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AutoMap is a high performance homozygosity
mapping tool using next-generation sequencing
data
Mathieu Quinodoz1,2,3, Virginie G. Peter 1,2,3,4, Nicola Bedoni5, Béryl Royer Bertrand5, Katarina Cisarova5,

Arash Salmaninejad 6, Neda Sepahi7, Raquel Rodrigues8, Mehran Piran7,9, Majid Mojarrad6,

Alireza Pasdar 6,10, Ali Ghanbari Asad 7, Ana Berta Sousa8,11, Luisa Coutinho Santos 12,

Andrea Superti-Furga 5 & Carlo Rivolta 1,2,3✉

Homozygosity mapping is a powerful method for identifying mutations in patients with

recessive conditions, especially in consanguineous families or isolated populations. Histori-

cally, it has been used in conjunction with genotypes from highly polymorphic markers, such

as DNA microsatellites or common SNPs. Traditional software performs rather poorly with

data from Whole Exome Sequencing (WES) and Whole Genome Sequencing (WGS), which

are now extensively used in medical genetics. We develop AutoMap, a tool that is both web-

based or downloadable, to allow performing homozygosity mapping directly on VCF (Variant

Call Format) calls fromWES or WGS projects. Following a training step on WES data from 26

consanguineous families and a validation procedure on a matched cohort, our method shows

higher overall performances when compared with eight existing tools. Most importantly,

when tested on real cases with negative molecular diagnosis from an internal set, AutoMap

detects three gene-disease and multiple variant-disease associations that were previously

unrecognized, projecting clear benefits for both molecular diagnosis and research activities in

medical genetics.
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Homozygosity mapping (HM), also called autozygosity
mapping, is a technique aimed at detecting and scoring
the presence of consecutive homozygous genotypes, or

“runs of homozygosity” (ROHs) in a person’s genome. ROHs
result from the co-inheritance of portions of DNA that are pre-
valent in a given population, and normally range from a few to
hundreds of megabases (Mb), depending on the ethnic group
considered1,2. In the offspring of consanguineous unions, ROHs
correspond in large part to the genetic material that is co-
inherited from ancestors who are common to both parents3. For
instance, children of parents who are first cousins have ROHs for
DNA regions that were in heterozygosis in their great-grand-
parents, and were inherited from both their maternal and
paternal sides.

In patients with recessive conditions, especially if belonging to
a consanguineous pedigree, ROHs very often encompass the
mutation that is responsible for the disease4, also originating from
a healthy heterozygous common ancestor, and therefore are
excellent proxy markers for the mutation itself. In addition, HM
can also be used to detect large heterozygous deletions resulting
in hemizygous (and apparently homozygous) genotypes, as well
as for cases of uniparental disomy5,6. For these reasons, HM has
been used for decades in medical genetics as a tool to identify
regions of the genome to be prioritized for targeted mutational
screens. In the past, HM procedures relied on genotypes from
polymorphic markers (typically microsatellites) to determine
whether patients had consecutive homozygous calls vs. healthy
relatives. Since the beginning of this century, the commerciali-
zation of high-density microarrays for single-nucleotide poly-
morphisms (SNPs) has allowed the use of the SNP genotypes for
the same purpose, by interrogating usually non-coding variants
with an elevated degree of heterozygosity in the general popula-
tion. Several software were then developed, such as PLINK7,
HomozygosityMapper8, or GERMLINE9. In virtue of the very
high accuracy of their calls (>99.8%)10, SNP microarrays outputs
are highly reliable to identify ROHs. However, they do not pro-
vide any information on a patient’s mutations, since these latter
DNA variants are usually rare and therefore are not included in
such arrays.

Conversely, information from whole-exome sequencing
(WES), which is largely used in contemporary medical genetics,
allows the discovery of any type of DNA variants, including
frequent genotypes and rare mutations alike. Therefore, at least in
principle, WES can be used as a single technology for both HM
and mutation detection. However, HM algorithms developed for
array technologies tend to deliver sub-optimal results when
applied to WES, since they are not adapted to handle the intrinsic
noise (2.53–30.60%)10 that is typical of this sequencing
method11–13. In particular, ROHs detected from WES data with
this software are smaller in size and produce lower cumulative
autozygosity values, often resulting in the end in falsely-negative
output14–16. Hence, many investigators still make use of two
separate tools: SNP microarrays to determine ROHs, and WES to
identify possible rare mutations, with an important waste of time
and resources17–21.

