a linear relationship between the predictors and response variables, both X and Y
are decomposed by latent variables (which may be described as factors or components in other
publications) such that:

X = TPT + EX (2)

Y = UQT + EY (3)

where T and U are the scores matrix and P and Q are the loading matrix. Furthermore, the T scores
capture the part of the structure in X that is most predictive for Y, and the U scores summarize the
part of the structure in Y that is explained by X along the given factors. EX and EY are the residual
matrices of X and Y, respectively. Indeed, PLS can function with many latent variables. However,
using redundant latent variables can lead to model overfitting, because redundant latent variables
would introduce noise into the models. In this study, the number of latent variables was chosen when
the accumulative variance in Y first achieved 90%. For this study, the spectral data were arranged in X,
while the Y matrix (vector) was set up with 1 and 0 as the response variables to indicate the sample
categories (i.e., value 1 if sample belongs to the class and 0 if not). In fact, the model could not predict
a 1 or 0 value perfectly; hence, a threshold was utilized to determine classification performance. Then,
accuracy, which was measured by the number of correctly classified kernels, was used to determine
model performance in this study.

3. Results and Discussion

3.1. Spectral Interpretation

Six hundred sample spectra were utilized, and no outliers were removed because no samples
were found outside the Hotelling’s T2 ellipse (with confidence level 99%) for the first two principal
components plots of each spectra group. Finally, all the raw spectra were plotted in Figure 3a.
The wavelength region of 1100–1300 nm in the NIR reflectance spectra shows a single absorption
centered at approximately 1200 nm, which is the second overtone of the C-H functional group
vibration band [39]. The absorption band at 1470 nm was assigned to the vibrations of the 1st
and 2nd overtones of symmetric and asymmetric N-H functional group stretching. Furthermore,
the absorption region between 2100 nm and 2350 nm is the combination vibrational band absorption
of -NH, -OH, -CH, and similar functional groups. The mean spectra calculated from the raw spectra of
the normal, heat-damaged, and artificially aged samples were plotted in Figure 3b. The nonviable seed
samples from both deterioration treatments showed lower absorption than that of the viable seeds,
consistent with the results of Agelet et al. [20] and Ambrose et al. [22] for microwave heating and
Wang et al. [36] and Kusumaningrum et al. [24] for constant-temperature aging. This could be because
the microstructure of seed tissue had changed when deterioration treatments were processed, which
caused the NIR sensor to detect stronger reflection signals reflected by seed kernels [36]. In other words,
differences in light scattering were observed between normal seeds and damaged seeds, and large gaps
between the spectra of the normal and damaged samples were found in the regions 1470–1650 nm,
1800–1900 nm, and 2050–2300 nm; this pattern emerged in the spectra from both sides of the seed
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kernels. In addition, the spectra from the endosperm side had higher overall absorptions than those
from the embryo side for all samples in this experiment.

Figure 3. FT-NIR spectra collected from supersweet corn seeds: (a) raw spectra and (b) mean spectra.

The spectra after preprocessing with the Savitzky–Golay 2nd derivatives (Figure 4) showed that
major absorbance differences between viable and nonviable kernels could be observed both in the first
overtone region (1600–1800 nm) and the combination bands region (2200–2400 nm). Differences in
the peaks at approximately 1680 nm, 1730 nm, and 1740 nm could be explained as the characteristics
of the first overtones of the vibrations from the -CH3, -CH2, and -CH functional groups, respectively,
which related to carbohydrates. Hourant et al. [40] ascribed the absorption at 1710 nm and 1750 nm
to correlation with the fatty acids in seeds (i.e., linoleic and oleic acids), which are characteristic
components of seeds that are nonviable due to aging. Furthermore, differences from the -CH3, -CH2,
and -CH combination bands were also found at wavelengths of 2310 nm, 2330 nm, and 2350 nm,
respectively, which related to carbohydrates as well. This result could be because carbohydrate
compounds, including sugar, starch, and cellulose, represent close to two-thirds of the supersweet corn
kernel by weight, and thus, changes in these compounds may be more easily detectable. Furthermore,
the local, enlarged views show additional information about the variation tendencies that the three
sample types showed in response to spectral signals as the wavelengths increased. The lower absolute
value of artificial-aged seeds showed that artificial-aged treatment reduced the gradient of the variation
tendency in these regions. By contrast, the response pattern of the heat-damaged kernels was more
similar to normal kernels. But with an exception, the spectra (2250–2350 nm) collected from the
endosperm-side showed that the change rate increased after overheating. From this, it can be assumed
that the two kinds of deterioration treatments would not always cause the same change in the
supersweet corn seeds, although they all resulted in lower absorption than that of the viable seeds.
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Figure 4. Savitzky–Golay 2nd derivative spectra from mean spectra: (a) embryo and (b) endosperm.

