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Abstract

Intracranial electroencephalography is a standard tool in clinical evaluation of patients with

focal epilepsy. Various early electrographic seizure patterns differing in frequency, ampli-

tude, and waveform of the oscillations are observed. The pattern most common in the areas

of seizure propagation is the so-called theta-alpha activity (TAA), whose defining features

are oscillations in the θ − α range and gradually increasing amplitude. A deeper understand-

ing of the mechanism underlying the generation of the TAA pattern is however lacking. In

this work we evaluate the hypothesis that the TAA patterns are caused by seizures spread-

ing across the cortex. To do so, we perform simulations of seizure dynamics on detailed

patient-derived cortical surfaces using the spreading seizure model as well as reference

models with one or two homogeneous sources. We then detect the occurrences of the TAA

patterns both in the simulated stereo-electroencephalographic signals and in the signals of

recorded epileptic seizures from a cohort of fifty patients, and we compare the features of

the groups of detected TAA patterns to assess the plausibility of the different models. Our

results show that spreading seizure hypothesis is qualitatively consistent with the evidence

available in the seizure recordings, and it can explain the features of the detected TAA

groups best among the examined models.

Author summary

During evaluation, epileptic patients might be implanted with intracranial electrodes in

order to gain insight into the initiation and evolution of the seizure. At the beginning of

the seizure variety of electrographic patterns can appear, whose origins and significance is

not yet fully understood, which makes the interpretation of the signals difficult. Here we

look at one of the patterns, the so-called theta-alpha activity pattern, and propose that it

can be explained by epileptic seizures gradually spreading across the cortex. To analyze

this hypothesis, we compare three models of epileptic activity that can generate the theta-

alpha activity pattern, and evaluate which of them is most consistent with the patterns

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008731 February 26, 2021 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sip V, Scholly J, Guye M, Bartolomei F,

Jirsa V (2021) Evidence for spreading seizure as a

cause of theta-alpha activity electrographic pattern

in stereo-EEG seizure recordings. PLoS Comput

Biol 17(2): e1008731. https://doi.org/10.1371/

journal.pcbi.1008731

Editor: Peter Neal Taylor, Newcastle University,

UNITED KINGDOM

Received: August 6, 2020

Accepted: January 21, 2021

Published: February 26, 2021

Copyright: © 2021 Sip et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The patient data sets

cannot be made publicly available due to the data

protection concerns regarding potentially

identifying and sensitive patient information.

Interested researchers may access the data sets by

contacting Clinical Data Manager Aurélie Ponz
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found in the patients’ recordings. We simulate the seizure activity using the detailed

geometry of individual patients’ brains and the location of the implanted electrodes, and

we show that the spreading seizure model is most consistent with the observations. Such

understanding can help the interpretation of the recordings in clinical practice, leading to

better outcomes of resective surgeries.

Introduction

Intracranial EEG and early electrographic patterns

Intracranial electroencephalography (iEEG) is an essential tool in clinical evaluation of

patients with focal drug-resistant epilepsy and its use in neuroscientific research is steadily

growing [1, 2]. The objective of exploration using iEEG is to understand the spatiotemporal

organization of the patient’s epilepsy with the goal to perform resective surgery and render the

patient seizure free. In epilepsy both electrocorticography (ECoG) using the subdural grids

and stereoelectroencephalography (SEEG) using the depth electrodes are widely employed.

The acquired intracranial recordings show variety of early electrographic seizure patterns,

i.e. patterns occurring shortly after the appearance of electrographic seizure activity at the

observed site. The patterns differ in frequency, amplitude, and waveform of the oscillations

and in their temporal evolution. Several studies attempted to classify these patterns in an effort

to distinguish between local onset and propagated seizures and to link the early patterns with

different pathologies or with the outcome of a resective surgery [3–10].