To circumvent this problem, in this work we present AutoMap
(Autozygosity Mapper), a software that can provide very reliable
HM results directly from standard WES outputs and is applicable
to WGS (whole-genome sequencing) as an additional feature, and
compare it with other tools, including some that were specifically
developed to perform HM on WES data (BCFTools16, FILTUS22,
H3M223, HOMWES15, SavvyVcfHomozygosity, and SavvyHo-
mozygosity24). Each of the tools used in this comparison have
their own strongpoints and limitations, such as the presence of a
graphical user interface (GUI), a cross-platform operative system,
a user-friendly output type, etc25,26. AutoMap is accessible both

via a web interface (free of charge), to allow low-throughput or
occasional use for exome data, and as a command-line tool, for
large-scale genomic projects, for WGS, and to allow integration
into routine analytical pipelines.

Results and discussion
AutoMap takes as an input variant call format (VCF) files
(Fig. 1a), i.e., standard result files from a variety of commonly-
used software for analyzing WES and WGS sequences (variant
callers), containing the list of DNA variants detected in a given
sample with respect to the human reference genome. VCF files
have the advantage of being of smaller size compared to primary
mapping files (BAM files), contain most of the information
that can be used for HM purposes and, importantly, are generally
more available to the end-users, such as biologists or physicians.
Of note, single-sample VCFs are accepted by both web and
standalone versions of AutoMap, while multisample VCFs are
only accepted by the standalone version. Once the file is uploaded
via the web interface (https://automap.iob.ch/) the user simply
launches the analysis, which in the end produces an output such
as the one indicated in Fig. 1b, c. This includes a PDF file showing
the graphical representation of autozygous regions along the
autosomes, as well as a text file reporting the same information as
numerical values, with the positions of the detected ROHs, their
size, number of variants, and percentage of homozygosity.
AutoMap can also include the X chromosome, if requested by the
user, for both females and males. In females, this chromosome is
treated as an autosome, whereas in males all hemizygous calls are
considered as homozygous. In addition, it is possible to provide a
list of genes (or a “gene panel”, e.g., a list of genes linked to a
given condition) as a text file, to immediately recognize whether
they are or not within a given ROH (Fig. 1c). The same procedure
can also be performed on a local computer, by directly down-
loading the source files (https://github.com/mquinodo/
AutoMap). In its standalone version, AutoMap does not need
compiling but requires the installation of some additional soft-
ware (BCFTools, v1.9 or later; BEDTools, v2.25.0 or later; Perl,
v5.22.0 or later; R, v3.2.0 or later).

As mentioned, one of the key points for the proper detec-
tion of ROH from WES data is the targeted removal of false
positive variant calls. These calls not only act as a noise with
respect to true signals, but also actively lead to an artificial
fragmentation of ROHs (when a heterozygous false positive
call is present in a truly autozygous region) or even to the
complete miss of a ROH (for regions with a low number of
calls). To this end, as a first step, all variants from the VCF file
are carefully assessed with criteria relying on coverage and
alternative reads count. More precisely, they are evaluated
according to their sequencing depth, the ratio between reads
aligned to the reference sequence vs. alternative alleles (for
heterozygous calls), and to their location in repeated regions
of the genome (Fig. 1a and Supplementary Table 1). Variants
that do not satisfy these stringent criteria are selectively and
individually eliminated from further analyses. Importantly, all
such criteria were verified not to be specific of any given
variant calling software, with the aim of enabling analyses of
VCF files produced by various programs.

After this filtering step at the variant level, ROHs are identified
by a sliding-window approach, associated with four tunable
parameters: the size of the window, the minimal number of
homozygous variants in the window, the maximal gap between
two consecutive variants in one ROH, and the maximal size of
extension from the boundaries of stretches of detected ROHs
(Fig. 1a and Supplementary Table 1). Following their identifica-
tion, ROHs are then selected only if they reach a minimal value in
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terms of size, number of variants and percentage of homozygous
genotypes in the region (Fig. 1a and Supplementary Table 1).

