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Artificial Neural Network (ANN) is a widely used algorithm in pattern recognition, classification, and prediction fields. Among
a number of neural networks, backpropagation neural network (BPNN) has become the most famous one due to its remarkable
function approximation ability. However, a standard BPNN frequently employs a large number of sum and sigmoid calculations,
which may result in low efficiency in dealing with large volume of data.Therefore to parallelize BPNN using distributed computing
technologies is an effective way to improve the algorithm performance in terms of efficiency. However, traditional parallelization
may lead to accuracy loss. Although several complements have been done, it is still difficult to find out a compromise between
efficiency and precision.This paper presents a parallelized BPNN based onMapReduce computingmodel which supplies advanced
features including fault tolerance, data replication, and load balancing. And also to improve the algorithm performance in terms
of precision, this paper creates a cascading model based classification approach, which helps to refine the classification results.
The experimental results indicate that the presented parallelized BPNN is able to offer high efficiency whilst maintaining excellent
precision in enabling large-scale machine learning.

1. Introduction

At present, big data analysis has become an important
methodology in finding data associations [1], whilst classifi-
cation is one of the most famous research methods. Among
types of classification algorithms, Artificial Neural Network
(ANN) is proved to be an effective one that can adapt to vari-
ous research scenarios. In numbers ofANN implementations,
backpropagation neural network (BPNN) is the most widely
used one due to its excellent function approximation ability
[2]. A typical BPNN usually contains three kinds of layers
including input layer, hidden layer, and output layer. Input
layer is the entrance of the algorithm. It inputs one instance
of the data into the network. The dimension of the instance
determines the number of inputs in the input layer. Hidden
layer contains one or several layers. It outputs intermediate
data to the output layer that generates the final output of
the neural network. The number of outputs is determined
by the encoding of the classified results. In BPNN each layer
consists of a number of neurons. The linear functions or
nonlinear functions in each neuron are frequently controlled

by two kinds of parameters, weight and bias. In the training
phase, BPNN employs feed forward to generate output. And
then it calculates the error between the output and the target
output. Afterwards, BPNN employs backpropagation to tune
weights and biases in neurons based on the calculated error.
In the classifying phase, BPNN only executes feed forward to
achieve the ultimate classified result. Although it is difficult
to determine an optimal number of the hidden layers and
neurons for one classification task, it is proved that a three-
layer BPNN is enough to fit the mathematical equations
which approximate the mapping relationships between the
inputs and the outputs.

However, BPNN has encountered a critical issue that, due
to a large number of mathematical calculations existing in
the algorithm, low efficiency of BPNN leads to performance
deterioration in both training phase and classification phase
when the data size is large. Therefore to fulfil the potential
of BPNN in big data processing, this paper presents a par-
allel BPNN (CPBPNN) algorithm based on the MapReduce
computing model [3] and cascading model. The algorithm
firstly creates a number of classifiers. Each classifier is trained
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by only one class of the training data. However, in order to
speed up the training efficiency and maintain generalization,
the class of training data does not train only one classifier
but a group of classifiers. As long as one testing instance
is input into these classifiers, they classify it and output
their individual results. Afterwards, a majority voting is
executed to decide the final result. If the testing instance is
correctly classified, its classification is completed. Otherwise
if the testing instance cannot be correctly classified by the
classifiers, it will be output to a second group of classifiers
trained by another class of training data until all groups of
classifiers are traversed. The algorithm is implemented in the
MapReduce environment.The detailed algorithm design and
implementation are presented in the following sections.

The rest of the paper is organized as follows. Section 2
presents the related work; Section 3 describes the algorithm
design in detail; Section 4 discusses the experimental results;
and Section 5 concludes the paper.

