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Simple Summary: Senescence is a form of cell cycle arrest induced by stresses such as DNA damage
and oncogenes and therefore constitutes a crucial barrier against cancer. Nevertheless, senescent
cells can escape or bypass this tumor suppressor mechanism and evolve towards an altered, pre-
cancerous genotype. Furthermore, accumulated senescent cells that are not cleared by the immune
system secrete pro-inflammatory factors, promoting malignant phenotypes. This pro-tumor activity
of senescence is associated with genetic reprogramming and the acquisition of cellular plasticity.
In this review, we aim to unravel the interconnection between senescence, senescence-associated
pro-inflammatory cytokines and the induction of cellular plasticity, which enables the adaptability of
tumor cells at different stages of carcinogenesis.

Abstract: Senescence is a dynamic, multistep program that results in permanent cell cycle arrest
and is triggered by developmental or environmental, oncogenic or therapy-induced stress signals.
Senescence is considered as a tumor suppressor mechanism that prevents the risk of neoplastic
transformation by restricting the proliferation of damaged cells. Cells undergoing senescence sustain
important morphological changes, chromatin remodeling and metabolic reprogramming, and secrete
pro-inflammatory factors termed senescence-associated secretory phenotype (SASP). SASP activation
is required for the clearance of senescent cells by innate immunity. Therefore, escape from senescence
and the associated immune editing would be a prerequisite for tumor initiation and progression as
well as therapeutic resistance. One of the possible mechanisms for overcoming senescence could
be the acquisition of cellular plasticity resulting from the accumulation of genomic alterations and
genetic and epigenetic reprogramming. The modified composition of the SASP produced by these
reprogrammed cancer cells would create a permissive environment, allowing their immune evasion.
Additionally, the SASP produced by cancer cells could enhance the cellular plasticity of neighboring
cells, thus hindering their recognition by the immune system. Here, we propose a comprehensive
review of the literature, highlighting the role of cellular plasticity in the pro-tumoral activity of
senescence in normal cells and in the cancer context.

Keywords: cellular plasticity; senescence; reprogramming; immune evasion; epithelial-mesenchymal
transition

1. Introduction

Senescence is characterized by permanent cell cycle arrest and is generally considered
irreversible. It is triggered by developmental signals or various endogenous and exogenous
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stressors, including telomere shortening, physically or chemically induced DNA damage,
oncogene activation, exposure to reactive oxygen species (ROS), and therapeutic treatments
like chemo- or radiotherapies [1]. The cessation of cell proliferation via senescence involves
a number of phenotypic and functional changes to cells. These include morphological
alterations, chromatin remodeling, metabolic reprogramming and secretion of a complex
mix of proinflammatory factors termed the senescence-associated secretory phenotype
(SASP) [2]. Depending on the type of senescence-inducing trigger and the type of target cell,
the collective changes accompanying individual senescence responses are highly diverse.
For example, differences have been observed in the stop phase of the cell cycle as well as in
the types of regulatory circuits involved during senescence of fibroblasts vs. senescence of
epithelial cells, keratinocytes or melanocytes [3,4].

The senescence pathway has critical implications in normal physiological processes
like embryonic development, tissue regeneration and wound healing [5–8]. For example,
fibroblast cells, which play major roles in maintaining tissue structure, will senesce at a
wound site to release SASP factors that permit their differentiation into myofibroblasts,
the main repair cells that restore tissue integrity and facilitate wound closure following
injury [5,9,10]. The senescence program is thus generally beneficial, involving a positive,
transient role for senescent cells. However, if these cells persist, then senescence plays a
causal and deleterious role in certain pathologies. For instance, the buildup of senescent
fibroblasts in tissues and organs is central to age-related disruption of tissue structure
and function and conditions like fibrosis [11–13]. Accumulation of senescent cells is also
implicated in cancer [7,14–16]. Indeed, two outcomes as disparate as wound healing vs.
tumorigenesis, consolidated by one biological pathway, supports the theory that a tumor is
a ‘wound that does not heal’ [17–19].