TAA electrographic pattern

One of the often described patterns is what we call theta-alpha activity (TAA): an early ictal

pattern characterized by sustained oscillations in the θ − α range with gradually increasing

amplitude (Fig 1). Such pattern was reported under the names “rhythmic ictal transformation”

[3], “sharp activity at� 13 Hz” [6], and “theta/alpha sharp activity” [10]. Furthermore, several

other studies include similar category of rhythmic theta-alpha activity, although without

explicitly mentioning the gradually increasing amplitude [4, 7, 11]. In the seizure onset zone,

the TAA pattern was reported as less common compared to low-voltage fast activity and low-

frequency high-amplitude spikes patterns [3, 6, 10]. However, the pattern was commonly asso-

ciated with the regions of seizure spread [4, 6, 7].

Seizures spreading across the cortex

In this work we aim to investigate whether the TAA pattern can be produced by seizures

locally spreading across the cortex. This local seizure spread, or propagating ictal wavefront,

refers to the scenario where the seizure is initiated at a spatially restricted location (either

autonomously or via external intervention), from where it gradually spreads to the surround-

ing tissue. Such seizure spread was observed in in vitro [12–14] and in vivo animal models of

epilepsy [15], as well as in human patients [16, 17]. The reported velocity of the seizure spread

was between 0.1 and 10 mm s−1, with the exception of situations where the lateral inhibition

was suppressed at the time of seizure initiation. In that case the seizure spread velocity was

reported to reach up to tens to hundred of mm s−1 [13, 14]; in this work, we do not model this

special case. Theoretical models of epileptic seizure dynamics which reproduce locally spread-

ing seizures exist, and include a network of coupled Wilson-Cowan units [18], spatially contin-

uous version of the phenomenological Epileptor model [19], or a biophysically-constrained
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model of seizure dynamics [20]. The relevance of local propagation for large-scale spatiotem-

poral organization of seizures in human patients compared to the propagation through the

long-range projections [21] was not yet determined.

Experimental results indicate that, at least under some conditions, the seizure activity in the

recruited tissue has a distinct spatiotemporal organization formed by fast traveling waves of

increased firing. Such waves were observed in the cortex of human patients during seizures,

spatially extending not only across microelectrode arrays but also across ECoG array, with

velocities ranging from 100 to 1000 mm s−1 [22–24]. Also this feature can be reproduced by

some models of seizure dynamics [19, 20].

Spreading seizures as a cause of TAA patterns

The two features of spreading seizures—slow wavefront and fast internal traveling waves—

motivate our speculations that the locally spreading seizures may be linked to the observed

TAA pattern, thus explaining its reported occurrence in the regions of seizure spread (Fig 1D).

To better elucidate this possible link, one has to first consider the relation of the (unobserved)

activity of the neuronal assemblies (to which we will hereafter refer as to the source activity)

and of the signal recorded by the intracranial electrodes (hereafter referred as the sensor

Fig 1. Example of the TAA pattern and the hypothesized mechanism. (A) Recording of a seizure from a contact of an implanted depth electrode in monopolar

representation. Blue background marks the limits of the details in panels B and C. (B) Detail of the TAA pattern at the seizure onset. (C) Time-frequency

representation of the signal in panel B (log transformed). The signal is dominated by oscillations around 8 Hz and its higher harmonics. (D) Hypothesized mechanism

of the emergence of TAA pattern. During a seizure, cortical sheet (1) is gradually recruited into seizure activity via slowly progressing seizure wavefront (2). Inside the

recruited area the abnormal activity is organized by fast traveling waves (3). Implanted sensors record the local field potential generated by nearby located cortical

tissue (4), and through this spatial averaging, the rapid onset at the source level is transformed into gradual onset on the sensor level (5).

https://doi.org/10.1371/journal.pcbi.1008731.g001
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activity). The electrodes record the local field potential (LFP) generated by the neuronal assem-

blies both local and distant. The amplitude of LFP recorded on the sensors is affected both by

the synchronization of the neuronal assemblies as well as by the geometry of the cortical tissue

and subcortical structures and the exact positions of the contacts of the implanted electrodes

