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Abstract:  The  incidence  of  infections  from  severe  acute  respiratory  syndrome  coronavirus  2

(SARS-CoV-2), the etiologic agent for coronavirus disease 2019 (COVID-19), has dramatically es-

calated following the initial outbreak in China, in late 2019, resulting in a global pandemic with

millions of deaths. Although the majority of infected patients survive, and the rapid advent and de-

ployment of vaccines have afforded increased immunity against SARS-CoV-2, long-term sequelae

of SARS-CoV-2 infection have become increasingly recognized. These include, but are not limited

to, chronic pulmonary disease, cardiovascular disorders, and proinflammatory-associated neurologi-

cal dysfunction that may lead to psychological and neurocognitive impairment. A major compo-

nent of cognitive dysfunction is operationally categorized as “brain fog” which comprises difficul-

ty concentrating, forgetfulness, confusion, depression, and fatigue. Multiple parameters associated

with long-term neuropsychiatric sequelae of SARS-CoV-2 infection have been detailed in clinical

studies. Empirically elucidated mechanisms associated with the neuropsychiatric manifestations of

COVID-19 are by nature complex, but broad-based working models have focused on mitochon-

drial dysregulation, leading to systemic reductions of metabolic activity and cellular bioenergetics

within the CNS structures. Multiple factors underlying the expression of brain fog may facilitate fu-

ture pathogenic insults, leading to repetitive cycles of viral and bacterial propagation. Interestingly,

diverse neurocognitive sequelae associated with COVID-19 are not dissimilar from those observed

in other historical pandemics, thereby providing a broad and integrative perspective on potential

common mechanisms of CNS dysfunction subsequent to viral infection. Poor mental health status

may be reciprocally linked to compromised immune processes and enhanced susceptibility to infec-

tion by diverse pathogens. By extrapolation, we contend that COVID-19 may potentiate the severi-

ty of neurological/neurocognitive deficits in patients afflicted by well-studied neurodegenerative di-

sorders, such as Alzheimer's disease and Parkinson’s disease. Accordingly, the prevention, diagno-

sis, and management of sustained neuropsychiatric manifestations of COVID-19 are pivotal health

care directives and provide a compelling rationale for careful monitoring of infected patients, as

early mitigation efforts may reduce short- and long-term complications.

Keywords: Central nervous system, neuroinflammation, neuropsychiatric disease, mitochondria, microglia, SARS-CoV-2,

COVID-19, long COVID, cognitive impairment, brain fog, depression, anxiety.

1. INTRODUCTION

1.1. Clinical Signs and Symptoms

While  the  respiratory  system  is  the  predominant  entry
route  of  severe  acute  respiratory  syndrome coronavirus  (2
SAR-CoV-2)  infection,  extensive  evidence  strongly
suggests that COVID-19 is a progressive systemic disease

*Address  correspondence  to  this  author  at  the  Center  for  Cognitive  and
Molecular  Neuroscience,  First  Faculty  of  Medicine,  Charles  University,
Prague, Czech Republic; E-mail: gstefano@sunynri.org

[1]. A wide range of COVID-19 symptoms are reported in
clinical studies that implicate infective processes in multiple
organ  systems  that  include  central  nervous  system  (CNS)
structures [2, 3]. Indeed, alterations in brain function can re-
sult from infection with SARS-CoV-2; in one study, up to
80% of hospitalized patients experienced neurological symp-
toms [4]. The most characteristic neurological finding associ-
ated with COVID-19 is  “brain fog,” a broad term that  de-
scribes fatigue, confusion, delirium and an impaired ability
to concentrate, leading to decreased memory, cognition and
executive  function  [5].  This  phenomenon  appears  distinct
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from acutely altered cognition in the setting of severe diseas-
es, such as those experienced by hospitalized patients with
or without respiratory compromise [6].  It  is  of major con-
cern that symptoms of brain fog may persist several months
after the initial resolution of symptoms [7].

Other common neuropsychiatric findings in COVID-19
patients  include  functional  behavioral  deficits  associated
with depressive disorders, delirium, mania, autism spectrum
disorders  and psychosis  [8-12].  Post-infectious  syndromes
associated with COVID-19 include acute demyelinating en-
cephalomyelitis,  necrotizing  encephalopathy,  generalized
myoclonus and acute transverse myelitis [13]. Atypical Bick-
erstaff's encephalitis, a rare post-infectious neurological syn-
drome characterized by impaired consciousness, ataxia, are-
flexia, and extensor plantar responses, has also been report-
ed as a potential functional consequence of COVID-19 [14].