3.2. Heat-Damaged Kernel Detection Models

The prediction results of overheating-damage detection are summarized in Table 1.
Various preprocessing methods were implemented to investigate how the accuracies of the classification
models were affected by different preprocessing algorithms and spectral datasets. All PLS-DA models
yielded satisfactory accuracy (greater than 90%), which indicated that a difference was present between
the normal and heat-damaged kernels. The models discriminated samples with varying accuracies
under various preprocessing methods, but the differences among them were not significant. The high
classification rate of the raw spectra model implied that light scattering characteristics could be utilized
for heat-damaged kernels, which agrees with the results of Wang et al. [36] in wheat heat-damage
detection. Savitzky–Golay derivative preprocessing did not exhibit better performance than did other
methods, but it reduced the number of latent variables used to reach equivalent accumulative variance
in calibrating the models. Compared with those using the spectra of the embryo side, the models
established that using the spectra of the endosperm side could generate equivalent accuracies. Hence,
although the embryo is the seed part most relevant to viability, the damage characteristics on the
endosperm side can also be included as useful features for seed quality evaluation.

The cross-validation of these models resulted in an average 97.5%, with a range from 95.3% to
99.3% (data not shown in Table 1). It indicated that the overfitting phenomenon did not appear in these
models. The Y-scrambling test was applied on spectra of the embryo side with MSC preprocessing,
because the model generated the highest accuracy for both the calibration set and the validation set
based on such combination. The results showed that the average accuracy was 58.4% and 49.2%
for the calibration set and the validation set, respectively. And the highest accuracy among the
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100 iterations of both datasets was 65.3% and 66.0% for the calibration set and the validation set,
respectively. The classification accuracies were obviously lower than the results of the original models.
Therefore, we believe that there was no chance correlation in our models, and the present analysis
results are feasible.

Table 1. Heat-damaged kernel detection results of the partial least squares discriminant analysis
(PLS-DA) models using embryo and endosperm FT-NIR spectra.

a LVs
b PC c PV

Viable Nonviable Total Viable Nonviable Total

Embryo

Raw 10 75/75 75/75 100% 24/25 24/25 96.0%
Normalization 10 75/75 75/75 100% 24/25 24/25 96.0%
MSC (mean) 9 75/75 75/75 100% 25/25 24/25 98.0%

S-G 1st 5 72/75 75/75 98.0% 24/25 22/25 92.0%
S-G 2nd 6 75/75 75/75 100% 25/25 23/25 96.0%

Endosperm

Raw 10 75/75 73/75 98.7% 24/25 25/25 98.0%
Normalization 10 75/75 74/75 99.3% 24/25 25/25 98.0%
MSC (mean) 9 75/75 74/75 99.3% 24/25 25/25 98.0%

S-G 1st 4 74/75 75/75 99.3% 25/25 24/25 98.0%
S-G 2nd 4 75/75 74/75 99.3% 24/25 24/25 96.0%

Notes: a LVs, number of latent variables; b PC, performance of calibration; and c PV, performance of validation.

3.3. Artificially Aged Kernel Detection Models

Table 2 summarizes the prediction results of the artificial aging detection models. The normal and
artificially aged corn seeds were well-distinguished in all preprocessing models using spectra collected
from both sides of the kernels, resulting in high accuracies in the validation sets, from 90.0% to 98.0%.
The Savitzky–Golay 1st derivative preprocessing exhibited good performance, with accuracies of 100%
and 98.0% for the calibration set and the validation set, respectively, when using the spectra from the
embryo side. The decreased performance after preprocessing with the Savitzky–Golay 2nd derivative
for the spectra from the endosperm side may be due to the probability that more noise was included
in the cumulative variance when calibrating the model. Furthermore, the artificially aged kernel
detection results of the models from the embryo-side spectra were overall better than those from the
endosperm-side spectra, indicating that the changes caused by artificial aging in the embryonic part
were more significant than those in the endosperm part. However, slight changes in accuracy may
also be attributed to the heterogeneity caused by the curvature, shape, color, and size of each seed
sample [16,37].

