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KEY POINTS

� The COVID-19 pandemic continues to surge around the globe. Nonintensive care–trained
surgeons may be called on to deploy into the critical care unit to care for these complex
patients.

� Acute respiratory failure is the most common manifestation of severe COVID-19 infection.

� COVID 19 may be considered an endothelial disease, causing pathologic changes in the
brain, heart, lungs, gastrointestinal tract, and kidneys.

� Our understanding of the pathophysiology and treatment of COVID-19 in the critical care
setting continues to evolve at a rapid pace.
Coronaviruses, a name derived from their crownlike morphology observed on electron
microscope, have been described in literature for over 70 years.1 They are enveloped,
positive single-stranded RNA viruses. These viruses are known to bind to host cells’
membrane via a spike protein that facilitates fusion between the virus and host cell.
On entry into the cell, their genome is replicated and packaged for delivery to other
cells.1,2

Coronaviruses are known to cause a variety of symptoms. Many are nonspecific,
including fever, cough, and generalized fatigue. They are often responsible for upper
and lower respiratory tract infections that can vary frommild to severe, with acute hyp-
oxic respiratory failure and acute respiratory distress syndrome (ARDS) being known
sequalae of these respiratory infections.1,3,4 Enteric, central nervous system (CNS),
renal, cardiac, and hematologic diseases can also develop as a result of
coronaviruses.5
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Within the last 2 decades, multiple variants have been responsible for widespread
outbreaks of primarily respiratory infections, including SARS-CoV and MERS-CoV in
2003 and 2012, respectively.2,3

In 2019, reports of a new variant called SARS-CoV-2 began circulating, and its
resulting disease was named COVID-19.6 By March 2020, the World Health Organiza-
tion declared this infection a global pandemic.7 At the time of this submission, COVID-
19 infected more than 230 million people, of which approximately 4.7 million have
died.8 Despite other counties having larger populations, the United States accounts
for the greatest number of deaths (more than 43 million).8

Because the number of patients with COVID-19 has surged, noncritical care–trained
and even junior physicians have been redeployed from their normal area of practice
into the intensive care unit (ICU) to mange patients with this complex disease.9–11 Or-
ganizations such as the Society for Critical Care Medicine,12 The American Thoracic
Society,13 and universities14 have rushed to fill this educational and experience gap
with “just-in-time” training.
There is a high likelihood that surgical intensivists and noncritical care–trained sur-

geons may be called up to provide critical care for patients who would typically be
cared for in a medical ICU. The purpose of this article, therefore, is to provide an over-
view of the pathophysiology, disease manifestations, and treatment options for pa-
tients with COVID-19 admitted to a surgical ICU. To accomplish this, an organ-
based, systematic approach will be used. Despite the importance of long-term com-
plications of this infection,15 the primary focus of this article is critical care.
It is important for the reader to understand that the concepts and strategies pre-

sented here are based on the best available current information. Given the rapid evo-
lution of our understanding of this complex disease, updated recommendations may
occur between manuscript submission and publication.
THE NEUROLOGIC SYSTEM

During the COVID-19 epidemic, one of the first known neurologic changes was
anosmia, leading to a worry in otherwise asymptomatic individuals of an upcoming
worse symptomatic infection. With ongoing publications, additional neurologic mani-
festations have been identified and are still being reported. Anosmia, encephalopathy,
and stroke were the most common neurologic syndromes associated with SARS-
CoV-2 infection.16 Dizziness, fatigue, headache, nausea, and confusion have also
been reported. Postinfectious complications of acute demyelinating encephalomy-
elitis, generalized myoclonus, acute transverse myelitis, Guillain–Barré syndromes,
and variants have been reported.17 With the vast array of symptoms reported in lethal
and nonlethal COVID-19 infections, an infection with the SARS-CoV-2 virus must be
included in the differential diagnosis. Imaging studies of patients with anosmia and
COVID-19 revealed hyperintensity and swelling of the olfactory bulb, consistent with
inflammation.18 Biopsy samples of anosmic patients showed SARS-CoV-2 infection
in the olfactory epithelium with associated local inflammation.18

Theories behind the mechanism of SARS-CoV-2 to cause neurologic changes are
ongoing. Entry into the CNS may be due to a “trojan horse” theory, where the
SARS-CoV-2 virus directly attaches to inflammatory cells such as lymphocytes, gran-
ulocytes, and monocytes, which all express angiotensin-converting enzyme 2 (ACE2).
The virus is then picked up by the lungs and transported throughout the body.19 The
virus is then either deposited into the CNS or targets vascular endothelial cells in the
CNS causing coagulopathy and vascular endothelial cell dysfunction, with resulting
small vessel occlusions and microhemorrhages contributing to subtle neurologic
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and neuropsychiatric changes.20 Postmortem studies on cerebral pathology show
that the virus can directly cross the blood-brain barrier, directly infiltrating astrocytes
and microglia.21 With the ACE2 receptor widely expressed in brain microvascular and
endothelial cells, the SARS-CoV-2 spike protein can directly bind to the receptor and
either damage the blood brain barrier or induce a cytokine storm causing inflammation
and neuronal damage.22,23 The subsequent neurologic changes may also be second-
ary due to direct retrograde travel of the SARS-CoV-2 virus up the axons to reach the
CNS.24