A diagnosis of neuropsychiatric complications of comor-
bid COVID-19 is determined by careful clinical history and
examination. Modern neuroimaging modalities may assist in
establishing objective neurological changes subsequent to vi-
ral infection. Brain imaging by fluid-attenuated inversion re-
covery magnetic resonance imaging (FLAIR-MRI) in some
COVID-19  patients  with  neurological  involvement  has
shown  neuroradiological  patterns  in  the  medial  temporal
lobe, multifocal lesions in the cerebral white matter, and mi-
crohemorrhages  [15].  Some  studies  have  also  found  evi-
dence of ischemic vascular damage, leptomeningeal enhance-
ment, and encephalitis [16, 17]. Involvement of the olfactory
bulb, amygdala, entorhinal area, temporal and frontal neocor-
tex, and dorsal medulla abnormalities, has also been report-
ed  in  rare  instances  [18].  Importantly,  significant  cases  of
neurocognitive and neuropsychiatric disease may be present
in  the  absence  of  abnormal  neuroimaging  patterns.  More-
over, clear evidences of classic neuropathological signs of vi-
ral central nervous system (CNS) infections, including lym-
phocytic leptomeningitis, microglial nodules, pronounced or
frequent perivascular lymphocytic cuffing, focal demyelina-
tion  or  viral  inclusions,  are  not  frequently  encountered  in
even severe COVID-19 cases [19, 20]. Thus, controversies
surround the utility of neuroimaging in the diagnosis and cor-
relation of neurological findings in patients with COVID-19,
even in those with severe symptoms.

The  difficulties  in  the  objective  measurement  of  neu-
ropsychiatric manifestations of COVID-19 are sharply con-
trasted by those established for loss of pulmonary function
and multiple organ failure associated with COVID-19. For
example, COVID-19 cases with significant respiratory symp-
toms, acute respiratory distress syndrome with diffuse alveo-
lar damage, diffuse thrombotic alveolar microvascular occlu-
sion, and inflammatory mediator-associated airway inflam-
mation, are easily identifiable by evidence-based radiograph-
ical and histological criteria [21]. These findings aid in the
rapid diagnosis and implementation of therapies to improve
pulmonary function. However, neuropsychiatric symptoms
are often refractory to characterization by established diag-
nostic criteria and may delay detailed analyses of this vital
aspect of the disease course of COVID-19.

A diagnosis of direct neuropsychiatric manifestations of
COVID-19  is  potentially  confounded  by  non-selective  or
generalized effects  of  the pandemic on mental  health.  En-
forced social  isolation,  limited social  gatherings,  and self-
-quarantine  protocols,  deemed  necessary  to  reduce  the
spread of the virus have the potential to cause or exacerbate
serious mental illnesses, including depression, anxiety, and
sleep disorders [9]. There is also a component of post-trau-
matic  stress  disorder  (PTSD),  which  was  prevalent  after
SARS-CoV-1  [22,  23],  and  has  been  proposed  to  have  a
strong  effect  on  the  impaired  neurocognitive  function  of
SARS-CoV-2 patients (Fig. 1).

2. NEUROPSYCHIATRIC SEQUELAE OF COVID-19:
A COMPARATIVE ANALYSIS

To fully elucidate the long-term neurological manifesta-
tions of COVID-19, it  is important to establish an unders-
tanding of the epidemiology and medical history of signifi-
cant past viral pandemics and other endemics with regard to
documented  neurocognitive  outcomes  [12].  Over  the  past
century, the major viral pandemics have included the influen-
za pandemic of 1889 and 1892 (Russian flu), the Spanish flu
pandemic (1918-1920), and the SARS pandemic. During the
Russian flu, documented long-term neurological effects in-
cluded  neuralgia,  neurasthenia,  neuritis,  nerve  exhaustion,
gripped  catalepsy,  psychosis,  prostration,  inertia,  anxiety
and  paranoia  [24].

The  long-term  neurological  effects  of  the  Spanish  flu
pandemic included Parkinsonism, catatonia, and encephalitis
lethargica, a syndrome that involves clinical presentation of
meningitis and delirium [25, 26]. While direct causality was
not  established  between  the  Spanish  flu  and  encephalitis
lethargica,  isolated  regions  of  the  world  that  were  not  ex-
posed to the pandemic demonstrated little to no cases of this
syndrome, whereas areas significantly associated with viral
infection experienced increasing cases, coinciding with peak
episodes  of  the  pandemic  and  declining  rapidly  thereafter
[25]. Other localized epidemics with neurological symptoms
mimicking COVID-19 include the 1935 outbreak of “atypi-
cal poliomyelitis,” which predominantly afflicted healthcare
providers at the Los Angeles County [27, 28]. The affected
hospital staff demonstrated symptoms ranging from severe
headache, painful oculomotion, to gastrointestinal symptoms
and brain involvement characterized by dullness and an ina-
bility to concentrate [27, 28]. There was a high incidence of
diphtheria at the time of this outbreak, and some of these pa-
tients had positive diphtheria culture along with symptoms
of pharyngitis. Distinguishing this entity from poliomyelitis,
cerebrospinal fluid findings of the majority of patients with
atypical poliomyelitis were normal.