To evaluate the performances of AutoMap, we gathered data
from 52 families with recessive hereditary blindness, for which
we also had genotypes from both WES and SNP arrays, and
selected one patient per family. These individuals were all from
consanguineous pedigrees living in Portugal or in Iran, i.e., in
countries with a low and an elevated degree of consanguinity at
the level of the general population, respectively27,28. More pre-
cisely, they all had a median cumulative ROH size of 234.8 Mb
(detected by PLINK on SNP array data), ranging between 90.6
and 819.5 Mb. We then split these individuals into two matched
sets of 26 persons each, thus defining a training cohort and a
matched validation cohort (Supplementary Data 1). As a refer-
ence for true positive values, we adopted the method described by
Kancheva et al.15, consisting in the use of the PLINK software7

applied with default parameters on data from SNP arrays.
We optimized the parameters of AutoMap on the training

cohort (Supplementary Table 1 and Supplementary Fig. 1A, B, see
“Methods” section), and then used the optimized values to ana-
lyze the validation cohort. We performed stability analyses by
varying each parameter individually, which resulted in small
variation of the performances, indicative of the robustness of the
method (Supplementary Fig. 1C). In addition, the average per-
formance was not significantly different between the two cohorts,
demonstrating no over-fitting of the parameters on the training
data (Supplementary Fig. 2A). More precisely, specificity in the

training and validation sets had values of 77.5% and 79.6%,
respectively (p= 0.35, unpaired t-test), while sensitivity
had values of 90.5% and 92.4%, respectively (p= 0.18).

We also compared the effect of three mainstream variant
callers that could be adopted by AutoMap end users (GATK-
Haplotype Caller, Samtools-mpileup and Strelka) on the perfor-
mance of our tool (based on data from the training set). Auto-
Map’s sensitivity was slightly lower when Strelka was used
(−1.4% compared to Haplotype Caller), whereas specificity
appeared to be slightly lower when Samtools was used, (−4.4%
compared to Haplotype Caller, Supplementary Fig. 2B). These
differences were all below 5%, therefore indicating that our tool is
overall insensitive to the choice operated by a potential user with
respect to a given calling software.

Next, we compared AutoMap with eight previously-published
tools, namely: PLINK applied on exome data7, Homo-
zygosityMapper for WES29, HOMWES15, BCFTools/RoH16,
FILTUS22, H3M2 23, SavvyHomozygosity, and SavvyVcfHomo-
zygosity24 on data from the validation cohort, composed of 26
individuals with various levels of autozygosity (Supplementary
Fig. 3). All of them were based on a hidden Markov model with
the exception of HomozygosityMapper, PLINK, and HOMWES,
which were developed by applying a sliding window method (as it
is the case for AutoMap as well). Of note, H3M2 and SavvyHo-
mozygosity cannot process VCF files but need a BAM file
(sequence alignment data), HomozygosityMapper is only avail-
able via a web interface, and FILTUS can only be queried via a

Fig. 1 AutoMap workflow and example of output. a Workflow followed by AutoMap with default settings, b, c example of graphical and text output for
patient NSI-326, with the following parameters: DP= 8, percaltlow= 0.25, percalthigh= 0.75, binomial= 0.000001, maxgap= 10, window= 7,
windowthres= 5, minsize= 2, minvar= 25, minperc= 88, chrX=No, and extend= 1. Blue regions represent detected ROHs.
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graphical user interface (GUI), not allowing automated proces-
sing of multiple files. The use SavvyHomozygosity and Sav-
vyVcfHomozygosity requires the downloading of pre-prepared
linkage data from 1000 Genomes project or a joint vcf from a few
hundred WGS. We did not include other software packages such
as Agile-Genotyper, Agile-VariantMapper14, and HomSI30 since
they do not provide a genome-wide result file, which could be
used as source of data for comparison, but only a graphical
output. We used default parameters for all these tools (i.e., the
parameters optimized by their respective authors to analyze WES
data), except for PLINK, since this software was first developed
for SNP array data and therefore had to be re-parametrized to
allow its use on WES genotypes (see “Methods” section).

AutoMap and SavvyVcfHomozygosity had the best sensitivity/
specificity combination and the highest F-score when compared
to other software (p < 3.0 × 10−7, paired t-test) (Fig. 2a, b).
However, AutoMap had a significantly higher sensitivity than

SavvyVcfHomozygosity (p < 2.9 × 10−6) and lower specificity
(p < 2.8 × 10−6).

In addition, AutoMap (on WES) was the tool that displayed the
closest values, in terms of ROHs size and number, to the reference
(i.e., PLINK on SNP array) (Fig. 3). This indicated no or very low
ROH fragmentation, especially in comparison to other tools,
which produced for instance either a high number of small and
fragmented ROHs (H3M2, FILTUS, and PLINK) or detected only
large ROHs (SavvyVcfHomozygosity). Two representative
examples of this effect, over entire choromosomes, are presented
in Supplementary Fig. 4.