The long-term sequalae of COVID-19 infections are needing continued evaluation.
With the exaggerated response of the CNS to infection leading to meningitis, enceph-
alitis, and meningoencephalitis, continued neurologic manifestations are likely to be
associated with a COVID-19 infection if otherwise unexplained.25 A high proportion
of patients with COVID-19 in the ICU develop delirium, suggesting microvascular
and inflammatory pathologies to cause neurologic changes.26 The long recovery of
anosmic patients points toward long-term neurologic changes. The more severely
affected patients with strokes, microvascular changes, and brain damage may have
ongoing chronic issues, and further studies will elucidate associations with the
COVID-19 pandemic.
THE CARDIAC SYSTEM

There is an emerging body of evidence to show that cardiac involvement is not uncom-
mon among patients with COVID-19.27–29 The range of cardiac manifestations of the
COVID-19 disease is quite broad and requires a high degree of suspicion in order to
diagnose and adequately treat the cardiac manifestations of COVID-19. Here, the au-
thors briefly summarize the proposed pathophysiology of COVID-19 cardiac involve-
ment, discuss the range of cardiac manifestations of the SARS-CoV-2 virus, and
briefly discuss potential treatment options relevant to the surgeon caring for patients
with COVID-19.

Cardiac Pathophysiology

As described in the pulmonary section of this publication, the SARS-CoV-2 virus binds
to ACE2 receptors in type 1 and type 2 pneumocytes as well as other ACE2-
expressing cell types, then subsequently enter those ACE2-expressing cells.30 The
ACE2 receptor is found in high amounts in pericytes within adult human hearts, indi-
cating that the heart itself is susceptible to infection by the SARS-CoV-2 virus.31,32

Indeed, there is evidence to suggest that COVID-19 causes viral myocarditis via direct
myocardial cell injury.33 Compared with patients who have no underlying comorbid-
ities, patients with cardiovascular disease, diabetes, chronic obstructive pulmonary
disease, hypertension, and cancer have been shown to have a higher incidence of se-
vere/fatal COVID-19 disease. It has been shown that patients with conditions that
result in high levels of activation of the renin-angiotensin system, such as heart failure,
hypertension, and atherosclerosis, have higher expression of ACE2 receptors on their
cardiac pericytes, possibly predisposing them to more severe manifestations of car-
diac disease.31,32

In addition to direct infection, COVID-19 is known to cause a systemic inflammatory
response in severe disease states, which results in high levels of circulating cytokines
that cause injury to a host of tissues, including the reticuloendothelial system as well
as cardiomyocytes.27–30 Endothelial dysfunction is a well-established mechanism of
myocardial ischemia and dysfunction, and damage to the endothelial system caused
by this cytokine storm may result in increased metabolic demand and decreased
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cellular perfusion to the stressed myocardium, depressing cardiac systolic function
and inducing myocardial ischemia. The systemic inflammation/endothelial dysregula-
tion seen in COVID-19 has also been linked to plaque rupture and acute coronary syn-
dromes in patients with underlying coronary artery disease.28,34

Patients with COVID-19 are also at risk of secondary cardiac complications. Med-
ications used to treat COVID, such as steroids, antivirals, and other immunologic
drugs, can have cardiotoxic effects. All patients with severe illness, including patients
with COVID-19, are at risk for electrolyte disturbances that may trigger arrythmias.
Given the interaction of the SARS-CoV-2 virus with the renin-angiotensin-
aldosterone system system, hypokalemia is of particular concern and is well known
to increase susceptibility to a variety of arrythmias.28,35

Cardiac Manifestations and Treatments

Acute coronary syndrome
There have been some studies that have shown an association between COVID-19
and acute coronary syndrome (ACS).36,37 In some case series, patients presented
with classic ST-segment elevation myocardial infarction (STEMI) symptoms without
prior COVID-19 symptoms, suggesting that their ACS was not caused by severe sys-
temic inflammation.38 The pathophysiology of how COVID-19 may lead to ACS is still
uncertain; however, it seems to involve endothelial damage with resultant subendo-
cardial microthrombi (in the case of nonepicardial obstruction) or systemic inflamma-
tion leading to plaque rupture or coronary spasm (in the case of epicardial coronary
vessel obstruction).39

The treatment of ACS in the setting of COVID-19 illness is similar to the algorithm for
ACS from any other cause. In the case of STEMI presentation, early cardiac catheter
laboratory activation and coronary angiography is essential. A thorough workup
including electrocardiogram, cardiac biomarkers, coagulation studies, and possibly
echocardiography all may be indicated. In patients with demand-induced cardiac
ischemia (type II NSTEMI), treatment should focus on optimizing myocardial oxygen
delivery and reducing myocardial oxygen demand by treating the underlying disease
process. Referral to centers capable of angiography/percutaneous coronary interven-
tion is essential for patients with any history of coronary artery disease who have se-
vere COVID-19 features.