Perhaps the most striking post-viral syndrome that mim-
ics the general characteristics of COVID-19 is the so-called
benign myalgic encephalomyelitis [29]. This clinical entity
was first described in the 1950s and was initially considered
to be a variant of poliomyelitis. Strikingly, the symptoms of
headache,  myalgia,  malaise,  and  paresis  were  more  pro-
nounced in females, and were not associated with fever or
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Fig. (1). Theoretical pathways developed by eminent theoretical biologists strongly suggest that ssDNA and dsDNA genomes have evolved
from primordial RNA constructs in protocellular and protoviral packages. Within the primordial RNA world, we surmise that the persistence
of protocellular and protoviral genetic material was insured by packaging into protective phospholipid-and protein-based membrane vesicles.
Accordingly, within the realm of the last universal common ancestor (LUCA) theory, co-evolution of DNA viruses within archaea and
prokaryotes and RNA viruses within eukaryotes likely emerged due to extensive adaptive complexity or differentiation of viral membranes
[49, 50]. In simple terms, viral-mediated horizontal transfer of genetic information may be physically dependent on conformational matching
or shape recognition processes driving high-affinity binding interactions of complementary viral and extracellular host membrane domains.
Thus, given over 3.5 billion years of viral and cellular co-evolution, it is not surprising that intracellular communication between infective
and replicating viruses and host mitochondria is extensive due to the endosymbiont origin of these eukaryotic organelles. Currently, these
strong evolutionary considerations underlie the existential role of SARS-CoV-2 to effectively hijack host mitochondrial energy production to
drive replicative processes. COVID-19 may also result in chronic alteration of brain metabolism resulting in long-term cognitive and affec-
tive behavioral deficits. (A higher resolution/colour version of this figure is available in the electronic copy of the article).

death even when symptoms persisted for several years. Simi-
lar to COVID-19, it was not unusual for a significant propor-
tion of patients who did not achieve complete remission of
symptoms  within  3  months  of  onset  to  have  a  fluctuating
clinical  course,  with  remissions  and  flares  of  depression,
emotional lability, and a lack of concentration [29]. Interest-
ingly, the etiologic cause of benign myalgic encephalomyeli-
tis was never identified. A more common, generalizable ex-

tension of benign myalgic encephalomyelitis is post-infec-
tious  fatigue  syndrome,  which  is  a  subtype  of  chronic  fa-
tigue syndrome [30]. Indeed, diagnostic criteria for post-in-
fectious fatigue syndrome are identical with those of chronic
fatigue  syndrome,  except  that  those  symptoms  associated
with the former must, by definition, be preceded by a known
infection.
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Notably, whereas chronic fatigue syndrome and related
post-infectious fatigue syndromes are more prevalent in fe-
males,  short-term  COVID-19  severity  is  associated  with
poorer outcomes in males as compared to females [31, 32].
By contrast, recent studies suggest that long-COVID symp-
toms, including delayed neurological sequelae, may follow
reverse female sex bias compared to the systemic manifesta-
tions of the disease [33].

3. PATHOGENESIS

How  COVID-19  leads  to  neurocognitive  dysfunction
and  psychiatric  incidence  remains  largely  unknown.  Un-
doubtedly,  some  of  the  acute  manifestations  of  anxiety  in
some  settings  of  high-risk  patients  may  be  potentially  at-
tributed to heightened attention and publicity of a novel dis-
ease at a time where societies are beleaguered by disinforma-
tion and current incomplete understanding of a rapidly evolv-
ing  pandemic.  As  previously  described,  limited  social
events, changes in routines, and implementation of isolation
protocols for infected individuals likely exacerbate pre-exist-
ing  mental  health  challenges  in  our  society.  However,  the
presence of persistent sequelae and the evolution of the dis-
ease in previously healthy individuals, coupled with ample
evidence  of  post-infectious  neuropsychiatric  syndromes,
raise the possibility of clear viral pathogenesis that warrants
detailed understanding.  In  this  regard,  the  potential  mech-
anisms, operationally dichotomized into direct and indirect
etiologies, are discussed.

3.1. Direct Mechanisms

The underlying rationale for direct functional linkage of
COVID-19 psychological and neurological dysfunctions is
based on long-held views that coronaviruses are neurotropic
[34]. This may be supported by the empirical demonstration
of  the  presence  of  SARS-CoV-2  genomic  RNA in  human
CNS tissues and cerebrospinal fluid [35]. Indeed, the puta-
tive  receptor  for  the  SARS-CoV-2  spike  (S)  protein,  an-
giotensin-converting enzyme 2 (ACE2), is widely expressed
in neurons and non-neuronal brain cells, including microvas-
cular endothelial cells and oligodendrocytes, thereby support-
ing direct neuro-invasion via receptor-mediated cellular en-
try [36-38]. Empirical studies have demonstrated that the se-
vere  neurological  sequelae  of  rabies  virus  (RABV)  infec-
tions  are  mediated  by  neuroinvasion  or  CNS  transport  of
virus  tightly  bound  to  the  nicotinic  acetylcholine  receptor
(nAChR) [39, 40]. A similar mechanism of direct neuroinva-
sion has been proposed to explain the severe neurological de-
ficits associated with SARS-CoV-2 infections via the forma-
tion of SARS-CoV-2/nAChR complexes in primary olfacto-
ry nerve terminals and/or peripheral trigeminal sensory ter-
minal structures located within the olfactory epithelium fol-
lowed by orthograde or retrograde transport into the CNS. In-
terestingly, snake venom toxins have been demonstrated to
be high-affinity competitive antagonists of the nAChR and
homologous regions of 4-5 amino acids within the SARS--
CoV-2 spike protein,  and aligned sequences in alpha-bun-
garotoxin  and  alpha-cobratoxin  have  been  identified  that
suggest  a  common  binding  affinity  to  a7-nACh  receptors

[39, 40]. Accordingly, these defined pathways may directly
lead to tropism and viral-induced pathologies [5].