[25, 26]. The LFP performs a spatial averaging of the source activity, and therefore the gradual

recruitment of the neuronal tissue by the slowly propagating seizure may manifest itself as a

gradually growing amplitude of the oscillations in the recorded signals—the characteristic fea-

ture of the TAA pattern. At the same time, if the internal organization of the seizure is domi-

nated by the fast traveling waves, then the firing of the recruited tissue is synchronized by

these waves. That, in turn, would give rise to LFP oscillations dominated by the single fre-

quency, which is the second feature of the TAA pattern.

Goal and organization of the paper

In this work we propose local seizure propagation as a (non-exclusive) candidate mechanism

for the generation of electrographic TAA patterns. Here we aim to determine whether this

hypothesis is plausible when confronted with the evidence available in the SEEG recordings of

epileptic seizures in human patients. To do so, we take the following steps: First, we generate a

synthetic data set of SEEG signals by simulating the seizure dynamics on realistic cortical sur-

faces using model parameters randomly sampled from prescribed parameter range. We use a

simple model of spreading seizure as well as reference models of one and two homogeneous

sources. Next, using a strict definition of the TAA pattern, we detect these in SEEG recordings

obtained from a cohort of fifty subjects, as well as from the simulated SEEG. We then compare

the statistical distributions of the features of the TAA patterns detected in the recordings with

those detected in the simulated data set in order to assess the plausibility of the propagating

seizure model relative to the reference models.

Results

Models of seizure activity

For our analysis, we used three models of seizure activity—one homogeneous source, two

homogeneous sources, and spreading seizure (Fig 2). All models follow the same structure.

They posit that only a small patch (or two small patches in case of the two sources model) of

the cortex is recruited in the seizure activity, and the rest of the cortex is modeled just as a

noise source. The source activity is represented on the vertices of the triangulated surface,

and differs for the three models. The spreading seizure model (Fig 2C) represents the main

hypothesis that the patch is recruited gradually as the seizure spreads, as described in the

introduction. On the source level, the seizure starts instantly with no transition period.

Inside the recruited part of the patch, the activity is organized by fast traveling waves. With

this model, the typical TAA feature—gradual increase of oscillations amplitude—is present

only on the sensor level, and emerges due to gradual recruitment of the cortical tissues and

the sensor to source projection.

As a comparison, we introduce two reference models. Both can reproduce the TAA pattern

on a single sensor, however, the features of the TAA groups (that is multiple TAA patterns

detected on one electrode) might differ. The first control case is the one homogeneous source
model (Fig 2A). This model represents the alternate hypothesis that the characteristic TAA

features—again, most notably the gradual increase of the amplitude—are already present on

the source level. This model conceptually corresponds to the neural mass models in which

the spatial component of the dynamics is absent and thus not crucial for understanding the
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phenomenon in question. For one homogeneous source model all vertices in the seizure patch

follow the same dynamics of oscillations with gradually increasing amplitude.

The model can produce the TAA pattern, yet the properties of the generated TAA groups

are restricted. For instance, due to all signals coming from a single source, the signal will be

highly correlated, and large delays between the appearances of the TAA patterns cannot be

expected, unlike in the spreading seizure model. Thus, to provide more compelling control

case we also introduce a two homogeneous sources model (Fig 2B). In this model two cortical

patches, each of them internally homogeneous, are recruited at different times. The patches

oscillates with the same frequency, although possibly with different phases. Such model still

represents a conceptual link to the neural mass modeling, except now with two neural masses.