Heart failure
Multiple studies that have emerged over the last 18 months have described a link be-
tween COVID-19 and new-onset heart failure. Studies have shown that among pa-
tients with severe COVID-19, 23% to 33% of patients developed new-onset
cardiomyopathy, depressed ejection fraction, or cardiogenic shock.40–42

In some of the early studies out of Wuhan, China, nearly 50% of the patients who
died of COVID-19 developed heart failure.42 COVID-19 is well known to cause hypoxia
and acute lung injury, resulting in significant pulmonary hypertension, and this can
lead to development of right heart failure, and the clinician caring for COVID-19 patient
must maintain a high degree of suspicion for developing right ventricular failure.
Workup for potential COVID-19–induced heart failure consists of obtaining a

congestive heart failure peptide, troponin biomarkers, transthoracic or transesopha-
geal echocardiography, and in some cases cardiac MRI. For patients with suspected
right ventricular failure, hemodynamic monitoring via a pulmonary arterial catheter
may be indicated.
Treatment of COVID-19–induced heart failure is similar to that of other types of

acute heart failure. Limiting preload as well as reducing afterload, particularly in



The COVID-19 Patient 5
patients with right heart failure, is essential. Inotropic agents such as epinephrine or
dobutamine can be used to increase the contractile function of the myocardium. In pa-
tients with right ventricular failure, particularly due to pulmonary hypertension, milri-
none seems to be an effective medication at reducing the pulmonary
vasoconstriction while significantly increasing the contractile force of the right
ventricle. Inhaled vasodilators such as epoprostenol may also be used to reduce
the afterload experienced by the right heart. In severe cases, venoarterial extracorpo-
real membranous oxygenation (ECMO) may be used to provide both hemodynamic
and ventilatory support; however, the indications for initiation of VA-ECMO in patients
with COVID-19 are highly individualized and beyond the scope of this publication.
Arrythmia/sudden cardiac death
As described earlier, COVID-19 can cause injury to the heart via several mechanisms,
including hypoxia, exacerbation of underlying coronary artery disease, direct cellular
damage, and systemic inflammation.36 All types of cardiac injury can induce an arryth-
mia within the cardiac conduction system. Patients with COVID-19 are particularly
prone to deviations in serum potassium levels due to the interaction of the SARS-
CoV-2 virus with the renin-angiotensin-aldosterone pathway.36

Various types of arrhythmias have been seen in patients with COVID-19, including
high-grade atrioventricular blocks, supraventricular tachyarrythmias, and ventricular
tachyarrhythmias.43 It is imperative that clinicians be mindful of the proclivity for pa-
tients with COVID-19 to develop arrythmias, particularly in light of the various QT-
prolonging medications that may be given to these patients. Cardiac monitoring
with telemetry is essential, and regular assessment of the QTc is imperative.
Treatment of these cardiac arrythmias is no different than if they were to arise in a

non–COVID-19 patient. Correction of underlying electrolyte derangements, hemody-
namic stabilization, and possibly correction of the arrythmia are all warranted.
Thromboembolism/hypercoagulability
Studies have shown that COVID-19 tends to cause a hypercoagulable state in affected
patients.44 The hypercoagulability is likely caused by a combination of severe sys-
temic inflammation, extensive cytokine release, and endothelial damage, all of which
produce additive effects in patients with baseline hypercoagulable comorbidities.45,46

This hypercoagulable state can lead to multiple pulmonary emboli and subsequent
right heart failure and can even lead to microthrombi within the myocardium itself, pre-
senting as an acute STEMI.44

There is some early evidence to suggest that early anticoagulation is of benefit in
patients with COVID-19.47 Retrospective studies have suggested that use of enoxa-
parin or other low-molecular-weight heparins was associated with increased survival
in patients with clinical coagulopathy or elevated D-dimer.48 Recent studies are still
mixed with regard to the optimal anticoagulation strategy. One recent study showed
no benefit to intermediate-dose enoxaparin (1 mg/kg daily) compared with standard
prophylactic dosing (40 mg daily),49 whereas other observational studies have sug-
gested a mortality benefit to treatment-dose anticoagulation, particularly in patients
with more severe disease.47 The European Heart Journal has proposed an algorithmic
approach to the level of anticoagulation based on severity of disease, serum bio-
markers, level of care, and presence of thromboembolism on point-of-care ultra-
sound.50 In general, more severe cases of COVID-19 seem to necessitate higher
levels of anticoagulation; however, the optimal strategy is still yet to be
determined.51,52
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THE PULMONARY SYSTEM
Pathophysiology of COVID-19–Induced Lung Injury