Further evidence for direct mechanisms of SARS-CoV-2
neuropathology  is  provided  by  post-mortem  studies  of
COVID-19 patients and the use of advanced 3D microfluid
models  of  the  human  blood  brain  barrier  (BBB).  These
studies reveal three essential features [36, 41]. First, ACE2
is widely expressed, not only in brain microvascular endothe-
lial cells but also in other components of the BBB, including
astrocytes and pericytes. Indeed, astrocytic and neuronal in-
jury in COVID-19 has been demonstrated by observing ele-
vated levels of glial fibrillary acidic protein (GFAP) [42]. Se-
cond, the S protein can directly damage the integrity of the
BBB to varying degrees [36, 41]. Third, the S protein can in-
duce  an  inflammatory  response  and  transcriptional  repro-
gramming of  cellular  components  of  the BBB, even when
evidence of direct infection by the virus is absent [36, 41].
These observations are confirmed and expanded by a clini-
cal study employing molecular profiling of 65,309 single-nu-
cleus transcriptomes from frontal cortex and choroid plexus
samples obtained from post-mortem brain of 8 patients with
COVID-19 in comparison to those obtained from 14 control
individuals [43]. First, differential alterations in the expres-
sion  of  functional  genes  were  observed  in  choroid  plexus
cells that relay peripheral inflammatory signals to activated
brain  microglia  and  astrocyte  subpopulations  associated
with COVID-19. Consistent with previous reports of dysreg-
ulation of numerous brain and choroid plexus cell types in
COVID-19 patients, these findings also suggest that severe
disruption of the BBB may significantly facilitate direct ac-
cess of the virus to cortical neurons involved in the complex
processing of cognitive information. These contentions are
consistent  with  the  observation  of  functionally  disruptive
gene expression changes linked to synaptic deficits in corti-
cal L2/3 excitatory neurons and resident VIP-expressing in-
terneurons from COVID-19 patient samples, which indicate
dysfunction in upper-layer cortical circuitry associated with
processing and integration of complex cognitive behaviors
[43].

In addition to direct CNS entry via  compromised BBB
cells,  SARS-CoV-2 may translocate  to  the  brain  via  other
routes. These include trans-synaptic, optic and olfactory neu-
rons, and vascular endothelial cells [39, 44]. Given that simi-
lar receptor interactions are required for cellular entry, it is
perhaps unsurprising that previous studies have confirmed
similar routes of infection by the SARS-CoV-1. Studies con-
firm the direct replication of SARS-CoV-1 in brain tissue,
and  the  pathological  assessment  of  the  brains  of  patients
with SARS-CoV-1 showed that the virus was present in the
cytoplasm of cortical  and hypothalamic neurons [45].  The
pathological  changes  of  brain  tissue  from  patients  with
SARS-CoV-1 associated encephalitis 1 also included neuron-
al necrosis, glial cell hyperplasia, and infiltration of mono-
cytes and T cells [35]. SARS-CoV-1 was also shown to di-
rectly cause the death of cerebral neurons in the absence of
encephalitis in an ACE2-expressing transgenic mouse model
[36]. These mechanisms support the appearance of neurolog-
ical  symptoms,  the  formation  of  fatal  microthrombi,  and
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even  the  occurrence  of  encephalitis  associated  with
COVID-19,  providing  pathologic  correlates  to  the  neuroi-
maging findings previously noted and discussed.

3.1.1. Mitochondria Hijacking
The potential molecular mechanisms of COVID-19-asso-

ciated neuropathology appear to be critically linked to the
“parasitic” hijacking of mitochondrial bioenergetics in order
to support its own biosynthetic replicative processes. In addi-
tion to its existential role in providing the cell with requisite
ATP production, the mitochondrion maintains complex intra-
cellular regulatory processes that are functionally associated
with innate immune responses. Following a pathogenic as-
sault by viral or bacterial agents, mitochondrial-mediated sig-
naling is also functionally synchronized with the activation
of  classes  of  leukocytes  involved  in  adaptive  immune  re-
sponses [46] (Fig. 1).  As noted, immune energy processes
would be a sensitive and an ideal target for viruses, in gener-
al, in their strategy for reproduction, that is, hijacking the en-
ergy  producing  system  to  complement  the  host  genome
take-over. The generation of ATP is fundamental for neuro-
transmission  and  generation  of  membrane  potential  along
neuronal  axons.  Moreover,  ATP  is  required  for  metabolic
clearance of pathological  deposits,  including amyloid-beta
plaque of Alzheimer' disease. Consequently, recent studies
have shown that pathways that impair the metabolic fitness
not only of neurons but other supportive cells, including mi-
croglia, compromise neurological function [47, 48].

One possible mechanism for long-term neurological se-
quelae of SARS-CoV-2 is the direct infection of mitochon-
dria, leading to the integration of the viral genome, potential-
ly directly impairing mitochondrial energy metabolism via
targeted action on oxygen availability and utilization [51]. A
computational modeling approach has observed a localized
enrichment  of  genomic  and  subgenomic  SARS-CoV-2  5′
and  3′untranslated  RNA  sequences  within  host  mitochon-
drial matrix and nucleolar structures. This potential for host
mitochondrial  residency  and  integration  into  the  host
genome portends direct co-option of the metabolic center of
the cell, leading to the production of a favorable metabolic
support  system  to  the  virus  for  replication  and  other
metabolically demanding cell cycle functions [52-54] (Fig.
1).