2. Related Work

It has been widely admitted that ANN has become an effec-
tive tool for processing nonlinear function approximation
tasks, for example, recognition, classification, and prediction
tasks. A number of researches employed neural network
to facilitate their researches. Almaadeed et al. introduced a
wavelet analysis and neural networks based text-independent
multimodal speaker identification system [4]. The wavelet
analysis firstly employs wavelet transforms to execute feature
extraction. And then the extracted features are used as
input for different types of neural networks, which create
a number of learning modules including general regressive,
probabilistic, and radial basis. Their results indicate that
the employed BPNN can classify the data generated by
DWT (discrete wavelet transform) andWPT (wavelet packet
transform) with high accuracy. Chen and Ye employed a
four-layer backpropagation neural network to compute ship
resistance [5]. In their research, they studied the impact of
algorithm performances with different parameters. Based on
their results, with the original ship model experimental data,
BPNN can help to develop high-precision neural network
systems for the computation of ship resistance. Khoa et al.
pointed out that, in the stock price forecasting, it is difficult
to generate accurate predictions due to multiple unknown
factors [6]. Therefore, they employed a feed forward neural
network (FFN) and a recurrent neural network (RNN) to
execute the prediction and they also employed the back-
propagation mechanism to train and adjust the network
parameters.

Recently, neural network with processing large-scale
tasks is anxiously needed in big data application. However,
the neural networks including BPNN have low efficiency in
processing large-scale data. A number of effects have been
done by researchers. They mainly focused on tuning the
network parameters to achieve high performance. Research
[7] combines the neural network algorithmwith evolutionary
algorithms.The approach can exploit the geometry of the task
by mapping its regularities onto the topology of the network,
thereby shifting problem difficulty away from dimensionality

to the underlying problem structure. Jin and Shu pointed
out that BPNN needs a long time to converge [8] so they
employed the artificial bee colony algorithm to train the
weights of the neural network to avoid the deficiency of
BPNN. Li et al. proposed an improved BPNN algorithm
with self-adaptive learning rate [9]. The experimental results
show the number of iterations is less than that of the
standard BPNN with constant learning rate. Also several
researchers tried to solve the scale issue with combing cloud
computing techniques. For example, Yuan and Yu proposed
a privacy preserving BPNN in the cloud computing environ-
ment [10]. The authors aimed at enabling multiple parties
to jointly conduct the BPNN learning without revealing
their private data. The input datasets owned by the parties
can be arbitrarily partitioned to achieve a scalable system.
Although the researchers claimed that their algorithm sup-
plies satisfied accuracy, they have not conducted the detailed
experiments for testing the algorithm efficiency. It is well
known that the cloud computing is extremely loosely coupled
so that the cloud environment based neural network may
encounter a large overhead. Additionally the researches have
not mentioned how their algorithm performs in dealing
with the practical large-scale tasks. Researches [11–13] stated
that a better choice to implement large-scale classification
is to parallelize BPNN using the parallel and distributed
computing techniques [14]. Research [15] presented three
types of Hadoop based distributed BPNN algorithms. A great
difference from the work presented by this paper is that, due
to the cascading model, our algorithm could improve the
algorithm precision. However, the algorithms in [15] can only
guarantee but not improve the algorithm precision.

Gu et al. presented a parallel neural network using in-
memory data processing techniques to speed up the com-
putation of the neural network. However, their algorithm
does not consider the accuracy issue [16]. In this work, the
training data is simply segmented into a number of data
chunks which are processed in parallel, which may result in
accuracy loss. Hebboul et al. also parallelized a distributed
neural network algorithm based on the data separation [17].
However, the accuracy loss is also a critical issue in their
work. Ganeshamoorthy and Ranasinghe created a vertical
partition and hybrid partition scheme [18] for parallelizing
neural network using MPI (Message Passing Interface) [19].
However, MPI requires a highly homogeneous environment
which decays the adaption of the parallelized algorithm.

The work presented in this paper mainly focuses on
parallelizing BPNN in terms of improving the algorithm
efficiency, simultaneously maintaining the algorithm clas-
sification accuracy in dealing with large-scale data. The
paper employs the Hadoop framework as the underlying
infrastructure. And then a number of designs have been done
in order to improve the algorithm efficiency in both training
and classification phases. Also a cascading mechanism is
introduced to enhance the algorithm classification accuracy.

3. Algorithm Design

3.1. Backpropagation Neural Network. BPNN is a multilayer
network including input layer, hidden layer, and output layer.
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Figure 1: Structure of a three-layer BPNN.