For these models, the average accuracy of cross-validation was 98.1%, with the accuracy range
between 97.3% and 100%. The Y-scrambling test on the spectral data with Savitzky–Golay 1st derivative
preprocessing, which produced the best results in the original model, showed that the average accuracy
was 59.2% and 50.2% for the calibration set and the validation set, respectively. At the same time,
all accuracy results of these tests were no more than 66%. Based on these results, we made our judgment
that there was no overfitting or chance correlation in our models for artificially aged kernels detection.
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Table 2. Artificially aged kernel detection results of the PLS-DA models using embryo and endosperm
FT-NIR spectra.

LVs
PC PV

Viable Nonviable Total Viable Nonviable Total

Embryo

Raw 7 73/75 73/75 97.3% 24/25 24/25 96.0%
Normalization 7 74/75 73/75 98.0% 24/25 24/25 96.0%
MSC (mean) 6 75/75 74/75 99.3% 24/25 24/25 96.0%

S-G 1st 4 75/75 75/75 100% 25/25 24/25 98.0%
S-G 2nd 3 74/75 73/75 98.0% 25/25 24/25 98.0%

Endosperm

Raw 8 74/75 74/75 98.7% 25/25 22/25 94.0%
Normalization 8 74/75 73/75 98.0% 25/25 22/25 94.0%
MSC (mean) 7 74/75 73/75 98.0% 24/25 22/25 92.0%

S-G 1st 6 74/75 75/75 99.3% 25/25 22/25 94.0%
S-G 2nd 5 75/75 74/75 99.3% 24/25 21/25 90.0%

3.4. Comprehensive Discriminant Models

To distinguish viable seeds from both types of damaged seeds simultaneously, comprehensive
discriminant models were calibrated by combining heat-damaged samples with artificially aged
samples as one category, the nonviable category. The results of the comprehensive discriminant
models are described in Table 3. The performances of these models for prediction testing were
slightly lower than those of the models built to detect a single type of damaged seeds, with a range of
accuracy between 90.7% and 98.7%. Savitzky–Golay 1st derivative preprocessing led to slightly higher
accuracies than did the other methods. The classification details plotted in Figure 5 show that damaged
kernels could be correctly recognized when modeled with Savitzky–Golay 1st derivative preprocessing.
In addition, the appropriate threshold can be attained by the PLS-DA algorithm with a good sensitivity
without having to lose too much specificity (Figure 6). Overall, the accuracy of the validation set while
modeling with the endosperm-side spectra was higher than that with the embryo-side spectra, except
when the data was preprocessed with the Savitzky–Golay 2nd derivative.The regression coefficient
calculated by the PLS model, which represents the spectral characteristics among different seed
categories, can be used to interpret the results (Figure 7). The peaks and valleys can be assigned to
the chemical components changed during the damage treatments. The regression coefficient derived
from the comprehensive PLS-DA models showed that the high absolute values of the wavelengths
and spectral regions (e.g., 1730 nm, 1910 nm, and 2200–2300 nm) agreed with those differences in the
mean spectra plots (Figure 3b) and their Savitzky–Golay 2nd derivative plots (Figure 4).