Although the vast majority of studies on senescence have been carried out on fibrob-
last models, another cell type that is highly relevant to understanding the deteriorative
effects of the senescence program is the epithelial cell, another key contributor to tissue
and organ structure and function. Epithelial cells can undergo cellular reprogramming
through epithelial to mesenchymal transition (EMT), a process that imparts features of
stemness and plasticity to cells [20–22]. While EMT, like senescence, is physiologically
involved in development and wound repair [23,24], dysfunctional EMT associated with
the senescence program is a major contributor to certain pathologies. For example, epithe-
lial cells morphologically close to myofibroblasts can undergo EMT, leading to epithelial
remodeling and massive extracellular matrix (ECM) deposition, ECM stiffness and the
thickening of pulmonary tissue resulting in fibrosis [25,26]. These cells, reprogrammed
during chronic inflammation, are a key component of the senescence response, and their
aberrant accumulation further catalyzes the generation of damaged fibrotic tissue [25–29].

The interplay between cellular reprogramming and senescence has drastic implications
for tumor development and progression [30–35]. In this context, malignant cells can
undergo EMT-mediated reprogramming to acquire features of plasticity and stemness
that help these cells overcome the tumor suppressor action of senescence and continue
proliferating [36–42]. Specifically, cells can defeat the senescence barrier either through a
mechanism of “escape” or a mechanism of “bypass”. The molecular context of these two
mechanisms will be described in detail in the next sections. Senescence is thus observed to
have opposite effects in the circumstances of cancer; first, in preventing the proliferation
risk of neoplastic cells via cell cycle arrest; yet, second, in creating a window of opportunity
for cancer cells to fight senescence and progress along the path to more aggressive tumors.
In this review, we elucidate this double-edged sword in cancer biology by deciphering
how the interplay between senescence and cellular plasticity has an impact from tumor
initiation up to therapeutic resistance.

2. Overcoming Senescence via Escape Instigates Neoplasticity and Genomic
Instability in Pre-Tumoral Cells

Senescence is considered an “evolutionary cul-de-sac” for cells, as it generally implies
the inability to resume cell proliferation [36,43–45]. However, some cells like epithelial cells
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are capable of spontaneously reverting to a proliferative state following cell cycle arrest
after encountering a stress signal, a process known as “senescence escape”. Senescence
escape is facilitated by altering the activity of chromatin regulators, metabolic pathways or
extracellular pH [43,46,47]. The senescence program in epithelial cells involves a period
known as “stasis”, or telomere-independent senescence. Here, a decrease in poly (ADP)
ribose-polymerase 1 (PARP1) expression compromises the repair of single strand breaks
(SSBs) in senescent epithelial cells, which induces the persistence of single strand break
repair (SSBR) foci [4,48]. In turn, a signaling cascade is engaged, leading to p38MAPK/p16-
mediated cell cycle arrest (stasis). These events are associated with some characteristic
features: enlarged and flattened morphology, an inflammatory secretome, and senescence-
associated β-galactosidase-positive, polynucleated cells [48–53].

It has been estimated that about one in 104 epithelial cells spontaneously escapes
from stasis and reenters the cell cycle to give rise to new clones [50,54,55]. This is associ-
ated with certain epigenetic changes that distinguish “escaped” epithelial cells from the
rest, including hypermethylation of p16 promoter DNA, resulting in decreased CDKN2A
expression [56–60]. Notably, the reported epigenetic modifications have been correlated
with methylation signatures found in hyperplasia, which is often the initial stage of cancer
development [57].

Escape from stasis in epithelial cells is found to accompany the acquisition of some
hallmark features of cancer cells. Notably, cell plasticity is induced through EMT, as evident
in the expression of EMT transcription factors (EMT-TFs) [48]. Furthermore, epithelial and
mesenchymal markers are found to be lost and gained, respectively, which is known to
promote invasive and metastatic properties of cells [48,61,62]. Although the role of EMT
in stasis escape has not yet been elucidated, the latter observation suggests that plasticity
features may help epithelial cells to overcome oncosuppressive barriers. Of note, given that
PARP1 downregulation promotes stasis, EMT has recently been linked to PARP1 decrease
as a means of escaping senescence [63–65]. In the context of deciphering this connection, it
will be interesting to impede EMT or PARP-1 action in epithelial cells and investigate its
impact on the stasis escape process as a whole.