Since small ROHs are more difficult to detect and indeed could
penalize the global performance of some of these tools, we
repeated the same analysis by considering only ROHs larger than
5Mb, being aware that such regions are more likely to harbor
causative variants for recessive diseases4. As expected, every tool
displayed increased performances, due to the artificial clearing of

Fig. 2 Performance of AutoMap and other tools on data from the validation set. a, b Performance of AutoMap for ROHs larger than 1 Mb (Megabase):
a specificity and sensitivity; b F-score. c, d Same analyses as in a, b, but limited to ROHs with sizes of 5Mb or higher (most likely to contain causative
recessive mutations in medical genetics practice, according to published literature). Error bars represent standard deviations of the mean. For boxplots
(b, d), the middle band indicates the median, boxes represent the first and the third quartiles, and whiskers indicate the largest observation smaller than or
equal to the first quartile −1.5 x IQR (the interquartile range) and the smallest observation greater than or equal to to third quartile +1.5 x IQR. N =
~2.7 million DNA variants per tool and per test. Source data are provided in the Source Data File.
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smaller ROHs, and AutoMap, SavvyHomozygosity and Sav-
vyVcfHomozygosity had the best F-scores (p < 2.0 × 10−4, Fig. 2c,
d). AutoMap had a significant higher sensitivity than SavvyVcf-
Homozygosity (p= 2.9 × 10−6) but lower than SavvyHomo-
zygosity (p < 6.9 × 10−9). Concerning specificity, the results were
reversed, with AutoMap having a significantly higher value than
SavvyHomozygosity (p < 3.0 × 10−3) but a lower score with
respect to SavvyVcfHomozygosity (p < 2.5 × 10−5). In summary,
AutoMap had the best performances overall when tested on our
validation cohort. Since this cohort comprised only individuals of
European and South Asian ancestry, further assessments may be
needed to evaluate population-specific performances on data
from other ethnic groups. In addition, a possible confounding
factor in our analysis could be represented by the use of different
capture kits for WES. Although we did not assess this parameter
at the experimental level, previous literature has shown that
concordance rates of called variants across different capture kits
are very elevated31, making substantial variability of performance
linked to the use of different kits a rather unlikely event. Con-
cerning WGS data, additional tests will be also needed to
benchmark existing tools such as PLINK or other array-specific
software vs. AutoMap, due to the difference in terms of number
of variants and coverage compared to WES.

In addition to an increased performance in retrieving ROHs
from exome data, AutoMap also displayed other benefits. For
instance, AutoMap was the only tool that could be run both via a
web application (for the average user) and the command-line, to
allow more computationally-inclined users to exploit its full
potential. In addition, the average processing time displayed by
AutoMap was relatively short, especially in relationship to its
performance. All tools, except those using BAM files as an input
(H3M2 and SavvyHomozygosity) could analyze a standard VCF
in 30 s or less. The fastest tools were BCFTools and PLINK,
completing the analysis in less than 5 s, while AutoMap took
approximately 20 s. A more detailed comparison of all these
features is provided in Supplementary Table 2.

As a final test, we used AutoMap on unexplored WGS and
WES research data from our laboratory, for cases with unknown
molecular etiology. Following experimental validation, our tool
was instrumental in the end for identifying both coding and
noncoding mutations, all included into larger ROHs, for a few
new syndromes. These included: an intergenic deletion causing
developmental defects32, a small deletion affecting splicing in the
gene PISD and resulting in the Liberfarb syndrome33, and a
partial duplication of the NMNAT1 gene, responsible for a new
multisystem disorder34. Compared to the other tools analyzed,
AutoMap was the only one allowing the complete detection of the
autozygous regions containing the mutations in all three cases
(Supplementary Table 3). For the NMNAT1 study, for example,
the lack of performance displayed by some other tools was likely
due to the presence of a few false-positive heterozygous variants
in the ROH containing the pathogenic duplication, which were
indeed recognized as such—and hence discarded—by AutoMap.
The same was true for the two other studies, where the presence
of false-positive heterozygous genotypes was combined with the
relatively short size of ROHs and/or the presence of a limited
number of identifiable genotypes. In addition, AutoMap enabled
the detection of new variants in a number of genes that were
already associated with Mendelian conditions35–37. In conclusion,
AutoMap is a reliable tool that can predict ROHs with high
specificity and sensitivity, in less than a minute, even from VCF
files derived from noisy exome sequencing data. It is available
both via a web-based interface, for a quick analysis, as well as a
command-line package, allowing large-scale and routine analyses.