Fig 2. Models of the seizure activity. Each column presents an example of a simulated seizure with the different models in the noisy variation. From top to bottom,

the panels show the position of the seizure patch and the implanted electrodes, source activity in two points on the patch, snapshots of the source activity (at time

points marked in the inset above), and simulated sensor activity on two contacts located close to the seizure patch. (A) One homogeneous source model posits that the

seizure activity is generated by one contiguous cortical patch, where any point follows the same dynamics (apart from the stochastic noise) with gradually increasing

oscillations. (B) In the two homogeneous sources model, there are two patches recruited with a delay. On each patch any point follows the same dynamics with gradual

onset as in the one source model. (C) In the spreading seizure model, the seizure activity start at a single point located on the cortical patch, and the seizure then slowly

spreads until the whole patch is recruited (recruitment time is represented by the patch color in top panel). In every cortical unit represented by a vertex of the

triangulation the seizure activity starts instantly with no transition period (second panel). Despite this rapid onset on the source level, the onset of the seizure activity at

the sensor level is gradual (bottom panel). This is due to the spatial averaging effect of the measured local field potential, which transforms the slow spatial spread of the

seizure into gradual onset in a sensor signal. The lowermost panel shows that all models produce SEEG signal resembling the TAA pattern.

https://doi.org/10.1371/journal.pcbi.1008731.g002
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Again, the TAA features are already present on the source level, and the spatial component

does not play major role in their emergence. Unlike to single source model, however, the

model can be expected to produce TAA groups with delays between the TAA appearance, or

less correlated signals.

Furthermore, the features of the TAA groups can be influenced by the level of noise. For

instance, even the one source model can produce sensor signals with low correlations if, on the

source level, the spatially homogeneous oscillations are superposed with spatially dependent

noise. To assess this noise effect, we consider all models with noise-free and noisy seizure activ-

ity. For the latter, on top of the deterministic source activity spatially correlated pink noise is

added.

The simulations were performed on the triangulated cortical surfaces obtained from the

fifty subjects in the patient cohort. The triangulated surfaces had mean total area 1790.7 cm2

(standard deviation 204.6 cm2), mean number of vertices 251.9 thousands (s.d. 31.2 thou-

sands), mean number of triangles 503.1 thousands (s.d. 62.4 thousands), mean triangle area

0.356 mm2 (s.d. 0.199 mm2), and mean edge length 0.924 mm (s.d. 0.295 mm). To assess the

influence of the triangulation density, we performed a set of simulations on this standard trian-

gulation and refined triangulation, obtained by splitting every existing triangle into four (S1

Fig). The results show that using the standard triangulation does not introduce differences of

higher order of magnitude than those due to the stochastic background noise, and we thus

used the standard triangulation in the rest of the work.

For each subject and each model, 300 simulations were performed, leading to a total of

15000 simulated seizures for each model. For each simulation, the model parameters were

drawn randomly from the prescribed parameter range (see Methods). The source activity was

projected on the sensors using the dipole model of generated local field position. The position

of the contacts was derived from patient data and thus constituted a realistic placement of the

electrodes. In case that the seizure activity was not detected on any contact in the simulation,

new set of parameters was drawn and the simulation was repeated.

Detection of TAA patterns

Using a cohort of 50 patients with focal epilepsy who underwent clinical evaluation via SEEG,

we detected the occurrences of the TAA pattern in the seizure recordings as well as in the sim-

ulated SEEG signals (Fig 3A). These patterns were detected on all channels separately. Next,

we restricted our analysis to the TAA patterns occurring on at least four consecutive contacts

on a single electrode, which we in the following text call TAA groups. This step was motivated

by the reasoning that the source activity often affects multiple electrode contacts at once, and

that more information about the spatial configuration of the sources can be extracted from the

properties of these groups. Strictly speaking, this restricts our subsequent conclusions only to

TAA instances occurring in groups. Panel A in S2 Fig however shows that the majority of

TAA instances do not occur in isolation even if they do not pass our criteria for group occur-

rence. Furthermore, analysis of the frequencies, durations, and delays from the seizure onset of

the group and non-group TAA instances does not indicate a difference between these two pop-

ulations (S2 Fig, panel B), giving basis for the belief that the conclusions can be extended to all

TAA patterns.