While stasis is essentially a characteristic of epithelial cells, three additional modes
of senescence are described in other cell types: (i) replicative senescence (RS) or telomere-
dependent senescence, which has been historically characterized in fibroblasts and is
caused by telomere shortening; (ii) oncogene-induced senescence (OIS), following the
activation of an oncogene such as RAS; and (iii) therapy-induced senescence (TIS), following
cancer treatments like chemo- and radiotherapy [16,44,66]. These senescence types are
activated by the p53/p21WAF1 tumor suppressor pathway and share the common feature
of being induced by genotoxic stresses. Consequently, RS, OIS and TIS are associated with
endoreplication, polyploidy-induced DNA damage and genomic instability, as well as
extensive epigenetic reprogramming [55,56,59,67–73]. However, mechanisms of escape
have been described that enable these damaged cells to re-enter the cell cycle, including for
senescent fibroblasts, which are known to be mostly incapable of resuming cell proliferation
owing to the high stability of RS-induced DNA damage [4]. These mechanisms target
polyploid cells for depolyploidization and budding.

Polyploid cells are generally considered to be terminally differentiated because they
can no longer divide. However, genomic instability in polyploid cells might provide a
route to aneuploidy, which is long thought to play a major role in p53 status-independent
tumor initiation [73–79]. Here, multinucleate giant polyploid cells can restore their prolifer-
ative capacity by undergoing an atypical type of cell division known as “neosis”, initially
identified during tumor progression as well as in normal cells [49,80–83]. Neosis results
in daughter cells with reduced cell ploidy (depolyploidization) and extended mitotic life
span [80], thus being at the origin of senescence escape [77,80,82,84–87]. Like epithelial cells
that escape stasis, stem-like properties following depolyploidization have been reported in
fibroblasts that have escaped from RS or in melanocytes that have escaped from OIS, allow-
ing the acquisition of anoikis resistance and tumorigenic capacities [77,88]. Furthermore,



Cancers 2021, 13, 4561 4 of 17

in fibroblasts undergoing RS, telomere-driven chromosome instability displays massive
changes in expression of microRNAs (miR), including the miR-200-family. miR-200 is a
well-known negative regulator of EMT-TFs that confers plasticity-related phenotypic traits
to immortalized pre-tumoral cells [68].

Senescence escape can thus be facilitated in major cell types by the dedifferentiation
associated with large-scale cellular reprogramming and polyploidy. Reminiscent of a
blastomere-like process of dedifferentiation in somatic cells for tumor initiation, senescence-
escaped cells too can evolve towards novel tumorigenic states which, in the case of poly-
ploidy, can accompany modified genomic profiles [86,89,90].

3. Overcoming Senescence via Bypass Preserves a Stable Tumor Genome

At times, cells can continue to proliferate even in the presence of stressors that would
likely lead to cell cycle arrest. This process, known as senescence bypass, differs from senes-
cence escape in that a senescent stage is entirely absent in cells. Notably, the propensity of
a cell to bypass senescence appears to depend on its differentiation state. More specifically,
in contrast to progenitor cells that are more committed to differentiation, stem cells of
the young adult do not senesce [91–93]. This correlation between the degree of cellular
differentiation and the likelihood of bypassing senescence has significant implications in
tumor development [41].