Each layer consists of a number of neurons. In order to adjust
the weights and biases in neurons, BPNN employs error
backpropagation operation. Benefiting from the gradient-
descent feature, the algorithm has become an effective func-
tion approximation algorithm [20, 21]. A standard BPNN
which consists of a number of 𝑚 inputs and 𝑛 outputs is
shown in Figure 1.

In the feed forward, each neuron in the next layer inputs
the outputs from all neurons in the last layer. And then it
outputs its output which will be input into the next layer
neurons. For one neuron 𝑗, let 𝑛 denote the number of
neurons in the last layer; 𝑜

𝑖
the output of the 𝑖th neuron; 𝑤

𝑖

the corresponding weight for 𝑜
𝑖
; 𝜃
𝑗
the bias of the neuron 𝑗.

Therefore the neuron 𝑗 calculates the input for the sigmoid
function 𝐼

𝑗
using

𝐼
𝑗
= ∑

𝑛

𝑤
𝑖
𝑜
𝑖
+ 𝜃
𝑗
. (1)

Let 𝑜
𝑗
denote the output of neuron 𝑗; it can be represented

using

𝑜
𝑗
=

1

(1 + 𝑒
−𝐼𝑗
)

. (2)

If the neuron 𝑗 is in the output layer, BPNN starts the
backpropagation phase. Let 𝑡

𝑗
denote the encoded target

output. The algorithm computes the output error Err
𝑗
for the

neuron 𝑗 in the output layer using

Err
𝑗
= 𝑜
𝑗
(1 − 𝑜

𝑗
) (𝑡
𝑗
− 𝑜
𝑗
) . (3)

Let 𝑘 denote the number of neurons in the next layer; 𝑤
𝑝
the

weight; and Err
𝑝
the error of neuron 𝑝 in the next layer. The

error Err
𝑗
of the 𝑗th neuron can be represented using

Err
𝑗
= 𝑜
𝑗
(1 − 𝑜

𝑗
)∑

𝑘

Err
𝑝
𝑤
𝑝
. (4)

Following, let 𝜂 denote the learning rate. The neuron 𝑗 tunes
its weight 𝑤

𝑗
and bias 𝜃

𝑗
using

Δ𝑤
𝑗
= 𝜂Err

𝑗
𝑜
𝑗
,

Δ𝜃
𝑗
= 𝜂Err

𝑗
,

𝑤
𝑗
= 𝑤
𝑗
+ Δ𝑤
𝑗
,

𝜃
𝑗
= 𝜃
𝑗
+ Δ𝜃
𝑗
.

(5)
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Figure 2: MapReduce model.

When BPNN finishes tuning the network with one training
instance, it starts to input a second training instance until all
the training instances are processed. In order to execute the
classification, BPNN needs to only execute the feed forward.
The outputs at the output layer are the final classification
result.

3.2. MapReduce and Hadoop. MapReduce is a distributed
computing model which contains two main operations Map
and Reduce. The Map operation inputs each data record
in the form of key-value pair, for example, {Key1, Value1}.
And then the Map executes computations and outputs the
intermediate output in key-value pair {Key2, Value2}. The
Reduce operation collects the intermediate outputs from all
the Maps. Afterwards it merges and sorts the data records
based on the keys and finally it generates the ultimate result
[22]. Figure 2 shows how the MapReduce computing model
works.

Hadoop framework [25, 26] is a Java based implemen-
tation of the MapReduce computing model. In one Hadoop
cluster the nodes are categorized into one NameNode and
several DataNodes.TheNameNodemanages the metadata of
the cluster, whilst the DataNode executes a number of Map
(mapper) and Reduce (reducer) operations in parallel. Both
the NameNode and DataNodes contribute their resources
including processors, memory, hard disks, and network
adaptors to form Hadoop Distributed File System (HDFS)
[27]. HDFS is not only responsible for high performance data
storage but also managing data processing courses for the
mappers and reducers. The resource management in HDFS
is controlled by Yarn [25], so that HDFS supplies a number of
advanced features including data replication, fault tolerance,
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load balancing, data compression, and heterogeneous hard-
ware support.