From these TAA groups we extracted five features on which our analysis is based: slope of

the onset of the TAA patterns and the coefficient of determination as obtained by linear regres-

sion, average duration of the TAA patterns, and the variance explained by first two PCA com-

ponents (Fig 3B and 3C). The choice of these features was motivated by the goal of assessing

the plausibility of the spreading seizure model. The first three features (slope, R2, and TAA
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duration) are informative about the hypothesized seizure spread (or its absence): High values

of slope indicate slow unidirectional linear spread, while low values are indicative of either

near simultaneous onset, or nonlinear spread. The coefficient R2 quantify how linear the

spread is. We note, in particular, that a bidirectional spread from the group center would be

described by zero slope and low R2, and thus not well captured by the selected features. We

have however avoided adding features characterizing such nonlinear spread, since we deemed

the possible features not sufficiently robust when computed from the noisy TAA onsets in

groups containing as few as four contacts. The duration reflects the rate of spread; in general,

slowly spreading seizure would result in larger TAA duration, however this is also affected by

the geometrical configuration of the cortical surface and the relative position of the electrode

contacts. The results of the principal component analysis are informative of the internal orga-

nization of the seizure activity. For example, high values of variance explained by the first com-

ponent could indicate that the signals are generated by a single point source, or an extended

synchronized source. Low values, on the other hand, could be indicative of multiple sources,

or structured but inhomogeneous activity (such as the fast traveling waves). Similarly for the

variance explained by the second component. Again, the values are influenced not only by the

source activity, but also the geometrical configuration of the sources and sensors.

Fig 4 summarizes where and when the TAA patterns were detected, and Table 1 summa-

rizes the number of detected TAA groups for the models and the recordings. In the recordings,

the TAA pattern was detected on around 2.5% of channels (around 10% of channels where sei-

zure activity was detected), only around one quarter of these were in a TAA group (i.e. more

than four TAA patterns on the consecutive contacts of a single electrode). In contrast to that,

in all computational models the TAA pattern was detected on majority of contacts with seizure

activity (Fig 4A). That is however to be expected from the models designed to produce the

TAA patterns.

Analysis of the location of the contacts where the TAA patterns were detected reveal that

they dominantly occur in the temporal lobe (Fig 4B). This observation cannot be explained by

Fig 3. Detection of TAAs and extracting the features of a TAA group. (A) For each channel, we calculate the normalized log-power in the θ − α band and determine

the period of growth (in blue) from the baseline to full seizure activity. We then test if the growth is roughly close to linear (R2 > 0.75). If so, we check whether the

largest peak of the normalized spectral density lies in the θ − α band and whether all other peaks are its harmonics. (B) When the TAA pattern is detected on four or

more consecutive contacts on a single electrode, three features are extracted: the slope and coefficient of determination of the TAA onsets (in red) and average duration

of the TAA patterns (in blue). The figure shows an example on five contacts of the electrode TB’ implanted in the left temporo-basal cortex. (C) In the TAA interval,

the principal component analysis of the SEEG signals is done to extract two more features: the variance explained by the first one and first two components.

https://doi.org/10.1371/journal.pcbi.1008731.g003
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a biased electrode implantation—the ratio of the number of contacts where TAA pattern was

detected and the number of implanted contacts is higher in the temporal lobe. That is some-

thing that the spreading seizure model cannot reproduce. Most of the TAA patterns appear

more than eight seconds after the clinically marked seizure onset (Fig 4C), supporting the