As described in the concept of cellular pliancy, each stage of differentiation within a
specific cell lineage is associated with a unique susceptibility to malignant transformation
when subjected to a specific oncogenic insult [41]. In this context, differentiated cells are
typically vulnerable to OIS, whereas stem cells can overcome OIS and DNA damage. This
resistance is conferred to stem cells through the expression of EMT-TFs that promote cell
plasticity while inhibiting the p16/Rb pathway to cell cycle arrest [34,93]. Specifically,
TWIST proteins have been shown to down-regulate the expression of p16INK4A, p19ARF

and p21WAF1, thus attenuating p53 responses and allowing cancer cells to escape RAS-
induced senescence in fibroblasts and human mammary epithelial cells [34]. ZEB1 was
also shown to suppress p16INK4A and p15INK4B expression and enable the overcoming of
OIS that is triggered by the overexpression of EGFR (epidermal growth factor receptor) in
human esophageal epithelial cells [94]. Moreover, the high expression of EMT-TF ZEB1
in mammary stem cells partly prevents oncogene-induced cell stress, in turn allowing the
evasion of oncosuppressive barriers and subsequent malignant transformation. Thus, a
stem state can allow a cell to continue to proliferate via senescence bypass, while fending
off high DNA damage and genome instability that would typically be acquired during a
senescent period [95].

4. A Dualistic Model for Tumor Initiation

Together, the modes of action of senescence escape and senescence bypass consolidate
a dualistic model for overcoming cell cycle arrest and initiating a tumor (Figure 1). More
specifically, the escape from senescence of differentiated cells like fibroblasts requires the
acquisition of polyploidy and genomic instability. In contrast, stem cells and undifferenti-
ated cells have the intrinsic propensity to bypass senescence, which relies, at least partly,
on the cells’ EMT-dependent features of plasticity and is accompanied by the preservation
of a normal, stable genome [41,95]. As a result, genomically-stable tumors originate from
cells that are able to bypass senescence and evade the onset of genomic instability as
observed in tumors originating from senescence-escaped cells [41,95,96]. This difference
in the mode of tumor initiation further highlights the relevance of the cell of origin in
cancer for conditioning entry into senescence and the necessity for escape [96,97]. In view
of this, cells of stem or embryonic origin, which largely include pediatric tumors, are able
to bypass senescence [41,95,98].
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Figure 1. Dualistic model for tumor initiation. Stem cells are quiescent and present intrinsic EMT-
dependent plasticity features. Stem cells are able to bypass senescence and give rise to genomically
stable tumors [95]. Inversely, the escape from senescence of differentiated cells requires the acquisition
of polyploidy and extensive cellular reprogramming, resulting in genomically rearranged tumors.
Stasis: stress-associated senescence barrier. RS: replicative senescence. OIS: oncogene-induced
senescence. This figure was made using elements from Servier Medical Art, which are licensed under
a Creative Commons Attribution 3.0 Unported License: https://smart.servier.com (accessed on 17
August 2021).

5. SASP: A Major Determinant of Tumorigenesis

The SASP refers to the secretome of senescent cells [2]. As a whole, the SASP com-
prises a range of substances, including inflammatory cytokines like IL-6 and IL-8, immune
modulators, paracrine factors, growth factors and enzymes [14,99]. The SASP is typically
induced following chemo- or radiotherapy [100]. However, various other types of stress
stimuli, including oncogene activation and telomere attrition, can induce the SASP. De-
pending on the type of stress and type of cell, the SASP varies in composition and over
time to produce a unique, cell-specific response [3,5,101–105].

It has been recently proposed to group SASPs into two main types, despite some
redundancy in composition: (i) the major inflammation regulator, NF-KB-dependent
inflammatory-type SASP (NASP), under the control of the key inflammation mediator,
the cGAS/STING/p38/NFKB/IL-1α axis [102,105–109]; and (ii) the major tumor suppres-
sor, p53-dependent SASP (PASP) (Table 1) [100,107,110]. Even though both types can be
found in the same cell population, a dichotomy has indeed been proposed between the
two [100,103,110]. Importantly, while the PASP is linked to mitochondrial dysfunction [103],
the NASP is found to have tumorigenic properties, thus suggesting a causal link between
chronic inflammation and tumor development [110]. Notably, this link is dependent on
the paracrine action of NASP factors, which can impact the overall fitness of an entire cell
population as compared to the fate of a single cell. For example, OIS-dependent cellular
reprogramming via the NASP can lead to population level cellular immortality and car-
cinogenesis [33,41,111–113], as is found to be important for tumor initiation in transgenic
models [114], although seemingly not required for tumor initiation in xenografts [107].
Furthermore, the SASP produced by senescent fibroblasts promotes the cancerous de-
velopment of nearby epithelial cells through paracrine action and is associated with an
increase in epithelial cell proliferation and EMT-mediated plasticity [14,115–118]. While
these examples demonstrate the pro-tumor role of the SASP via a paracrine effect, there are
few studies that functionally demonstrate a potential role for the SASP in tumorigenesis
associated with the escape from or bypass of senescence.