3.3. Parallelizing BPNN. The low efficiency issue of BPNN
frequently occurs in the training and classification phases.
If the volume of training data is large, the overhead of the
algorithmdeteriorates the performance. On the other hand, if
the volume of the to-be-classified data is large, the algorithm
may also perform worse. The presented parallelized BPNN
(CPBPNN) considers the efficiency improvement for both the
training and classification phases.

3.3.1. Parallelization in Training. This section mainly focuses
on speeding up the training phase in BPNN. The paralleliza-
tion for the training phase is based on the data separation.
Let 𝑇 denote the training data; 𝑎 the number of BPNNs (sub-
BPNNs); 𝑇

𝑖
the 𝑖th divided data chunk. To parallelize the

training, 𝑇 can be separated into a number of 𝑎 chunks:

⋃

𝑎

𝑇
𝑖
= 𝑇. (6)

Each sub-BPNN inputs one chunk and starts training. As
a result, each sub-BPNN becomes a trained classifier which
can be employed in future classifications. Based on the data
separation and the sub-BPNNs, the training phase can be
accelerated. However, the simple data separation causes one
issue that as each sub-BPNN is only trained by a part of the
original training data, the less number of training instances
could impact the classification precision.Therefore, our work
introduces the ensemble techniques including bootstrapping
and majority voting to solve the issue.

Bootstrapping [28] is based on the idea of controlling
the number of times that the training instances appear in
the bootstrap samples, so that in the 𝐵 bootstrap samples,
each instance appears the same number of times. The
most efficient way of creating balanced bootstrap samples
is to construct a string of the instances 𝑋

1
, 𝑋
2
, 𝑋
3
, . . . , 𝑋

𝑛

repeating 𝐵 times so that a sequence of 𝑌
1
, 𝑌
2
, 𝑌
3
, . . . , 𝑌

𝐵𝑛
is

achieved. A random permutation 𝑝 of the integers from 1
to 𝐵
𝑛
is taken. Therefore the first bootstrapping sample can

be created from 𝑌
𝑝
(1), 𝑌
𝑝
(2), 𝑌
𝑝
(3), . . . , 𝑌

𝑝
(𝑛), moreover the

second bootstrapping sample from𝑌
𝑝
(𝑛+1), 𝑌

𝑝
(𝑛+2), 𝑌

𝑝
(𝑛+

3), . . . , 𝑌
𝑝
(2𝑛), and so on until 𝑌

𝑝
((𝐵 − 1)𝑛 + 1), 𝑌

𝑝
((𝐵 −

1)𝑛+2), 𝑌
𝑝
((𝐵−1)𝑛+3), . . . , 𝑌

𝑝
(𝐵𝑛) is the 𝐵th bootstrapping

sample. Assume there are a number of 𝑎 mappers in a
Hadoop cluster. Each mapper initializes one sub-BPNN for
training. Therefore CPBPNN firstly generates a number of 𝑎
bootstrapped samples. Each sample𝑇

𝑖
is saved in a data chunk

in HDFS:
bootstrap 𝑇 → {𝑇

1
, 𝑇
2
, 𝑇
3
, . . . , 𝑇

𝑎
} ,

𝑎

⋃

𝑖=1

𝑇
𝑖
= 𝑇.

(7)

Let Instance
𝑏
denote one training instance in 𝑇

𝑖
. For facili-

tating the algorithm design, the Instance
𝑏
is saved in HDFS

using a customized data structure:
{Instance

𝑏
: target output : instance type} ; (8)

(i) target output represents the target output, which is the
training instance Instance

𝑏
belonged to;

(ii) type is a string marked as “train” or “test,” which
explicitly informs CPBPNNwith the fact that current
instance is a training instance or a to-be-classified
instance.

When the training phase starts, each mapper creates one
sub-BPNN and randomly initializes weight and bias between
[−1, 1] for every neuron. Afterwards the 𝑖th BPNN inputs
the instances of the data chunk 𝑇

𝑖
. As long as one instance

is input, its type is parsed. If the instance type is “train”,
the BPNN starts the feed forward and the backpropagation
processes using (1) to (5) to tune the network parameters.
After all sub-BPNNs in mappers finish their training, a
group of weak classifiers are created. Figure 3 shows the
parallelization for one group of weak classifiers.