Fig 4. (A) Classification of the contacts based on the recorded/simulated activity. Seizure activity was detected on around 25% of contacts in the recordings and

around 10% in the simulations. The TAA pattern was detected on a subset of these seizing contact, and contacts that belong to a TAA group formed even smaller

subset. (B) Location of the contacts in the brain. In the spreading seizure model, the TAA patterns are distributed homogeneously in the brain, following the

implantation (first column). In the recordings, the TAA patterns occur dominantly in the temporal lobe. (C) Delays of the TAA pattern onset relative to the clinically

marked seizure onset in the recordings. Majority of the TAAs appear between eight to twenty second after the seizure onset. (D) Frequencies of the oscillations in the

TAA patterns detected in the patient recordings.

https://doi.org/10.1371/journal.pcbi.1008731.g004

Table 1. Number of detected TAA groups in the simulated and recorded SEEG. Number in the bracket is the num-

ber of simulated or recorded seizures, in which these patterns were searched for.

Model Noise-free simulations Noisy simulations

One source 30023 (15000) 31002 (15000)

Two sources 29268 (15000) 30589 (15000)

Spreading seizure 22426 (15000) 23578 (15000)

Recordings 32 (204)

https://doi.org/10.1371/journal.pcbi.1008731.t001
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hypothesis that TAA pattern is a propagation pattern. The frequency of the oscillations during

the TAA patterns is restricted mainly to the interval 5 to 9 Hz (Fig 4D). The analysis of the

location of TAA patterns in relation to the suspected epileptogenic zone identified by the Epi-

leptogenicity index [27] does not reveal any substantial differences from the location of the

seizing channels without the TAA pattern (S3 Fig).

Features of the recorded and simulated TAA groups

As demonstrated on Fig 2 (bottom panels), all models can produce activity which at least visu-

ally resembles the TAA pattern. To quantify how well the models fit the empirical data, we

detected the TAA patterns in the simulated SEEG in the same way as in the patient recordings,

and, for each of the detected TAA groups we extracted the five group features (Fig 3B and 3C).

This procedure gave us for each detected TAA group (in recordings as well as all models) a

five-dimensional feature vector, or TAA group “fingerprint”. On S4 Fig we analyze the similar-

ity and variability of the TAA groups detected in the recordings using clustering analysis,

showing that while differences between the detected TAA groups exists, no single subject

exhibits TAA groups that would be unique in their features and could be consider an outlier.

Fig 5A shows the densities of the five group features as observed in the recordings and in

the simulations. We highlight several points of interest:

• Short TAAs are more numerous (panel Duration). The empirical distribution of the TAA

duration is skewed towards shorter TAAs with duration of 3-7 seconds, and this aspect is

reproduced by the spreading seizure model. In contrast, the duration of TAAs in the one

and two source model is determined by the prescribed uniform distribution.

• Sequential recruitment is rare even under spreading seizure model (panel Slope). The

delayed appearance of the TAA pattern on neighboring contacts would be the most predic-

tive sign of a spreading seizure. Yet, as our model demonstrates, it is a relatively rare event

due to the spatial constraint imposed upon the alignment of the electrode with the direction

of seizure spread.

• Majority of TAA groups are highly correlated (panel PCA VE1). The trend is reproduced by

the two source model as well as the spreading seizure model, although they both predict

higher number of highly correlated groups, even in their noisy variations.

Empirical data are most consistent with the spreading seizure model

Given the “fingerprints” of the TAA groups (i.e. the samples from the distributions on

5-dimensional space of TAA group features) obtained from the recordings on one hand and

from the simulations on the other hand, we want to quantify the distance between the record-

ing distribution and all model distributions. Both the recording distribution and the three

model distributions are known only via finite amount of samples from them (Table 1). The

number of samples in the empirical distribution (n = 32) is determined by what was detected

in the data, while the number of samples in the model distributions depends on the number of

simulations performed; this we set considering the practical limits of computational resources.