https://smart.servier.com
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Table 1. Secreted factors in the NF-KB-dependent inflammatory-type SASP and p53-dependent SASP
[103,110].

Type of SASP Secreted Factors

NF-KB-dependent inflammatory-type SASP IL1α, Ilβ, IL6, IL8, IL10, CXCL1, CXCL2, VEGF,
MMP3, TNFα, FGF

p53-dependent SASP GRO, GROα, IGFBP3, LIF, IL6, IL8, CCL2,
CCL17, Leptin, ISG15, GDF15, TGFα

Importantly, the NASP is also strongly linked to innate immunity through the cGAS/
STING/NFKB pathway, notably during wound healing [5,117,119]. Here, the recruitment
of specialized immune cells via the SASP to a wound site leads to the clearance of senescent
cells and thereby shuts off opportunities for these cells to overcome senescence and initiate
tumorigenesis (detailed in the next section) [105,107–109].

Thus, in addition to its population-scale pro-tumor effects, the SASP is also involved
in anti-tumorigenesis at early stages by targeting individual senescent cells that could
potentially become tumorigenic [107,118,120]. Many studies report divergent conclusions
as to the anti- or pro-tumor role of the SASP [121]. These discrepancies are often attributed
to a difference in cell type, stimulus, environmental context or tumor stage [122]. It is also
possible that these conclusions depend on the cellular or population-based context, where
consideration of the number of cells involved in the SASP is critical for interpretations
[123,124].

6. Acquisition of Plasticity Allows Immunoevasion by Senescent Cells

Through the SASP, senescent cells recruit immune cells into tissues and bring about
their own elimination. Particularly in the non-pathological context of wound healing, senes-
cent cells present at a wound site secrete chemokines like CCL2 as part of the inflammatory
secretome, which can attract immature monocytes expressing the chemokine receptor CCR2.
These monocytes then become activated into polarized M1 (inflammatory) macrophages
that produce interleukins such as IL-1alpha, IL-1beta and IL-6 and allow the recruitment
of NK cells to the wound site [120,124–126]. NK cells will subsequently recognize and
eliminate senescent cells [126–129]. This process of SASP-mediated immune clearance of
senescent cells is also enabled by antigen-presenting cells, which play an important role
in the activation of T4 lymphocytes under the influence of M1-secreted cytokines [118].
Senescent cells can further promote their elimination by becoming immunogenic through
the expression of stimulatory ligands such as MHC Class I chain-related proteins A and
B (MICA/B). MICA/B can bind to the transmembrane receptor NKG2D and activate the
killing of senescent cells through the action of NK cells [127,129].