Methods
Patients and DNA. This study adhered to the to the tenets of the Declaration of
Helsinki and was approved by the Institutional Review Boards of our respective
institutions: the Ethikkommission Nordewest- and Zentralschweiz (2019-01660),
the Institutional Review Boards of Mashhad University of Medical Sciences
(961015), the ethics commission of the Ophthalmic Hospital “Dr Gama Pinto” in
Lisbon (16.05.20) and the Noncommunicable Diseases Research Center of Fasa
University of medical sciences (IR.FUMS.REC.1396.211). Written informed con-
sent forms were signed by all subjects, recruited at the Ophthalmic Hospital “Dr
Gama Pinto” in Lisbon, and at the Fasa and Mashhad Universities of Medical
Science in Iran. Participants had either reported consanguinity or had ~100Mb or
more of cumulative ROHs as determined by PLINK applied on array data (Sup-
plementary Data 1). Genomic DNA was extracted from peripheral blood leuko-
cytes. More precisely, for Portuguese patients DNA extraction was performed by
using the EZ1 DNA blood kit and EZ1 DNA buffy coat card (Qiagen), according to
the manufacturer’s instructions, choosing an elution volume of 200 μl. For Iranian
patients, DNA was extracted from blood using RPN8512 Nucleon BACC3 DNA
Extraction Kit (Illustra).

Array genotyping. DNA of studied individuals were genotyped at the iGE3
Platform of the University of Geneva, Switzerland, using Illumina Infinium arrays
(San Diego, USA; GSAMD-24v2.0, GSA-24v2.0, CoreExome-24v1.1, and
CoreExome-24v1.2). Genotypes values were obtained with GenomeStudio
(Illumina).

Exome sequencing. Exome capture and library preparation was performed using
the SureSelect Human All Exon v6 kit (Agilent, SantaClara, USA) and HiSeq Rapid
PE Cluster Kit v2 (Illumina, San Diego, USA) with 2 μg genomic DNA. Libraries
were sequenced on a HiSeq 2500 or a NovaSeq 6000 instruments (Illumina)
(Supplementary Data 1). Raw reads were mapped to the human genome reference
sequence (build hg19) with the Novoalign software (V3.08.00, Novocraft Tech-
nologies, Selangor, Malaysia). Duplicate reads were then removed using Picard
(v. 2.14.0-SNAPSHOT). Base quality score recalibration was performed and variant
calling was done with HaplotypeCaller (GATK, v.4.0.3.0).

AutoMap requirements. AutoMap is composed of Bash, Perl and R scripts. It
requires BCFTools (≥v1.9), BEDTools (≥v2.25.0), Perl (≥v5.22.0), and R (≥v3.2.0).
The following versions were used for all analysis: BCFTools (v1.9-78-gb7e4ba9),
BEDTools (v2.25.0), Perl (v5.22.0), Bash (4.3.48(1)-release) and R (v3.5.1).

To be processed by AutoMap, a VCF file must contain the GT (genotype) and
AD (allelic depths for the ref and alt alleles) or DP4 (number of high-quality ref-
forward bases, ref-reverse, alt-forward, and alt-reverse bases) fields.
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AutoMap algorithm. The first step of the algorithm removes variants from the
VCF file that are located in repeat regions, as reported by the UCSC genome
browser (https://genome.ucsc.edu/cgi-bin/hgTables). Variants are then filtered by
quality, based on the percentage of alternative reads (default options: –minpercalt
0.25 and –maxpercalt 0.75), on a binomial test for alternative and reference read
counts for heterozygous variants (default option: –binomial 0.000001), and on
depth (default option: –DP 8). At this point, the analysis is stopped if there are less
than 10,000 variants surviving such procedures.

ROHs are subsequently detected by a sliding window with a fixed size and a
threshold based on the number of homozygous variants (default options: –window
7 variants and –windowthres 5). After that, detected ROHs are trimmed at their
ends to remove heterozygous variants and are extended at both ends (default
option: –extend 1 [Mb]). ROHs containing regions without variants for a stretch
larger than a given threshold (default option: –maxgap 10 [Mb]) are split into two
different ROHs by excluding the region with no variants. Finally, ROHs are filtered
to have a minimal size, a minimal number of variants and a minimal percentage of
homozygous variants (default options: –minsize 1 [Mb], –minvar 25, and –minperc
88 [%]).