The role of angiotensin-converting enzyme 2 in the lung
ACE2 has been repeatedly demonstrated to be the host receptor of SARS-CoV-2.
ACE2 is an essential component of the renin-angiotensin system (RAS). ACE is the
enzyme responsible for catalyzing the conversion of angiotensin I to angiotensin II,
which promotes the synthesis of aldosterone, vasoconstriction, and increased sodium
reabsorption in the kidney’s nephrons.2,53 Meanwhile, ACE2 inactivates angiotensin II
and cleaves it into angiotensin I. Therefore, ACE2 provides a counterbalance to ACE,
thus regulating the effect of the RAS system on the body. ACE/ACE2 also play a role in
the inflammation process, and a careful balance between proinflammatory and antiin-
flammatory pathways is maintained in healthy patients.53 In contrast to its proinflam-
matory counterpart, the antiinflammatory responsibility of ACE2 provides necessary
protection to the lung against injury.
In the lungs, ACE2 is expressed in the alveolar epithelial cells. It has mainly been

detected in type II alveolar cells. The role of these cells includes surfactant production,
movement of water across the epithelium, and restoration and regeneration of
damaged lung alveolar epithelium.54 The lung’s substantial surface area and large
concentration of ACE2 contribute to the lung’s significant vulnerability to COVID-19
in comparison to other organs.

Sars-CoV-2 and receptor binding
The interaction between ACE2 and SARS-CoV-2 has been thoroughly investigated.
Research into its binding kinetics show a 10 to 20x higher receptor preference for
SARS-CoV-2 in comparison to SARS-CoV-1, which may provide insight into why
the virus is so easily transmissible.53 Similar to how other coronaviruses bind to
host cells, it is thought the spike protein of SARS-CoV-2 interacts with ACE2, which
initiates the release of viral RNA into the epithelial cells.55

Hyperinflammation, the cytokine storm, and fibrosis
Once SARS-CoV-2 binds to ACE2, the virus is replicated and cell apoptosis occurs.
Consequently, proinflammatory cytokines are released, which upregulate the inflam-
matory reaction.55,56 ACE2 is also downregulated, reducing its antiinflammatory capa-
bilities in the lung. This local emission of cytokines, including tumor necrosis factor
alpha, interleukin-1 (IL-1), IL-6, IL-8, and monocyte chemoattractant protein 1, is
then released into systemic circulation. Homeostasis is progressively lost between
proinflammatory and antiinflammatory pathways, which leads to widespread release
of cytokines and damage to tissues, including the lung.55,56 In addition, this cytokine
storm also produces a collapse of T cells, and cellular-mediated adaptive immune
response fails to produce meaningful protection for patients with COVID-19.55 In the
lung, ARDS is a common sequela after this widespread cytokine storm. Downregula-
tion of ACE2 also leads to an increase in angiotensin II. Angiotensin II is proinflamma-
tory and profibrotic, thus contributing to the development of pulmonary fibrosis.

Pathophysiologic Modulators of COVID-19 Severity in the Lungs

Age
Age is the strongest predictor of severity of COVID-19 disease in patients.53 One study
found that patients with COVID-19 younger than 60 years had a 1.38% mortality rate
compared with 6.4% for those aged 60 years and older57; this may occur for a few rea-
sons. First, ACE2 expression may increase with age, thus creating a greater suscep-
tibility to COVID-19 in the elderly population.58 Moreover, it is widely acknowledged
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that innate and adaptive immune responses weaken with aging, predisposing older
populations to a more severe COVID-19 infection.

OBESITY

Evidence supports an association between obesity and higher mortality from COVID-
19, with obese patients having 3.4-fold greater odds of developing severe COVID-
19.59 ACE2 is widely expressed in adipocytes. As a result, when SARS-CoV-2 binds
to ACE2, the adipocytes release proinflammatory mediators that are then released
systemically andaffect other organs, including the lungs. Furthermore, it is thought
that ACE2 also downregulates pulmonary fibrosis, thus pulmonary fibrosis tends to
develop more often in obese patients.59,60

Diabetes Mellitus

Diabetic patients have a 2.95x higher risk of mortality from COVID-19 in comparison
with patients without diabetes, and they are more likely to develop a severe COVID-
19 infection, with an odds ratio of 2.58 compared with nondiabetic patients.61 Dia-
betes mellitus is known to involve a constant low-grade proinflammatory state that
consequently compounds inflammatory damage on the lungs. Furthermore, hypergly-
cemia associated with diabetes mellitus promotes dysregulation of innate and adap-
tive immune responses. Studies have demonstrated a higher prevalence of ARDS in
patients with hyperglycemia.62

Immunosuppression

Intuitively immunosuppression would be predicted to increase the risk of developing
COVID-19. A recent metanalysis did not show any significant increased risk of
COVID-19 infection for chronically immunosuppressed patients.63 The pathophysi-
ology of COVID-19 involves upregulation of proinflammatory pathways. However,
with immunosuppressed patients, immunosuppressants modulate the proinflamma-
tory pathways, which then limits the damage that COVID-19 can have on the lungs
and the rest of the body. Although, the investigators did admit that their study may
have been susceptible to selection bias, as immunosuppressed patients are more
likely to adhere to precautions to limit transmission of SARS-CoV-2.63

MANAGEMENT OF COVID-19–INDUCED RESPIRATORY FAILURE

Management of acute respiratory failure due to COVID-19 may be thought of as a ther-
apeutic pyramid,64 staring with conventional oxygen therapy, progressing to high-flow
nasal canula, noninvasive mechanical ventilation, intubation, conventional and if
needed advanced mechanical ventilation, and ultimately extracorporeal membrane
oxygenation.