The hijacking of the cellular metabolic hub provides nu-
merous benefits to the virus. This includes activation of in-
flammatory  pathways,  including  inflammasomes,  which
may  inadvertently  suppress  host  innate  and  adaptive  im-
mune responses [54-56].  Viral metabolic control may also
account for long-term neurological dysfunction. Where mi-
croglia are involved, this may lead to impaired metabolic fit-
ness, which leads to impaired autophagy and metabolic sup-
port of basic function, including the clearance of pathologic
plaques  and  deposits.  Ultimately,  this  could  promote  neu-
rocognitive  decline,  which  is  an  emerging  concept  of
Alzheimer’s disease pathobiology [48, 57]. Secondly, mito-
chondria-induced  neuroinflammation  may  drive  Alzhei-
mer’s disease via mechanisms similar to those described for

other neuroinflammatory pathways [58]. Interestingly, paral-
lels in the pathological processes of HIV and SARS-CoV-2
may be found, indicating these processes to emerge over evo-
lutionary  time  and  settled  on  common  critical  substrates
[59].  It  is  important to note that viral  hijacking of cellular
metabolic function is not unique to SARS-CoV-2 or coron-
aviruses. Such a mechanism has been proposed for other in-
fections,  such as  the  Ebola,  Zika,  and influenza A viruses
[55].

3.1.2. Autophagy
To achieve maximized replicative processes, viruses con-

form to simple survival laws. It is in the interest of the patho-
gen  to  maintain  the  integrity  of  the  infected  host  cells,  at
least throughout the incubation phase of the virus. Thus, pro-
cesses that initiate apoptosis may be halted to guarantee the
formation of the greatest numbers of viral progenies possi-
ble [60]. However, the spread or persistence of the virus also
involves the induction of apoptotic cell death of host cells to
trigger the release of newly synthesized viral particles [61].
Thus, a fine balance between timing and extent of host cellu-
lar death must be navigated by the virus to optimize infectivi-
ty, replication, and spread. Infected host cells accumulate au-
tophagosomes to activate autophagy-linked apoptosis, aim-
ing to cut off the loop of virus replication. Therefore, it is in
the  interest  of  a  virus  to  delay  aggregation  of  autophago-
somes in the infected host cells at the beginning phase of in-
fection, while promoting this process in the later life cycle
may facilitate spread outside the host [60]. Although the rela-
tionship between SARS-CoV-2 and autophagy currently re-
mains unclear, possible mutually beneficial interactions can-
not be completely ruled out.

3.2. Indirect Mechanisms

3.2.1. Collateral Brain Injury from Hypoxia
The lung has been established as the major entry route of

COVID-19 into the systemic circulation. COVID-19-associ-
ated pneumonia may result in acute respiratory distress syn-
drome,  hypoxemia  and  acidosis  [21,  62].  As  oxygenation
and ventilation are essential for vital organ function, the de-
gree  of  initial  lung  damage  is  predictably  associated  with
short and long-term effects of COVID-19 on cardiovascular
and  neurological  systems  [62].  Under  hypoxic  conditions,
neurons with the highest oxygen demand become dysfunctio-
nal given their high metabolic demand. Thus, even brief epi-
sodes of poor respiratory impairment may lead to cognitive
impairment. The limitation for this potential mechanism lies
in the fact that several patients who develop long-term neu-
rocognitive decline demonstrate complete recovery of their
initial  course,  and  sometimes  do  not  present  with  severe
symptoms  at  the  time  of  diagnosis  [63].  Thus,  alternative
possibilities must account for these disparate results.

3.2.2. Cytokine Storm
The systemic increase in inflammatory mediators as a po-

tential host defense response to pathogens, termed the ‘cy-
tokine storm,’ may explain the multi-organ damage found in
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Fig. (2). A summary of the direct and indirect mechanisms by which SARS-CoV-2 affects the CNS, leading to neuropsychiatric symptoms;
direct routes of access to the brain, disruption of the blood brain barrier, trans-synaptic, optic and olfactory nerve channels. Once these entry
routes are breached, the virus may directly infect neurons and other supportive non-neuronal cells. SARS-CoV-2 then co-opt mitochondrial
function, disrupting autophagy to facilitate propagation. Alternatively, even brief episodes of systemic hypoxia alter mitochondrial function
leading to direct impairment of susceptible, metabolically-demanding organs, including the brain. The release of cytokines in response to
overwhelming infection may trigger uncontrolled and cascading inflammation that may disrupt the BBB and lead to neurocognitive symp-
toms. (A higher resolution/colour version of this figure is available in the electronic copy of the article).

some  patients  with  COVID-19  [64]  (Fig.  2).  This  pheno-
menon increases vascular permeability, abnormal blood co-
agulation, and multiple-organ inflammatory damage, leading
to organ failure [64]. A similar effect may occur in the CNS,
where  these  cytokines  may  also  augment  microvascular
permeability  and  facilitate  the  entry  of  SARS-CoV-2
through the impaired BBB [36]. The ‘cytokine storm’ may
also promote the formation of microthrombi by aberrant acti-
vation  of  coagulation  processes  [64].  Susceptibility  of  the
brain  to  the  potentially  debilitating  effects  of  ‘cytokine
storm’ is facilitated by a compromised BBB. In this regard,
we note a similar phenomenon in the potential involvement
of the vascular system as an important etiological factor in
Alzheimer’s Disease progression via a cascading proinflam-
matory response associated with constitutive nitric oxide im-
pairment [65]. Interestingly, constitutive nitric oxide is di-
rectly  involved  in  modulating  mitochondrial  metabolic
metabolism  [66].