Parallelization in Training

(1) Each mapper constructs one BPNN with 3 layers.
(2) Initialize 𝑤, 𝜃 ∈ [−1, 1] for each neuron randomly.
(3) Bootstrap {𝑇

1
, 𝑇
2
, 𝑇
3
, . . . , 𝑇

𝑎
}, ⋃
𝑎

𝑖=1
𝑇
𝑖
= 𝑇, 𝑇

𝑖
for

mapper
𝑖
.

(4) Each mapper inputs one training instance in 𝑇
𝑖
and

computes

𝐼
𝑗
= ∑

𝑛

𝑤
𝑖
𝑜
𝑖
+ 𝜃
𝑗

𝑜
𝑗
=

1

1 + 𝑒
−𝐼𝑗
.

(9)

(5) In output layer, backpropagation computes

Err
𝑗
= 𝑜
𝑗
(1 − 𝑜

𝑗
) (𝑡
𝑗
− 𝑜
𝑗
) . (10)

(6) In other layers, backpropagation computes

Err
𝑗
= 𝑜
𝑗
(1 − 𝑜

𝑗
)∑

𝑘

Err
𝑝
𝑤
𝑝
. (11)

(7) Update 𝑤, 𝜃 using (5).

Repeat (4), (5), (6), and (7).
Until instances in 𝑇

𝑖
are processed, training terminates.

3.3.2. Parallelization in Classification. In the scenario of
processing the large volume of classification data, BPNN also
encounters the low efficiency issue as BPNN classifies the
instances one by one, which generates large IO and calcula-
tion overheads. CPBPNN also considers the parallelization
for the to-be-classified data. The parallelization is based
on the data separation. Let 𝑔 denote the number of weak
classifier groups and 𝐶 the data to be classified. Therefore, 𝐶
can be separated into 𝑔 chunks:

⋃

𝑔

𝐶
𝑖
= 𝐶. (12)
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Figure 3: Parallelization in training phase.

Each chunk 𝐶
𝑖
is input into a weak classifier group 𝑖 ∈ 𝑔.

In the 𝑖th group, majority voting is employed to classify
the instances. Majority voting [28] is a commonly used
combination technique. The ensemble classifier predicts a
class for an instance using the majority of base classifiers
[29, 30]. The classification phase employs only feed forward
based on (1) and (2) to do the classification. If the type of
one instance in 𝐶

𝑖
, for example, the Instance

𝑐
is labeled as

“test”, it will be input into each mapper. The sub-BPNNs
in the mappers generate their own classified results of the
Instance

𝑐
at the output layer. And then the mappers output

intermediate outputs in the form of

{Instance
𝑐
, 𝑜
𝑚
} , (13)

where Instance
𝑐
is the key and 𝑜

𝑚
is the output of the 𝑚th

mapper.
When all the mappers finished their outputs, one reducer

starts collecting the outputs of the mappers.The outputs with
the same key are merged together, which forms a set similar
to (assuming 6 outputs from mappers with 3 values)

{Instance
𝑐
, 𝑜
1
(value

1
)} ,

{Instance
𝑐
, 𝑜
2
(value

1
)} ,

{Instance
𝑐
, 𝑜
5
(value

1
)} ,

{Instance
𝑐
, 𝑜
6
(value

1
)} ,

{Instance
𝑐
, 𝑜
3
(value

2
)} ,

{Instance
𝑐
, 𝑜
4
(value

3
)} .

(14)

The reducer runs the majority voting and outputs the
final result for the Instance

𝑐
into HDFS in the form of

{Instance
𝑐
, 𝑟
𝑐
} where 𝑟

𝑐
represents the voted final classifica-

tion result of the Instance
𝑐
. Based on the bootstrapping and

majority voting, a number of weak classifiers can form a
strong classifier, which improves the training efficiencywhilst
guaranteeing the algorithm accuracy. Figure 4 shows the
process of classifying one instance in the classification phase.

Classifying One Instance in Classification Phase

(1) Each mapper inputs testing instance Instance
𝑐
∈ 𝐶
𝑖
.