High-Flow Nasal Cannula and Noninvasive Mechanical Ventilation

High-flow nasal cannula has emerged as treatment of hypoxic respiratory failure due
to COVID-19. Although data continue to evolve, this technique seems to be an effec-
tive alternative to noninvasive mechanical ventilation, delay or reduce the need for
intubation, and reduce mortality.65,66

Noninvasive ventilation, including continuous positive airway pressure and bilevel
positive airway pressure, has been successfully and safely used to treat moderate-
to-severe acute hypoxemic respiratory failure and ARDS.67,68 Preventing the need
for invasive ventilation and its potential complications, including ventilator associated
pneumonia and lung injury, is undoubtedly beneficial. In patients with acute
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hypoxemic respiratory failure treated with noninvasive ventilation, only 28% of pa-
tients required eventual endotracheal intubation.67 Meanwhile, noninvasive ventilation
was successful in 48.1% of patients with ARDS secondary to COVID-19.68

Invasive Mechanical Ventilation

The next step up in the management of respiratory failure in patients with COVID-19 is
intubation and conventional mechanical ventilation. Similar to other types of patients
with ARDS, it is recommended that patients with CVOID-19 undergo traditional lung
protective ventilation, as outlined in the ARDS net study published in 2000.69 This
type of ventilation is characterized by low tidal volume (4–8 mL/kg), high and individ-
ualized positive end-expiratoty pressure, and plateau pressures less than
30 cm H2O.69–71 It should be noted that although this approach is commonly used,
some data suggest that it may also have detrimental effects.72

Extracorporeal Membrane Oxygenation

Should invasive mechanical ventilation failure occur, ECMO may be an option. How-
ever, evidence on the utilization of ECMO to treat the pulmonary complications of
COVID-19 is inconclusive. A recent meta-analysis of 25 peer-reviewed journal articles
on the subject showed that further research needs to be performed to determine the
effectiveness of ECMO on COVID-19 pulmonary complications because a most of the
available research are case reports or case series.73

Venovenous (VV) ECMO is the most common form of ECMO used in reported
studies. Indications that were used to initiate VV-ECMO included refractory hypoxia
and hypercapnia or single organ failure. Meanwhile, venoarterial ECMO was very
rarely used in reported studies. Indications that were used included cardiogenic shock
due to cardiac injury.73 Because of the limited amount of data available, the investiga-
tors of the meta-analysis recommended caution with using ECMO in the setting of
COVID-19 until studies with larger sample sizes are performed to investigate its
efficacy.
FLUID MANAGEMENT IN PATIENTS WITH COVID-19 ACUTE RESPIRATORY DISTRESS
SYNDROME

In ARDS, regardless of cause, fluid overload can detrimentally affect patients’ out-
comes, and, consequently, conscientious fluid management is essential. Positive
pressure ventilation is known to contribute to pulmonary vasoconstriction, which pro-
duces fluid retention and interstitial edema.70,71 As a result, restrictive fluid manage-
ment is recommended, as it is associated with greater ventilator-free days.74

Unfortunately, fluid management in patients with ARDS secondary to COVID-19 has
not been thoroughly investigated.
PRONE POSITIONING

Prone positioning has long been used for ARDS and acute hypoxic respiratory fail-
ure.75,76 Over the years, when and how to use this strategy has been refined.77 Prone
positioning has now been implemented as a treatment of COVID-19 respiratory
sequelae.
Prone positioning is thought to improve oxygenation through several means. First,

lung recruitment and perfusion are optimized. Second, the functional lung size is
greatly improved. Third, evidenced on echocardiography, right heart strain is signifi-
cantly reduced by decreasing overall pulmonary resistance.70



The COVID-19 Patient 9
For awake, nonintubated patients, it has been demonstrated that simply giving
these patients supplemental oxygen in the emergency department and placing
them in prone position increases oxygen saturation from a median of 80% to
94%.78 However, studies have shown that on resupination the increased oxygenation
continues in only approximately one-half of patients.79 Even more, studies have not
demonstrated a significant difference in rates of intubation when comparing prone
awake patients with supine awake patients, although a delay to intubation has been
noted.80,81 Also, significant changes in 28-day mortality were not evidenced when
comparing proned versus supine patients.81

Prone positioning has also been used for intubated patients with COVID-19.82 In
ventilated patients, timing of initiating prone positioning is essential. If patients are
placed into prone position early in the disease course, then they are less likely to expe-
rience in-hospital mortality.83 Use of early use of the prone position seems to lead to
better oxygenation and an earlier pulmonary recovery.
THE ENTERIC SYSTEM
The Gastrointestinal System and Nutrition