The concept of ‘cytokine storm’ is widely appealing, as
it provides a fundamental link between inflammation, infec-
tion and tissue damage that lead to severely compromised or-
gan function associated with debilitating long-term physio-
logical  and  neurological  sequelae.  The  manifestation  of
chronic physiological and neurological deficits in the post-in-
fectious setting most likely applies not only to COVID-19
but  to  prior  infections by diverse viral  pathogens (Fig.  2).
This notion may also provide a rationale why certain tissues
with limited ACE2 expression may still experience complica-
tions of COVID-19, as the release of cytokines may reach
several targets not directly infected by the virus [67]. In this
regard,  persistent  elements  or  remnants  of  SARS-CoV-2

acute infection may be involved in Long-COVID [52]. We
have recently evidenced that SARS-CoV-2-reactive T memo-
ry cells occur in unexposed healthy individuals due to previ-
ous infections by endemic coronaviruses that cause the ‘com-
mon cold’ [68]. Accordingly, expression of adaptive SARS--
CoV-2-reactive T memory cells in unexposed healthy indivi-
duals may be due to multiple cross-reactive viral protein tar-
gets following previous exposure to endemic human coron-
avirus  infections.  In  this  regard,  it  appears  that  further  in-
vestigation is required to evaluate whether T memory cells
arising from prior ‘common cold’ coronavirus infections pro-
vide additive or synergistic cellular immune responses fol-
lowing exposure to SARS-CoV-2, with particular reference
to components of the associated ‘cytokine storm’.

4. EFFECTS OF NEUROPSYCHIATRIC MANIFESTA-
TIONS ON VIRAL PROPAGATION AND SURVIVAL

We surmise that given the 3.5-billion-year evolutionary
history of viral-bacterial interaction and the resulting co-evo-
lution of these entities, specific molecular points/targets of
genetic sensitivity exist for this core-informational interac-
tion  [69]  (Fig.  1).  Furthermore,  because  accumulated  evi-
dence supports the bacterial endosymbiont origin of the mito-
chondrion, this existential organelle represents an evolutio-
nary conserved viral target for subjugation or hijacking a crit-
ically needed energy source for their reproduction. Impor-
tantly,  many  biomedical  and  popular  science  publications
have  provided  recent  estimates  of  40  trillion  bacteria  and
400 trillion viral particles contained within the human micro-
biomes and viromes, respectively. By comparison, the hu-
man body contains approximately 10 trillion eukaryotic cells
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[69].  Thus,  our  bodies  represent  a  privileged  environment
whereby  bacteria  and  viruses  continue  their  evolutionary
evolvement/communication [70] (Fig. 1). Within this func-
tional context, concerted dysbiosis of commensal bacterial
and viral species is predicted to differentially contribute to
the etiology and sustained pathophysiology of diverse medi-
cal syndromes affecting human populations. By logistical cri-
teria, the human host may in part be viewed as an ideal vehi-
cle for viral spreading based on its large capacity for viral re-
plication and subsequent transmission. Diminished cognitive
abilities required for requisite executive functions and criti-
cal decision-making behaviors have been associated with se-
vere  neuropsychiatric  disorders.  Similar  cognitive  deficits
have  been  observed  in  cohorts  of  patients  afflicted  with
COVID-19 patients, presumably due to global brain hypoxia
[62, 63]. Whether diminished or significantly compromised
cognitive processes facilitate the capabilities of infective vi-
ral pathogens to hijack cellular bioenergtics awaits further
empirical investigation. Accordingly, the potential of cogni-

tively impaired human hosts to transmit viral pathogens with
enhanced efficiency appears to be beyond dispute and may
be functionally associated with distinct evolutionary advan-
tages [52, 71].

Taken  together,  cognitive  impairments  induced  by
SARS-CoV-2 infection, such as brain fog, may trigger be-
havioral  changes  that  favor  viral  survival  and propagation
[71].  Specifically,  brain  fog  may  compromise  self-control
and self-care practices while promoting a lack of insight into
the danger posed by the virus [9, 71]. This could lead both
to increased vulnerability to SARS-CoV-2 infection and se-
condary complications,  as well  as progress of viral  spread
within  the  population  by  increasing  exposure  to  others.
Thus,  viral  induction  of  these  behaviors  may  represent  an
evolutionary advantage for survival [71]. The cellular mech-
anisms, other than those presented earlier, by which virus-in-
duced behavioral disorders provide benefit to viral propaga-
tion remained elusive until recently.