Since any single measure of goodness-of-fit has its own advantages and disadvantages, we

employ four different measures to assure that the results are robust: k-nearest-neighbor

approximation of the log-likelihood (with k = 10 as well as k = 50), Bhattacharyya distance and

Earth Mover’s distance (Fig 5B). The log-likelihood measures how probable are the empirical

samples given the model. The Bhattacharyya distance measures the overlap of two probability

distributions. For two non-overlapping distributions it gives infinite value, unlike the Earth
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Mover’s distance, which takes into account how far apart the probability masses are. To quan-

tify the uncertainty in the distance estimate, we perform the bootstrapping, that is, we repeat-

edly calculate the measure for a random resample of the empirical samples.

We point out that the data sets are paired, that is, the same resamplings of the empirical

observations are evaluated under the different models. The unpaired comparison of goodness-

of-fit measures (Fig 5B, upper panels) does not take this into account, and while it shows dif-

ferences in medians indicating best fit of the spreading seizure model, the overlapping confi-

dence intervals do not demonstrate statistical significance. With the pairwise comparison we

control for the variance between the different resamplings, which leads to higher statistical

power. Here we compare with the most plausible noisy spreading seizure model (Fig 5B, lower

panels), and this pairwise comparison reveals statistically significant differences on the chosen

confidence level of 95%, however, only for the log-likelihood measures. The inconclusiveness

of the results for Bhattacharyaa and Earth Mover’s distance can be in part assigned to the

Fig 5. (A) Features of the detected TAA groups in the recordings and simulations. Each panel shows the density of one of the five features of the TAA group (see Fig

3) obtained from the samples via kernel density estimation for noise-free (top row) and noisy (bottom row) simulations. Each black tick at the bottom edge

corresponds to a TAA group in the recordings; these ticks match the density marked by the black dotted line, and are the same in both rows. (B) Quantification of the

fit of the models to the empirical data. The four columns show the median and the confidence intervals at 95% level of four measures of a goodness-of-fit: k-nearest-

neighbor estimation of log-likelihood (with k = 10 and k = 50; higher is better) and Bhattacharyya and Earth Mover’s distances (lower is better). Upper panels show the

values itself, lower panels show the difference to the noisy spreading seizure model. To calculate the Bhattacharyya and Earth Mover’s distances, the samples were

binned into 1024 uniform bins (each dimension divided into four bins) with limits indicated by the outermost ticks on x-axes in panel A. The confidence intervals are

obtained by bootstrapping, that is repeatedly calculating given measure with a random resample with replacement from the original 32-element sample of detected

TAA instances. Number of resamples was 1000, except for the Earth Mover’s distance where only 100 was used due to the computational demands. Abbreviation of the

model names: OS—One homogeneous source, TS—Two homogeneous sources, SS—Spreading seizure.

https://doi.org/10.1371/journal.pcbi.1008731.g005
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coarse binning used for their calculation, which is however necessary due to the computational

demands. The log-likelihood measures prefers the spreading seizure model more strongly,

however, the noisy two source model cannot be ruled out at the chosen confidence level. The

results thus call for analysis on a larger data set to obtain higher statistical power. We note that

qualitatively consistent results are obtained also with modified parameters of the TAA detec-

tion procedure (S5 Fig), illustrating the stability of the results.

Analysis of the spreading seizure model

For the spreading seizure model, indicated as most plausible explanation of the data, we inves-

tigated the cause-effect relation between the model parameters and the features of the model-

generated TAA instances. Such analysis can be valuable for future studies; if, for example, one

attempts to perform a model inversion for any individual TAA instance, detailed understand-

ing of the model behavior will be critical for success. In order to evaluate these cause-effect

relations, we performed linear regression between the model parameters and model-generated

features. Fig 6A shows the results, while rest of Fig 6 analyzes the important relations revealed,

and S6 Fig shows the relations between all parameters and features.