Although known primarily as a respiratory ailment, COVID-19 infection has been impli-
cated in the dysfunction of every major organ system, and the gastrointestinal (GI) or-
gans are no exception. An estimated 4% of patients with COVID infection present
solely with GI complaints,84 including diarrhea, abdominal pain, nausea and vomiting,
and loss of appetite. Largemeta-analyses with thousands of subjects have shown that
prevalence of gastrointestinal symptoms among patients with COVID-19 ranged from
10% to 17.6%,85 and one study found that patients who did present with GI symptoms
(nausea, vomiting, or diarrhea) had significantly more severe symptoms of fever, fa-
tigue, and shortness of breath86 as well as delayed presentation.87 These gastrointes-
tinal symptoms begin to make sense when examining the pathophysiology of
infection; ACE2 is a known cellular attachment receptor for the COVID-19 virion,
and transmembrane protease serine 2 (TMPRSS2) has been shown to cleave the spike
protein of COVID-19, together facilitating entry into the cell.88,89 These effects are
marked in the lung tissue, whose high expressions of ACE-2 and TMPRSS2 are likely
responsible for the characteristic pulmonary symptoms of the disease. High expres-
sions of ACE-2 and TMPRSS2 are also found throughout the gastrointestinal tract,
especially in the small intestine and colon,89 and may be the culprit behind the GI ef-
fects of COVID-19.
COVID-19 virions are known to be shed in stool, creating a potential reservoir of in-

fectious virus particle.90 Seventy percent of those with fecal RNA shedding testing
fecal positive after their respiratory specimens cleared the virus,88 leading to concerns
that patients who test negative on a nasopharyngeal swab could still expose others to
active disease through fecal-oral transmission. The Centers for Disease Control and
Prevention recommends using separate bathrooms for COVID-19–positive patients.91

COVID has been shown to replicate virus in enterocytes,85 adding to the concern that
endoscopies could be high-risk aerosolizing procedures. All major GI societies have
recommended to delay any nonurgent endoscopies during the height of the
pandemic.92 Internationally, upper endoscopy and colonoscopy rates decreased by
85%,84 concerning for delayed diagnoses or progression of cancer. It has been sug-
gested that alternatives to endoscopy, such as FIT testing for colorectal cancer
screening or calprotectin for inflammatory bowel disease (IBD) diagnosis, be used
to reduce risk during the pandemic while minimizing harm from delaying endoscopic
procedures. Modeling has found that widespread FIT testing would prevent 90% of life
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years lost due to cancer diagnosis delay.84 Coronaviruses are known to be transmit-
table through a fecal-oral routes; one study in mice found exaggerated symptoms and
pathology in infected mice that had been treated with a proton pump inhibitors. This
group of mice demonstrated increased pulmonary inflammation histologically,93

raising questions about proton pump inhibitor usage and infectivity in humans but
further research is needed. ACE2 and TMPRSS2 both are key receptors involved in
cellular entry of COVID-19 virions; ACE2 is overexpressed in states of bowel inflamma-
tion,94 and TMPRSS2 is overexpressed in the ileal inflammation,84 possibly increasing
the likelihood of cellular entry and infection. Direct absorptive enterocyte injury due to
COVID-related inflammation can lead to malnutrition and secretory diarrhea.87 Malnu-
trition, whether from enterocyte injury or from poor oral intake during acute illness, can
lead to atrophied lymphoid tissue and increased bacterial translocation.95 Loss of
appetite is noted to be common (w26%)94 during COVID infections with a high prev-
alence of gustatory dysfunction, which may contribute to this90; early enteral nutrition
is recommended in patients with COVID by the American and European Societies for
Parental and Enteral Nutrition, even in proned patients.95 There are multiple cytokines
released in the course of infection that are known to alter gut microbiota94; some pa-
tients demonstrate decreased intestinal probiotics92 and increased opportunistic gut
bacteria that have been known to cause bacteremia, changes that were shown to
persist even after clearance of COVID-19.85

GI bleeding does not seem to be increased among patients with COVID but a study
among New York patients with GI bleeds found that they tended to have significantly
poorer outcomes during the pandemic, possibly related to patient’s reluctance to pre-
sent to hospital during an outbreak along with an increased threshold to perform
endoscopy in the setting of widespread COVID-19.84

A special population to consider in the COVID era is patients with IBD. ACE2 expres-
sion has been shown to be elevated during active IBD.94 An analysis of patients on the
SECURE-IBD registry found that in patients with IBD, steroid and mesalamine use has
been shown to be associated with higher rates of mortality from COVID-19, with
almost 20% of patients with COVID who require steroid use for their IBD experiencing
ICU admission, mechanical ventilation, or death as part of their clinical course of
COVID-19.84 In contrast, only 2% to 3%of patients on biological monotherapy for their
IBD experienced these adverse events.
The Liver

In the setting of patients without preexisting liver disease, COVID-19–associated liver
injury tends to be mild in most cases. Elevated aspartate transaminase/alanine amino-
transferase has been found to be the most common hepatic manifestation of the dis-
ease at an estimated rate of 20% to 30%.92. However, Hajifathalian and colleagues96

reported that an association between risk of ICU admission/mortality and the pres-
ence of acute liver injury on admission. Potential mechanisms to explain this process
include drug-induced liver injury, direct COVID-induced hepatitis/myositis, and ACE2-
mediated binding and damage. ACE2 receptors were found to be high in cholangio-
cytes,97 and although normally were low in hepatocytes their expression has been
shown to be inducible by hypoxia and inflammation or preexisting liver disease,98 hyp-
oxic injury, indirect injury due to systemic inflammation and cytokines, ventilator-
associated hepatic congestion, and aggravation of preexisting viral hepatitis.99