Fig. (3). The diagram illustrates a balance between what is regarded as normal behavior and which is multifaceted and emerges as appropri-
ate behavior given a dynamic input and appropriate output. In this process, for the most part, the mind is self-aware, instituting conscious de-
cision-making. As discussed in the text, viral infections, such as SARS-CoV-2, have the potential to disrupt these processes and alter a per-
son’s mental state. The altered mental state still allows the person to be functional, but with reduced behavioral efficacy. In part, we surmise
this is due to altering mitochondrial energy processes since maintaining a normal mental state requires a high level of energy availability. Sig-
nificantly, a similar alteration of a normal mental state may occur with the use of antibiotics, which target bacteria as well as the “power
house of the cell”, i.e., mitochondria given their prokaryotic origin [72]. This further demonstrates the susceptibility and sensitivity of cogni-
tion to its energy requirements (Fig. 3). Thus, it is surmised that viral-induced modifications of energy availability benefit viral survival be-
cause carefully thought-out preventative behaviors may be compromised. (A higher resolution/colour version of this figure is available in the
electronic copy of the article).
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5. LESSONS FROM LUNG INJURY SEQUELAE

In 2003, SARS-CoV-1 infection led to more than 8000
cases and 900 deaths worldwide. A 1-year follow-up of 97
SARS-CoV-1 survivors identified abnormalities on chest X-
ray, evidence of functional impairment, and decreased over-
all quality of life, compared to age-matched individuals not
previously infected by the virus [73]. This worrisome find-
ing persisted two years post-infection, and for up to 15 years
of follow-up [74, 75]. Similar to SARS-CoV-1, SARS-CoV-
-2 directly binds to ACE2 distributed on the extracellular sur-
face of  pulmonary type 2 pneumocytes [76].  ACE2 repre-
sents a key regulatory enzyme of the renin-angiotensin sys-
tem and catalyzes the formation of the vasorelaxant peptide
angiotensin (1-7) from angiotensin II (Ang II). SARS-CoV-
-2-induced  downregulation  of  cell  surface  distributions  of
ACE2 has been proposed to occur by concurrent internaliza-
tion of viral-enzyme complexes or by proteolytic processing
and/or  conversion  of  the  extracellular  globular  domain  of
the enzyme into a soluble blood-borne protein [76]. Accord-
ingly, the consequences of viral infection are predicted to in-
clude diminished ACE2 activity that is coupled to enhanced
concentrations of Ang II,  a major vasoconstrictive peptide
that is functionally linked to potentiation of pulmonary tis-
sue damage. The magnitude of cell damage may depend not
only on the effects  of  viral  replication,  but  also on the re-
lease of pro-inflammatory cytokines, resulting in impaired
function of type 2 pneumocytes [76]. These effects result in
impaired cell function, followed by cell death (necrosis) or
apoptosis, exudates, desquamation of pneumocytes, and for-
mation of hyaline membranes, which are characteristic of dif-
fuse alveolar damage. If direct infectivity by neurotropism is
true,  then  a  similar  pathway  would  predict  long-term  im-
paired function of affected neurons, leading to irrecoverable
neurodegeneration.

5.1. Looking at the Future - Long Term Neurocognitive
Outcomes after COVID-19 Infection

The potential for direct CNS infectivity via ACE2 recep-
tors, via mitochondria metabolic function coupled with in-
flammatory ‘cytokine storm’, offers an attractive potential
mechanism for inducing long-term symptoms of COVID-19.
However, whether these mechanisms are sufficient to induce
or accelerate the premature occurrence of neurodegenerative
diseases, Alzheimer's, Parkinson's, and multiple sclerosis, re-
main an intriguing area that warrants serious investigation.
In this regard, multiple sclerosis (MS) is associated with fo-
cal gray and white matter demyelination and diffuse neurode-
generation of the brain caused by inflammation [77]. Some
of the neurological changes caused by SARS-CoV-2 share
similarities with those found in MS. In both disease process-
es, pro-inflammatory ‘cytokine storm’ is an important con-
tributory initiating factor for the CNS neuroinflammatory da-
mage [78]. Second, SARS-CoV-2 can cause demyelination
in the brain and spinal cord [79]. Third, a limited but increas-
ing number of reports show cases of SARS-CoV-2 infection
with associated signs and symptoms identical to those of MS
[80, 81]. Indeed, previous studies have shown an association
between coronavirus infection and the onset of MS [35]. If

an association between SARS-CoV-2 infection and demyeli-
nating neurological disease is further established over time,
careful consideration is warranted regarding the use of im-
munotherapies, which may themselves trigger collateral de-
myelinating neuropathies [82].

A  hallmark  feature  of  Parkinson's  disease  (PD)  is  the
slow progressive decline in movement, muscle control and
balance, secondary to degenerative changes predominantly
occurring in substantia nigra and other dopaminergic regions
of  the  brain  [83].  However,  similar  to  SARS-CoV-2,  pa-
tients with PD also demonstrate impairment of cognitive and
memory functions [84-86]. Moreover, hyposmia and anos-
mia, early symptoms in COVID-19, are also precursor clini-
cal symptoms of PD [87].  While there is currently limited
evidence from clinical studies to support the onset of PD as
a late complication of SARS-CoV-2 infection, the wide ex-
pression of ACE2 at different areas in the CNS provides a
molecular basis for SARS-CoV-2 to mediate or accelerate
the occurrence of PD. Interestingly, a recent case described
a COVID-19 patient with encephalopathy and neuroimaging
evidence  of  hemorrhaging  injury  involving  the  bilateral
basal  ganglia  [88].