In addition, the peaks at approximately 1359 nm may be related to C-H 1st overtone vibration
absorption, and the observed valley at approximately 1400–1450 nm corresponds to the 1st overtone of
O-H stretching [21] and may also be related to the C-H 2nd overtone stretching due to absorption by
the CH3 functional group [22]. The peak at 1728 nm is related to the C-H 1st overtone stretching due
to absorption by CH2 and CH. Several characteristic points were observed in the higher wavelength
region (1900–2300 nm), which notably represented compounds such as carbohydrates and proteins,
the two most prevalent fractions in supersweet corn seed kernels. For instance, the high absolute values
at 1913 nm and 1987 nm, which correspond to C=O stretching, and 2254 nm, which corresponds to O-H
stretching, may represent carbohydrate content, and at 2046 nm, which corresponds to N-H stretching
vibration overtones, represents protein content [41]. To a certain extent, these observations verified
previous results showing that accelerated aging changed the contents of carbohydrates, reducing
sugars, proteins, and amino acids in corn seeds [42]. However, Ambrose et al. [22] reported that
differences in sample materials and experiment instrumentation would cause variation in the peaks
and valleys between different studies, and some minor differences from previous studies on corn
kernels were also found in this study [20–23].
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Table 3. PLS-DA models combining both types of nonviable corn seeds.

LVs
PC PV

Viable Nonviable Total Viable Nonviable Total

Embryo

Raw 18 73/75 150/150 99.1% 23/25 47/50 93.3%
Normalization 18 72/75 150/150 98.7% 23/25 47/50 93.3%
MSC (mean) 17 72/75 150/150 98.7% 23/25 47/50 93.3%

S-G 1st 11 75/75 149/150 99.6% 25/25 49/50 98.7%
S-G 2nd 9 74/75 147/150 98.2% 24/25 47/50 94.7%

Endosperm

Raw 13 74/75 147/150 98.2% 24/25 49/50 97.3%
Normalization 13 74/75 146/150 97.8% 24/25 49/50 97.3%
MSC (mean) 12 74/75 147/150 98.2% 24/25 48/50 96.0%

S-G 1st 9 74/75 148/150 98.7% 25/25 49/50 98.7%
S-G 2nd 9 75/75 148/150 99.1% 22/25 46/50 90.7%

Figure 5. Classification results of the validation set with Savitzky–Golay 1st derivative preprocessing:
(a) embryo and (b) endosperm.
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Figure 6. Receiver operating characteristic curves (a) and threshold plots (b) for comprehensive
PLS-DA model with FT-NIR spectral data.

The variable importance in projection (VIP) can help to inspect the contribution of each variable
in spectra that describes the relationship between the spectral matrix (X) and response vector (Y) [43].
Five evident peaks (with a score greater than 2) could be observed in the VIP score plot (Figure 8),
which confirmed some feature wavelengths again that we found in Figure 7, such as 1728 nm, 1910 nm,
and 2254 nm. Hence, the VIP score can also provide information for analyzing changes of chemical
properties in samples.
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Figure 7. Regression coefficients derived from the comprehensive PLS-DA models with FT-NIR
spectral data.

Figure 8. Variable importance in projection (VIP) calculated from the comprehensive PLS-DA models
with FT-NIR spectral data.

4. Conclusions and Outlook

The appropriate accuracies of the prediction models demonstrated that FT-NIR spectroscopy with
multivariate data analysis could be used to detect nonviable supersweet corn seeds that have been
damaged by overheating and artificial aging, indicating that the NIR technique has great potential
value in inspecting seed quality at the single-kernel level. Spectra collected from the embryo sides
and endosperm sides of corn kernels had almost the same capacity to predict viability. This result
may be reasonably explained by the presence of global physical and chemical changes caused by the
deterioration process, which were captured by NIR spectroscopy, especially the properties of chemical
compounds such as carbohydrates and proteins that play an important role in seed germination. Thus,
NIR spectroscopy could be applied as a rapid, nondestructive technique to develop a sorting system
for supersweet corn seeds.
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However, the reasons that seeds cannot germinate even under suitable conditions are diverse
and complex; thus, more studies on detecting seed nonviability caused by other reasons such as
frost damage during the growth process and natural aging could be performed, although no feasible
result using NIR spectroscopy has yet been published [20]. This lack may be due to the effects
of seed heterogeneity and the detection limitations of the NIR technique. Hence, more scientific
collection schemes and other nondestructive techniques such as mid-infrared (MIR) spectroscopy,
Raman spectroscopy, and hyperspectral imaging systems could be attempted to evaluate supersweet
corn seed quality, because of their advantages in detecting trace substances and working with small
samples. Finally, future studies should be conducted with more samples and more varieties in order to
calibrate more robust and applicative models for quality detection, and seed samples selected from
different batches should also be considered to improve model performance.
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