(2) BPNN in each mapper executes feed forward:

𝐼
𝑗
= ∑

𝑛

𝑤
𝑖
𝑜
𝑖
+ 𝜃
𝑗

𝑜
𝑗
=

1

1 + 𝑒
−𝐼𝑗
.

(15)

(3) Mapper outputs {Instance
𝑐
, 𝑜
𝑚
}, 𝑚 = {1, 2, 3, . . . , 𝑎}.

Reducer collects {Instance
𝑐
, 𝑜
𝑚
}.

Reducer executes majority voting and output
{Instance

𝑐
, 𝑟
𝑐
}.

Classification terminates.

3.3.3. Classification Accuracy Improvement. CPBPNN
employ a cascading model to improve the classification
precision.The design of the algorithm is presented as follows:

(1) Let cn represent the number of classes in the training
data; class

𝑖
represents the 𝑖th class. CPBPNN employs

a number of 𝑎 mappers to initiate the number of 𝑎
sub-BPNNs. And then the number of 𝑎 mappers is
grouped into a number of 𝑔 groups. The sub-BPNNs
in each group are trained using class

1
.

(2) CPBPNN separates the to-be-classified data into the
number of 𝑔 chunks. In each group generated in
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Figure 4: Classifying one instance in classification phase.

step (1), one classifier sci classifies the instances of
the chunk Ci. As the sci is only trained by the data
from class

1
, it can only do the classification for one

class. Therefore the successfully classified instances
are filtered and output as the result. The criteria
for determining if one instance is correctly classified
are to compare the classification output to the class
of the training instances. If the classification output
equals the class of the training instances, the instance
is correctly classified. Otherwise, the instance is
not correctly classified. The instances that cannot
be correctly classified are output as errorset

1
. The

error set contains a number of unclassified instances,
which will be used as input for the second-round
classification.

(3) And then the classifier sci trains its sub-BPNNs using
class
2
. Following it inputs and classifies the instances

in errorset
1
. In this case, the instances in errorset

1

that belonged to class
2
can be recognized. They will

be filtered and output as the classification result. The
instances that cannot be correctly classified are output
as errorset

2
.

(4) Finally the classifier sci trains itself until the class
classcn is input. And then it outputs the classified
instances. The unsuccessfully classified instances are
output as errorsetcn.

(5) If errorsetcn is empty, all instances in the Ci are classi-
fied. Otherwise, the instances in errorsetcn cannot be
classified into any class.

Figure 5 shows the entire structure of CPBPNN.

4. Algorithm Evaluation

In order to evaluate the performance of CPBPNN, a Hadoop
cluster is established. The cluster contains five nodes. One
is NameNode and the other four nodes are DataNodes. The
details of the cluster are listed in Table 1.

The datasets for the performance evaluation mainly
contain Iris dataset [31] and Wine dataset [32]. Both datasets
are regarded as standard benchmark datasets in machine
learning field. The details of the datasets are listed in Table 2.

There are 15 mappers and 3 reducers employed to execute
the training and classification tasks. As input layer of each
sub-BPNN with 3 layers in one mapper only accepts the
value between 0 and 1, therefore the input instances should
be normalized in advance. For one instance instance

𝑘
=

{𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑛
}, let 𝑎max, 𝑎min, and 𝑛𝑎𝑖 denote themaximum

element, minimum element, and normalized 𝑎
𝑖
respectively;

then

𝑛𝑎
𝑖
=

𝑎
𝑖
− 𝑎min

𝑎max − 𝑎min
. (16)
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Trained 
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Figure 5: CPBPNN structure.

Let rightNum represent the number of correctly classified
instances and wrongNum the number of wrongly classified
instances. Therefore the classification precision 𝑝 is

𝑝 =

rightNum
rightNum + wrongNum

× 100%. (17)

4.1. Precision. The first evaluation is to observe the perfor-
mance of the presented training strategy, which trains the
neural network in parallel but with less accuracy loss. In
the evaluation, a small number of training instances are
randomly selected from the Iris dataset. We also randomly
selected 50 instances from the Iris dataset as testing data. For
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Table 1: The specification of the cluster.