This active role of the immune system in clearing senescent cells means that any
impairment of the immune system would result in the persistent accumulation of these
cells. Indeed, impaired innate and adaptive immune responses have been reported to
result in the increment of various senescent cells, which would become deleterious in the
context of tumorigenesis [130,131]. Although not completely validated, the acquisition
of plasticity by senescent cells has been described to allow immune evasion, for example,
after overcoming polyploidy in fibroblasts [77]. This has made it possible to put forward an
association between stemness and immune evasion [132,133]. However, the stemness state
does not intrinsically facilitate immune evasion by senescent cells. Rather, it is due to a
downregulation of the antigen presentation pathway as a result of a decrease in replication
in quiescent stem cells, which in turn prevents their immunoediting [134,135]. Indeed,
studies confirm that, in stem cells, which are a key raw material for tumor initiation (de-
scribed in previous section), quiescence promotes evasion from the immune system in both
physiological [134] and pathological [136–138] contexts. For example, the lack of MHC
class I-mediated antigen presentation on the surface of cancer cells is linked to the level
of DNA replication and is shown to generate a stress response that enables these MHCI−
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cancer cells to evade the immune system and establish metastatic foci [137,139]. Other
modes of immune evasion by senescent cells include alterations to the secretory phenotype
during senescence escape. These changes in the composition of the secretome (e.g., overex-
pression of MMP3, which cleaves activating MICA ligands from the senescent cell surface,
or HLA-E-, an inhibitory ligand that blocks NK cell killing) can lead to a redirection of
macrophage polarization from a tumor-inhibiting M1 state to a tumor-promoting M2 state
that prevents the elimination of senescence-escaped cancer cells [124,130,131]. Furthermore,
EMT can also lead to reduced immunoediting through the modification of the nature and
quantity of antigens presented on the surface of senescent cells due to a downregulation in
the expression of immune receptors like MHC-I [140,141] (Figure 2).
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Figure 2. Immune evasion of senescent cells through acquisition of plasticity. (A) The acquisition of plasticity during
senescence escape alters the secretory phenotype, leading to a redirection of macrophage polarization, preventing the
clearance of senescent cancer cells [124]. EMT/plasticity modulates the expression of immune receptors (downregulated
MHC-I) and the recognition of senescent cells by the immune system. (B) The SASP produced by senescent cancer cells
leads to the recruitment of immature monocytes (MDSCs). Their maturation is prevented by adjacent cancer cells through
metabolic modification of the tumor microenvironment (TME) [142]. The accumulation of MDSCs unable to polarize into
M1, nor recruit NKs [143] or CD8+ T cells, in turn leads to the creation of an immune umbrella for cancer cell growth
and will promote metastatic progression via the enhancement of EMT. This figure was made using elements from Servier
Medical Art, which are licensed under a Creative Commons Attribution 3.0 Unported License: https://smart.servier.com
(accessed on 17 August 2021).

7. Senescence Escape Is a Driver of Tumor Resilience

Evasion or escape from therapy-induced senescence (TIS) has been reported in several
cancer cases [144,145]. In fact, cancer cells that spontaneously escape senescence have
been found to have genomic alterations, notably, a polyploid phenotype characterized
by the presence of polyploid giant cells [56,146–148]. These observations are in line with
reports of approximately one-third of tumors being polyploid [149,150], while additional
studies carried out both in vitro and in vivo further demonstrate polyploidy in cancer
cells [85,151–155]. Thus, similar to pre-tumoral senescent cells (refer Section 1), polyploidy
has been described as a means of senescence escape in cancer cells [152].

Importantly, by facilitating escape, the polyploid phenotype promotes the resilience
and stability of cancer cells. The senescence escape of polyploid cancer cells is associated
with depolyploidization (neosis), a reverse process that can reprogram these cells to return
to the mitotic cell cycle via epigenetic silencing of the cell cycle inhibitor, p21WAF1. These
mitotically propagating, paradiploid-descendent tumor cells also exhibit a transcriptomic
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profile correlated with cytokine reprogramming. More specifically, the increased expression
of pro-inflammatory cytokines, comprising IL-1beta, IL-6 and IL-8, strongly activates the
TGF-beta pathway, resulting in the acquisition of EMT features, including a mesenchy-
mal phenotype, as well as the upregulation of EMT markers [89,153,156]. These events
are also accompanied by the upregulation of stemness markers [89,151,153,157,158] and
tumorigenic and metastatic capacities, further suggesting a certain phenotypic stability
and resilience of these daughter cells over time [109,151,159,160].

Collectively, these data demonstrate that polyploidy associated with TIS escape may
play a central role in the survival of some cancer cells through the acquisition of a mes-
enchymal phenotype. This will lead to eventual clonogenic re-growth of a tumor following
genotoxic stress induced by radio- or chemotherapy [76,87,151,152,161–165].