Probabilities for binomial distribution. Probabilities for binomial distributions
were calculated with the Perl script written by T.J. Finney (https://www.halotype.
com/RKM/figures/TJF/binomial.txt).

Overlap of ROHs. Overlap of ROHs were obtained with bedtools and the fol-
lowing command:

bedtools intersect -a a.bed -b b.bed

Parameters used to detect ROHs from array data. PLINK was used with default
parameters, except for variants with minor allele count of 2 per batch, for filtering
against very rare variants, often representing false-positive38,39:

plink –bfile bfile –homozyg –out out –homozyg-window-het 1 –homozyg-density
50 –homozyg-gap 1000 –homozyg-window-missing 5 –homozyg-window-snp 50 –
homozyg-snp 100 –homozyg-window-threshold 0.05 –homozyg-kb 1000 –mac 2

Detection of ROHs from exome data. All available tools were used with default
parameters for treating input files, optimized by their developers, except for
PLINK. For this tool, we took the parameters defined by Kancheva et al. 15, to
optimize sensitivity, and re-tested the most important parameter, i.e., the number
of allowed heterozygous SNP per ROH. This parameter is important to take in
account the noise in exome sequencing data. Indeed, low values of this parameter
resulted in low sensitivity. We chose to use a value of 3 since it produced a higher
sensitivity with acceptable specificity (Supplementary Fig. 5).

The command used was:
plink –bfile bfile –homozyg –out out –homozyg-kb 1000 –homozyg-window-het 3

–homozyg-density 10000 –homozyg-gap 10000 –homozyg-window-missing 10 –
homozyg-window-snp 20 –homozyg-snp 10 –homozyg-window-threshold 0.05

For SavvyHomozygosity and SavvyVcfHomozygosity, we used the pre-prepared
linkage data from 1000 Genomes project, provided by the developers (https://
github.com/rdemolgen/SavvySuite).

Parameter used for variant callers. Samtools:
samtools mpileup -t DP,AD -ugf ref.fasta input.bam|bcftools call -vmO v -o out.

vcf
Strelka:
configureStrelkaGermlineWorkflow.py –bam input.bam –referenceFasta ref.fasta

–exome
HaplotypeCaller:
gatk –java-options “-Xmx4g” HaplotypeCaller -R ref.fasta –dbsnp dbsnp.vcf -I

$input.bam -O out.vcf
After calling, variants were filtered to be present in the regions included in the

capture kits, with a 100 bp padding on each side.

Computations of performances. As a reference for true positive values, we
adopted the method described by Kancheva et al.15, consisting in the use of the
PLINK software7 applied with default parameters on data from SNP arrays. Sen-
sitivity and specificity were then computed as follows:

Sensitivity %ð Þ ¼ ROHexome�all overlapping with ROHarray�filtered=Total ROHarray�filtered;

Specificity %ð Þ ¼ ROHexome�filtered overlapping with ROHarray�all=Total ROHexome�filtered;

where filtered ROHs are larger than 1 or 5Mb and excluding gap regions such as
centromeres, telomeres, short arms, and heterochromatin defined from the gap
table in UCSC Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables).

F-score was also added as a measure of accuracy, computed as:

F�score ¼ 2 � sensitivity � specificity= sensitivity þ specificityð Þ:

Statistical tests. T-test were performed with t.test function in RStudio (v1.0.153)
with R (v3.5.1).

For paired test: t.test(x, y, alternative= “two.sided”, paired= TRUE)
For unpaired test: t.test(x, y, alternative= “two.sided”, paired= FALSE)

Figures. Figures were done with ggplot2 (v3.3.2) and gridExtra (v2.3) packages in
RStudio (v1.0.153) with R (v3.5.1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Array genotyping data and exome sequencing data cannot be shared because of
restrictions related to the protection of personal data, as per Swiss and European law.
Data from Figs. 2 and 3 can be retrieved in the Source Data file. Source data are provided
with this paper.

Code availability
AutoMap code is freely available on GitHub (https://github.com/mquinodo/AutoMap/)
and was deposited in the zenodo.org repository (https://doi.org/10.5281/
zenodo.4279125)40.
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