Remdesivir has been found in a large trial (n 5 1073) to increase liver enzymes88

with 2.5% and 3.6% of patients in the 5- and 10-day courses, respectively, discontin-
uing treatment due to these elevated liver enzymes.100
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Other drugs commonly used in the off-label treatment of COVID-19 such as
hydroxychloroquine, corticosteroids, and acetaminophen also have known hepa-
totoxic potential.98 Systemic inflammatory response syndrome–induced markers
of cholestasis, such as bile duct proliferation, bile plugs, and inflammatory infil-
trates, have been found in autopsy studies of patients with COVID.98 Beyond
the frequently encountered mild acute liver injury, COVID-19 can have severe im-
plications for patients with preexisting liver problems. Chronic liver disease was
associated with a 60% increased risk of mortality from COVID-19, and frequent
hepatic decompensation has been reported among this population during acute
infection.84

Chronic liver disease can also affect COVID treatment options for patients; for
example, patients with decompensated cirrhosis are recommended to not receive
remdesivir, one of the only antivirals approved to treat COVID-19.84

The pandemic has also affected liver transplant programs around the globe; for pro-
spective transplant candidates, it is recommended that transplant be limited to high
MELD score patients or those with high risk of decompensation/hepatocellular carci-
noma progression, especially given the decreased number of organs procured during
the pandemic.101 It is also unanimously recommended to continue immunosuppres-
sive therapy in postliver transplant patients throughout the COVID pandemic, given
the increased risk for rejection.101

The Pancreas

Pancreatic acinar cells do express ACE2 receptors, and it was theorized that this
could lead to direct viral-mediated pancreatic damage, but despite several early re-
ports of COVID-associated acute pancreatitis, acute pancreatitis seems to be a rare
finding in people infected with COVID. One retrospective study of 63,000 patients
with COVID in Spain found an incidence of only 0.07% of acute pancreatitis among
these patients.102 However, patients with COVID were much more likely to be diag-
nosed with idiopathic pancreatitis versus gallstone or alcoholic pancreatitis (69%
compared with 21%), although this was thought to be related to pancreatitis due
to widespread multiorgan failure. Many early studies did not use uniform definitions
of pancreatitis but instead used elevated serum amylase as an indicator even in the
absence of abdominal symptoms.103 Amylase was found to be elevated in 17.9% of
severe COVID cases versus only 1.9% of nonsevere COVID-19 cases, although
most of these had no other signs of pancreatitis104; elevated amylase is not specific
for pancreatitis and could be elevated due to cytokine storm or multiorgan failure
that can be seen in severe COVID infection. Lung injury and increased intestinal
permeability seen in the setting of COVID infection both could also cause increased
serum amylase levels. Pancreatic cancer has been associated with increased ACE2
expression, possibly raising the baseline risk for infection among patients with
pancreatic adenocarcinoma.104 Similar to other cancers, the immunosuppressive
effects of chemotherapy can worsen the effects of COVID; one study found a
40% rate of severe adverse events, including death, associated with pancreatic
cancer among patients with COVID-19 as opposed to just 8% among those without
cancer.105
THE RENAL SYSTEM

Acute kidney injury in the setting of COVID-19 may be the result of direct viral injury
to the kidney106 and/or dysfunctions in other organ systems that secondarily affect
the kidney.107 Although exact pathophysiologic mechanisms remain
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controversial,108 the development of acute kidney injury or worsening of chronic kid-
ney disease is associated with a worse prognosis.109 Treatment approaches used
for acute kidney injury in patients with COVID-19 are similar to those used in non–
COVID-19 patients.110
THE VASCULAR AND HEMATOLOGICAL SYSTEMS