8. Cellular Plasticity Can Result from an Interplay between Senescent Cells and the
Immune Component

Senescent cells are the only type of cells capable of producing the so-called “secretory
phenotype” (SASP). However, through the paracrine action of SASP factors like TGF-beta
and the inflammatory cytokine IL-6, senescent cells can impact various regulatory circuits
that are common between the immune system and the EMT program [54,166–168]. While
an increase in this paracrine effect is observed following loss of the tumor suppressor p53,
paracrine activity is further supported by patterns of epigenetic reprogramming (e.g., novel
methylation landscapes) that are memorized by cells, even after overcoming senescence, as
well as by the sustenance of active transcriptomic profiles for senescence and SASP-related
genes [77,99,107,109,169].

The paracrine action of SASP factors can indeed be pro-tumoral via its effect on
EMT, given the widely demonstrated role of EMT in invasion and metastatic dissemina-
tion [99,122,170,171] (Figure 3). In this context, genotoxic stress from OIS or TIS leads
to the generation of micronuclei and genomic instability, preceding the activation of
an inflammatory secretory phenotype controlled by the cGAS/STING/NFKB pathway
[105,107–109,172]. Activation of the inflammatory SASP enhances migration and invasion
properties that promote metastasis [173–175]. In this way, a few senescent cancer cells can
trigger an increase in the number of cancer cells despite chemo- or radiotherapeutic treat-
ments [45,76,99,100,173,176–181]. Nevertheless, although reports remain merely correlative
as to the causal action of EMT, stemness or intrinsic plasticity in chemoresistance [170], it
has been shown that resistance to treatment is not so much related to stemness as quies-
cence, highlighting the contrasting properties of quiescent and therapy-resistant cancer
stem cells [182–185].

Recent findings reveal an interplay between the activation of the SASP and the com-
position of the tumor microenvironment (TME). Specifically, the SASP can modulate the
population of immunosuppressive cells in the TME. Immature monocytes (MDSCs) are
typically recruited to a site of senescence. However, the maturation of these MDSCs into
a tumor-inhibiting M1 state can be prevented by adjacent cancer cells through lactate
production as a result of their glycolytic metabolism [142]. This results in an inability to
recruit NK lymphocytes [143] or CD8+ T cells. NK cells play an important role in hinder-
ing the EMT of cancer cells during metastatic progression. This is due to an increased
susceptibility of cancer cells to NK cytotoxicity associated with the EMT phenotype (e.g.,
lowered e-cadherin) [186]. Thus, through modifications to the TME, the absence of NK-
mediated clearance ultimately creates an immune umbrella over senescent cancer cells and
creates a permissive environment for cancer cell growth and metastatic progression via the
enhancement of EMT [186–188] (Figures 2 and 3).

Finally, beyond epithelial cancer cells, even adjacent normal fibroblasts can undergo
senescence and fuel tumor progression [189]. Yet the data remains unclear as to the
autocrine and/or paracrine action of the SASP as well as other SASP factors that could
contribute to invasion and dissemination via increased angiogenesis [190].



Cancers 2021, 13, 4561 9 of 17

Cancers 2021, 13, x 9 of 18 
 

 

clearance ultimately creates an immune umbrella over senescent cancer cells and creates 
a permissive environment for cancer cell growth and metastatic progression via the en-
hancement of EMT [186–188] (Figures 2 and 3). 

Finally, beyond epithelial cancer cells, even adjacent normal fibroblasts can undergo 
senescence and fuel tumor progression [189]. Yet the data remains unclear as to the auto-
crine and/or paracrine action of the SASP as well as other SASP factors that could contrib-
ute to invasion and dissemination via increased angiogenesis [190]. 