Alzheimer's disease is the leading cause of neurocogni-
tive impairment in the elderly population.

While the etiologic agent for AD remains unknown, neu-
roinflammation plays a critical role [65]. The simultaneous
expression of ACE2 in glutamatergic and GABAergic neu-
rons indicates that SARS-CoV-2 infection can affect the bal-
ance of both signaling pathways in the CNS. Moreover, neu-
roinflammation, synaptic pruning, and neuron loss occurring
in SARS-CoV-2 share commonalities with AD [83, 89].

5.2. Pharmacological Considerations in the Design of Effi-
cacious Anti-viral Agents

Currently,  the  development  of  small  molecule  an-
ti-SARS-CoV-2 drugs is focused on the inhibition of replica-
tive viral genome production catalyzed by RNA-dependent
RNA polymerase.  Alternatively,  relatively  limited  clinical
studies have focused on repurposing of anti-retroviral drugs
clinically employed in anti-HIV1 therapeutic regimens as an-
ti-replicative  SARS-CoV-2  agents  [90].  Mixtures  of  an-
ti-retroviral drugs typically include chymotrypsin-like pro-
tease  inhibitors,  such  as  lopinavir  and/or  darunavir,  that
block intracellular post-translational processing of key viral
proteins, in combination with the CYP 3A4 inhibitor riton-
avir that effectively increases blood concentrations and bioa-
vailability of the protease inhibitors. Although chronic usage
of anti-retroviral cocktails has been associated with adverse
neurological and chemosensory side effects, a major clinical
concern  directly  relates  to  pharmacological  inhibition  of
CYP  3A4-mediated  hepatic  metabolism  of  multiple  psy-
chotropic drugs commonly used in clinical psychiatry. Ac-
cordingly, further exploration of potential beneficial effects
of  anti-retroviral  therapeutic  regimens  on  COVID-19  pro-
gression should proceed with caution due to confounding ef-
fects  on  the  management  of  diverse  psychiatric  disorders
[90].
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From a different perspective, clinical intervention may
be required to effectively manage well-documented memory
deficits, cognitive impairment, delirium and manic episodes,
following short term administration of high potency gluco-
corticoid agents, such as dexamethasone, often in combina-
tion with the anti-inflammatory antibiotic azithromycin, for
treatment  of  COVID-19 [91,  92].  Interestingly,  more  than
50%  of  patients  on  or  following  chemotherapy  develop
symptoms  indicative  of  cognitive  dysfunction  similar  to
those described above for  long-COVID. This  neurological
condition is termed “chemofog” or “chemobrain,” and has
been associated with clinical usage of anti-proliferative can-
cer drugs, such as doxorubicin, methotrexate, lenalidomide,
rituximab, and trastuzumab, some of which have also been
employed  in  treatment  strategies  for  diverse  autoimmune
syndromes  [93].  Accordingly,  clinicians  should  proceed
with caution in employing off-label applications of potent an-
ti-inflammatory agents due to potential long-term neurologi-
cal/neuropsychiatric  complications  associated  with  brain
fog. It remains to be seen if we are able to exquisitely deter-
mine reliable clinical predictors for people at higher risk for
long-term  neurological/neuropsychiatric  sequelae  of
COVID-19.

CONCLUSION

Emerging studies, as noted earlier, indicate that a subs-
tantial number of individuals who survive COVID-19 por-
tray  long-term  symptoms,  including  psychiatric  disorders
and  neurocognitive  decline,  initially  manifesting  as  brain
fog. Direct and indirect mechanisms may contribute to the
development of these symptoms. As was shown in the prior
coronavirus epidemic, patients with SARS-CoV-2 may be at
heightened  risk  of  post-traumatic  stress  disorder,  further
compounding neuropsychiatric complications [22, 23]. Th-
ese manifestations present a pressing source of the debilitat-
ing  long-term  consequences  of  SARS-CoV-2  infection.
They may also play a direct role in promoting viral survival
and propagation by eliciting behavioral changes in patients
that  decrease awareness and implementation of preventive
lifestyle. Importantly, the neuropsychiatric manifestations of
COVID-19  may  confer  increased  additional  risk  for  long-
term neurocognitive diseases, including Alzheimer's disease,
as  they  share  common  mechanistic  features.  To  this  end,
close monitoring of patients following the acute stage of in-
fection with SARS-CoV-2 is essential to provide a rationale
for the prevention, diagnosis, and management of these po-
tential long-term sequelae. Efforts to increase mental health
awareness  would  aid  in  the  diagnosis  of  neuropsychiatric
complications of COVID-19 while assisting in overcoming
the stigma associated with neuropsychiatric disorders. These
efforts, along with investments into mental health research
and community-based initiatives, may prove to be useful av-
enues  that  not  only  help  in  the  management  of  short-  and
long-term complications but also potentially play a vital role
in reducing the spread of COVID-19.
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