During normal times of health, the vascular endothelium has many roles: immune
competence, inflammatory equilibrium, maintaining tight junctional barriers, and aid-
ing in hemodynamic stability. It is well known that the vascular endothelium also plays
a significant role in the thrombotic and fibrinolytic pathways. During the COVID-19
epidemic, studies have been able to elucidate many vascular complications associ-
ated with infection with this novel virus apart from the known respiratory problems.
Thromboembolic complications have been reported affecting not just the vasculature
of the lungs111 but also the brain,112 heart,113 and extremities.114 The incidence of
thrombotic complications in the ICU ranges from 16% to 69%.114 Current clinical
data indicate both deep vein thrombosis and pulmonary embolisms are the most
frequent thrombotic events.115,116 The mechanisms by which this occurs is related
to the damage caused by virus on endothelial cells and subsequent inflammatory re-
action and activation of the coagulation cascade. The vascular endothelial cells have
vast expression of ACE2, including alveolar cells of the lung.117 Entry of the SARS-
CoV-2 virus into the endothelial cell occurs by binding of the spike (S) protein to the
ACE2 receptors, where the SARS-CoV-2 virus has a nearly 10-fold greater affinity
for ACE2 versus its SARS-CoV-1, also known as severe acute respiratory syn-
drome.118 This entry into the endothelial cell then triggers activation of the immune
system followed by cytokine release and subsequent activation of macrophages.
This hyperinflammatory state leads to expression of IL-1, IL-6, damage-associated
molecular patterns, and recruitment of macrophages to the infected cells leading to
endothelial injury. Damaged endothelial cells increase vascular permeability and acti-
vate the coagulation cascade.119 In patients with COVID-19, this heightened innate
immune system creates a prothrombotic state and endothelial cell injury. Injury then
leads to plasminogen activator inhibitor-1 upregulation, which inhibits fibrinolysis. Tis-
sue factor is increased, leading to procoagulation, as well as release of vonWillebrand
factor creating intraluminal thrombus. Studies have demonstrated an increase in
fibrinogen levels as well.120,121 D-dimer levels have been elevated, as well as fibrin
degradation products increased.122,123

Autopsy reports in patients with COVID-19 revealed increased pulmonary endo-
thelial inclusions and increased capillary microthrombi.124,125 Questions on how
to best treat this hypercoagulative state remain active. An observational study found
a lower mortality and risk of intubation in patients with COVID-19 with either thera-
peutic or prophylactic anticoagulation compared with no anticoagulation.126 No
benefit was seen comparing prophylactic with therapeutic anticoagulation. A recent
recommendation for patients with COVID-19 recommends prophylactic low-
molecular-weight heparin given for all patients with COVID-19 in the absence of
active bleeding, low platelet counts less than 25,000, and fibrinogen levels less
than 0.5 g/L.127

Other hematologic issues may also occur in patients with COVID-19. Lymphopenia
does develop in more than 50% of patients with COVID-19 infection.128 The O and Rh
blood groups may be associated with a slightly lower risk for SARS-CoV-2 infection
and severe COVID-19 illness. However, the reasons why and the significance of this
association have yet to be determined.129
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PHARMACOLOGIC TREATMENTS AND CONVALESCENT PLASMA
Lopinavir-Ritonavir

Lopinavir-ritonavir is a protease inhibitor and nucleoside analogue combination medi-
cation primarily used to treat human immunodeficiency virus. It was theorized that its
dual antiviral nature would be effective in treating COVID-19. However, a systematic
risk-benefit analysis of 7 peer reviewed journal articles did not demonstrate a clear
benefit to using this medication for severe COVID-19 infection. Dangerous side effects
include prolonged QT interval and inhibitor of cytochrome P450.130

Chloroquine and Hydroxychloroquine

Chloroquine and hydroxychloroquine are medications that have multiple antiviral
mechanisms, including inhibition of viral entry and release of virus into the cell, along
with immunomodularity activities.130 Despite its increase in popularity in 2020 as a
treatment of COVID-19, data are inconclusive in terms of its potential benefit.
Dangerous side effects include prolonged QT interval and hypoglycemia.130–132

Dexamethasone

Dexamethasone is a corticosteroid that has been used to treat COVID-19. A 10-day
course has been demonstrated by multiple studies and trials, including the RECOV-
ERY and CoDEX trials, to have a significant decrease in 28-day mortality, number of
ventilator-free days, and incidence of hypoxia.133,134 As a result, dexamethasone
has become standard of care in the treatment of COVID-19.135 Despite its benefit in
the treatment of COVID-19, dexamethasone is also associated with several complica-
tions including glaucoma, hyperglycemia, and hypertension.136

Remdesivir

Remdesivir is an antiviral nucleoside analogue known to inhibit RNA polymerase that
has also been used to treat COVID-19. It has been shown to significantly reduce re-
covery time and has been associated with higher odds of clinical improvement.
137–140 Side effects are generally mild, but more severe ones include hypotension
and cardiac arrythmias.

CONVALESCENT PLASMA

Convalescent plasma treatment of infectious diseases is characterized by immediate
immunity through the administration of passive antibodies.141 A systematic report of 5
studies on convalescent plasma and COVID-19 demonstrated there may be clinical
benefit, and it seems to be safe. Almost all patients who were administered convales-
cent plasma had symptomatic improvement, and zero mortality was reported.142

However, a recommendation was made for a large multicenter clinical trial to provide
stronger evidence. Recommendations for ideal plasma donors include donors who
donate 28 days after the onset of symptoms and had fevers for more than 3 days.143

SUMMARY

COVID-19 continues to ebb and flow, as waves, across the globe. During times of
surge, nonintensive care–trained surgeons may be deployed into a critical care
setting, to care for patients who would normally be treated in a medical ICU. Although
primarily a pulmonary disease, COVID-19 has many extrapulmonary manifestations.
The interaction between different organ systems and COVID-19’s effect on each
create difficulty in managing these patients. This difficulty is further exacerbated by
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our incomplete understanding and constantly evolving guidelines. The authors wish
health for our patients and safety for those who provide care at this historically chal-
lenging time.
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