 
Figure 3. Plasticity acquired following senescence escape leads to the modulation of innate immun-
ity. Senescence induced by different stimuli activates the production of an inflammatory secretory 
phenotype (SASP) under the control of the cGAS/STING/NFKB pathway. Its activation is required 
for the recruitment of immune cells and the clearance of senescent cancer cells by the innate immune 
system. On the other hand, SASP, together with polyploidy and EMT features acquired after escape 
from senescence, leads to the enhanced cancer cell plasticity associated with a deleterious secretory 
phenotype, allowing immune evasion of cancer cells. This figure was made using elements from 
Servier Medical Art, which are licensed under a Creative Commons Attribution 3.0 Unported Li-
cense: https://smart.servier.com (accessed on 17 August 2021). 

9. Conclusions 
Senescence is essential for the sustenance of physiological processes like embryonic 

development and wound healing. However, senescence can also have more prolonged, 
negative effects that contribute to deteriorative conditions like fibrosis and cancer. By def-
inition, a senescent cell is a cell that has exited the cell cycle and therefore lacks prolifera-
tive capacity. Thus, following an oncogenic insult, the entry into senescence is considered 
an oncosuppressive process. Yet, through the accumulation of cell-autonomous features 
like genetic and epigenetic changes during the senescent period, an individual cell can 
escape from senescence while becoming plastic. Moreover, via cell non-autonomous fea-
tures like the SASP, which has a paracrine mode of action, tumorigenic capacities can be 
imparted to entire cell populations. Hence, senescence escape as well as population-level 
reprogramming through the SASP are essential pathways for the progression of epithelial 
tumors. The acquisition of plasticity by EMT can also allow cells to completely avoid se-
nescence. The propensity of a cell to bypass OIS is determined by the state of cellular dif-
ferentiation and has a major impact on the genetic history of tumor development. Further-
more, the immune system is intricately involved in senescence-mediated pro-tumor ef-
fects. First, an increasing flow of senescent cells during tumor progression can embolize 
the immune system and alter the composition of the SASP according to the genetic back-
ground of cells, thus modulating immunoediting of these cells. Second, the presence of 
cancer cells can modify the tumor microenvironment, notably through the release of lactic 
acid, preventing the elimination by the immune system of senescent cancer cells that are 
already present or are emerging. Finally, it is important to distinguish the precancerous 

Figure 3. Plasticity acquired following senescence escape leads to the modulation of innate immunity.
Senescence induced by different stimuli activates the production of an inflammatory secretory
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9. Conclusions

Senescence is essential for the sustenance of physiological processes like embryonic
development and wound healing. However, senescence can also have more prolonged,
negative effects that contribute to deteriorative conditions like fibrosis and cancer. By defi-
nition, a senescent cell is a cell that has exited the cell cycle and therefore lacks proliferative
capacity. Thus, following an oncogenic insult, the entry into senescence is considered an
oncosuppressive process. Yet, through the accumulation of cell-autonomous features like
genetic and epigenetic changes during the senescent period, an individual cell can escape
from senescence while becoming plastic. Moreover, via cell non-autonomous features like
the SASP, which has a paracrine mode of action, tumorigenic capacities can be imparted to
entire cell populations. Hence, senescence escape as well as population-level reprogram-
ming through the SASP are essential pathways for the progression of epithelial tumors.
The acquisition of plasticity by EMT can also allow cells to completely avoid senescence.
The propensity of a cell to bypass OIS is determined by the state of cellular differentiation
and has a major impact on the genetic history of tumor development. Furthermore, the
immune system is intricately involved in senescence-mediated pro-tumor effects. First,
an increasing flow of senescent cells during tumor progression can embolize the immune
system and alter the composition of the SASP according to the genetic background of cells,
thus modulating immunoediting of these cells. Second, the presence of cancer cells can
modify the tumor microenvironment, notably through the release of lactic acid, preventing
the elimination by the immune system of senescent cancer cells that are already present
or are emerging. Finally, it is important to distinguish the precancerous stage at which
the NASP and the PASP regulate the elimination of potentially cancerous senescent cells.
Similarly, the cancer stage at which the NASP allows for an increased plasticity and aggres-
siveness of tumor cells must also be determined. A potential and novel therapeutic avenue
would be to target the NASP-mediated plasticity of tumor cells, with the aim of hindering
the underlying migratory and metastatic properties.
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