Namenode

CPU: Core i7@3GHz
Memory: 8GB
SSD: 750GB
OS: Fedora

Datanodes

CPU: Core i7@3.8GHz
Memory: 32GB
SSD: 250GB
OS: Fedora.

Network bandwidth 1Gbps
Hadoop version 2.3.0, 32 bit

Table 2: Data set details.

Type Dataset
characteristics

Instance
number

Attribute
number

Class
number

Iris Multivariate 150 4 3
Wine Multivariate 178 13 3

observing the comparison in terms of precision, a standard
BPNN training and a standalone ensemble training are both
implemented. Figure 6 shows the evaluation result.

Figure 6 indicates that the standard training of BPNN
products unstable performances in five times test. The accu-
racy fluctuates severely. Contrarily, the ensemble based train-
ing gives correspondingly stable performances. The mean
square deviation of the standard training is 10.92, whilst the
one of the ensemble training is only 5.48. And also the average
precision of the ensemble training is higher than that of the
standard training.

We also evaluate the precisions of the ensemble train-
ing and the standard training with maximally 100 training
instances. In Figure 7, it can be observed that the presented
ensemble training strategy has better precision. And also, for
the same precision, the ensemble training can reach to it
earlier than that of the standard training.

The following evaluation is to observe the classification
accuracy of CPBPNN with the ensemble and the cascading
models. In this test we randomly selected 50 instances from
the Iris dataset and 60 instances from the Wine dataset as
the testing data.Therefore, the remaining 100 instances of the
Iris and 118 instances of the Wine are used as the training
data. We trained CPBPNN using an increasing number of
the training instances. And also, in terms of comparison, a
standard BPNN algorithm is implemented. Each instance is
trained 200 times in both standard BPNN and CPBPNN.The
result is shown in Figure 8.

Figure 8(a) shows the algorithm precision for the Iris
dataset with the increasing number of training instances.
It can be observed that for the standard BPNN algorithm,
along with the number of the training instances increasing,
the classification precision is increasing. Until the number
is larger than 70, the precision is nearly stable. However,
CPBPNN gives a remarkable result that even the number of
training instances is small; it still gives 100% precision. By
training only one class of data, the classifier has a strong
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Figure 6: Comparison of standard training in BPNN and ensemble
training.
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Figure 7: Precisions of ensemble training and standard training
with increasing training instances.

ability to classify one instance belonging to the class. The
instance that does not belong to the class cannot be recog-
nized. Following the unclassified instance is cascaded into
the second classifier until it is classified. Figure 8(b) shows
the precision for the classification using the Wine dataset.
The figure indicates that the standard BPNN cannot deal
with the dataset well. With only 200 times’ training for each
training instance, the standard BPNN gives not only low
precisions but also unstable performances.The precisions are
highly depending on the parameter values in the BPNN. For
example, we trained each instance 4000 times instead of the
200 times used in the experiments; the precision reaches to
61.7%. However, CPBPNN still gives excellent performances.
Even 10 training instances can result in 100% classification
accuracy.

4.2. Efficiency. The efficiency evaluation focuses on the rela-
tionship between the algorithm running time and the volume
of data. Therefore, we duplicate the Iris dataset from 1MB to
1GB to observe its processing time using the standard BPNN
and the CPBPNN algorithms.

Figure 9 shows that when the data size is small, both algo-
rithms have low running time. Actually when the data size is
less than 4MB, the standalone BPNN outperforms CPBPNN
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Figure 8: (a) CPBPNN precision for Iris dataset. (b) CPBPNN precision for Wine dataset.
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Figure 10: Efficiency of CPBPNN with increasing data size.

due to the overhead of Hadoop framework. However, when
the data size becomes large, the efficiency of the standalone
BPNN deteriorates. Benefiting from distributed computing,
CPBPNN performs with higher efficiency.

For further observing the efficiency of CPBPNN, we
also duplicated the data size to 16384MB. Figure 10 shows
that along with the data size increasing, the processing
time of CPBPNN also becomes larger. But compared to
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Figure 11: Efficiency of CPBPNN with increasing number of
mappers.

the processing time of the standalone BPNN, CPBPNN gives
better performances.

Figure 11 shows the efficiency of CPBPNNwith increasing
number ofmappers.Thefigure indicates thatwithmore num-
bers of mappers, the algorithm performs better. However,
when the number of mappers increases to a certain number,
the efficiency enhancement becomes lower.The reason is that,
in certain cases, two different numbers of mappers result
in the same number of mapper processing waves, which
cannot greatly improve algorithm efficiency. For example, 13
mappers need 5 waves, which is the same as the waves 15
mappers need. Therefore, although two more mappers are
supplied, efficiency is not obviously improved.

4.3. Algorithm Comparison. For further study of the perfor-
mance ofCPBPNN,we also employCPBPNN to process delta
elevators dataset [33] and compare the result to the work
[23, 24]. In our experiment, eight mappers are employed. In
each network, 15 neurons are located in hidden layer. The
number of the training instances is 4000whilst the number of
the testing instances is 5517. The result is shown in Table 3. In
the table, 𝑡training represents the training time; 𝑡test represents
the testing time; 𝑆

𝑡
represents the standard deviation of the

error; 𝑒RMSt represents the rootmean square value of the error.
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Table 3: A comparison to FFH1b [23], ELM125, and SVR [24].

Algorithm Running time
(𝑡training + 𝑡test)

𝑆
𝑡
(×10−3) 𝑒RMS𝑡 (×10

−3)

FFH1b 2.50225 1.8 1.89
ELM125 0.38 1.54 1.54
SVR 1237.71 3 3
CPBPNN 332 1.95 1.95

The table indicates that the classification precision of
CPBPNN cannot maintain 100% accuracy. The accuracy is
outperformed by those of FFH1b and ELM125. The reason
is that, in the delta elevators dataset, certain classes contain
less numbers of instances. Even a certain class only contains
only one instance. Therefore the sub-BPNNs may not be
sufficiently trained, which results in wrong classification.The
table also shows that CPBPNN has lower efficiency because
of the overhead of Hadoop framework. However, CPBPNN
offers a way of dealing with the classification tasks with large
volume of data.

5. Conclusion

This paper presents CPBPNN, aMapReduce based backprop-
agation neural network algorithm using cascading model.
The algorithm mainly contributes to three phases, the
speedup in the training phase, the speedup in the classifica-
tion phase, and the precision improvement in the classifica-
tion phase. In the training phase, the ensemble techniques
including bootstrapping and majority voting have been
employed. The ensemble based training strategy can train
the network in high efficiency whilst maintaining satisfied
accuracy. The classification is based on the data separation.
By using a number of trained subneural networks, CPBPNN
can process the classification with high efficiency when the
data size is large. Each training step in the cascading model
focuses on training only one class of the training data so that
the classifier has a high accuracy on recognizing instances
belonging to the class. Based on a number of cascading
steps, CPBPNN can give an accurate classification result.
The experiments evaluate CPBPNN in terms of precision,
efficiency, and scalability. The experimental results indicate
that the presented algorithm is suitable for dealing with
classification tasks for large volume data. However, the
algorithm also encounters one issue that Hadoop cannot
perfectly support iterative operations. So the algorithm has to
start and stop a series of mapper and reducer tasks, of which
the overhead affects the algorithm efficiency. In the future,
the algorithm implementation on Spark [34], an in-memory
computation based distributed platform, should be studied.
Its remarkable iteration-support mechanisms could supply
further algorithm efficiency improvement.
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[30] J. de Jesús Rubio, F. Ortiz-Rodriguez, C. R. Mariaca-Gaspar,
and J. C. Tovar, “A method for online pattern recognition of
abnormal eyemovements,”Neural Computing and Applications,
vol. 22, no. 3-4, pp. 597–605, 2013.

[31] The Iris Dataset, 2015, https://archive.ics.uci.edu/ml/datasets/
Iris.

[32] TheWineDataset, 2015, https://archive.ics.uci.edu/ml/datasets/
wine.

[33] Delta elevators dataset, 2016, http://www.dcc.fc.up.pt/∼ltorgo/
Regression/delta elevators.html.

[34] Spark, 2016, http://spark.apache.org/.