The strongest relation indicated is between the spread velocity and the TAA duration

and the slope of the TAA spread (Fig 6B). This can be understood by considering that faster

spreading seizures recruit the whole patch in shorter time, leading to a shorter duration of

the TAA pattern, as well as to lower slope of the TAA onsets on neighboring contacts. The

second parameter, patch size, has positive effect on the TAA duration since the patch recruit-

ment requires longer time, and negative effect on the variance explained by the first and sec-

ond PCA component. That can be interpreted that smaller patches behave more as point

sources, generating highly correlated signals on all electrodes which has high values of vari-

ance explained.

A further indicated strong relation is between the wave velocity and the frequency of the

oscillations on one side and the variance explained by the PCA components on the other side

(Fig 6C). The role of the two parameters is best understood when considered together, as they

define the wavelength of the fast waves, λ = uwave/f. In the simulations with longer wavelengths,

larger areas of the seizing patch are synchronized together, that is, they oscillate with similar

phase. The generated local field potential around the seizing patch is dominated by these com-

mon oscillations, leading the high variance explained by the first PCA components, and vice

versa for the shorter wavelengths.

Higher frequency TAAs are less observed in the spreading seizure model

The spreading seizure model can explain a phenomenon observed in the intracranial record-

ings, which is that, for frequencies above 7 Hz, the TAA patterns with higher frequencies

appear less often then those with lower frequencies (Fig 4D). In particular, only a handful of

TAA instances with frequencies above 10 Hz. This phenomenon, although to a lesser degree,

can be seen also in the TAA instances generated by the spreading seizure model (Fig 6D, right

panel), despite the frequency in the simulations being sampled uniformly from 4 to 13 Hz

range.

In the simulations, this observed effect can be explained again by considering the wave-

length of the fast waves. With shorter wavelengths (and higher frequencies), the patch

oscillates with different phases, and in the generated local field potential these oscillations

effectively cancel each other. In effect, the high frequency oscillations are less visible and less

often detected. These results indicate a possibility that, whatever is the mechanism of the
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underlying source oscillations causing the TAA pattern, it might not be restricted to the fre-

quency range 4 to 13 Hz commonly associated with the TAA pattern. Rather it might be that

the higher frequency oscillation do occur on the source level, yet they go undetected at the

sensor level due to the spatial canceling. Such argument however only applies for the upper

limit of the frequency range, as nothing precludes the detection of the lower frequency

oscillations.

Fig 6. Effects of the model parameters on the features of detected TAAs in the spreading seizure model in the noisy variant. (A) Upper plot shows the slope of

linear regression sp,f between all parameters and features, normalized by the parameter range width wp and standard deviation σf of the feature sp,f wp/σf. Lower plot

shows the normalized change in parameter mean for detected TAAs and the prior distribution, ðmTAA
p � mprior

p Þ=wp, indicating shift of the parameter density to higher/

lower values. More saturated blue (red) elements indicate stronger positive (negative) relation. Labeled regions are analyzed in other panels. (B) Relation between the

spread velocity and duration of the TAAs and slope of the TAA spread. Solid line and points represent the mean of the features, the shaded area is the 10-90 percentile

range. (C) Relation between the frequency and wave velocity and variance explained by the first one and first two components. In the upper plots, black contours

indicate the wavelength = wave velocity / frequency. The relation between the features and the wavelength is shown in the lower panels. (D) Relation between the

frequency and wave velocity and the density of detected TAAs. The number of detected TAAs decreases with shorter wavelength (left panel) as well as with the

frequency alone (right panel).

https://doi.org/10.1371/journal.pcbi.1008731.g006
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Discussion

Summary of the results

In this work we examined the hypothesis that the TAA pattern is caused by seizures spread-

ing across the cortex. The hypothesis ties together the observed SEEG pattern with the obser-

vations of the spreading seizures [16, 17] and fast traveling waves during seizures [23, 24] in

fashion consistent with recent models of seizure dynamics [19, 20]. We analyzed the SEEG

recordings of epileptic seizures collected from a cohort of fifty patients and compared how

the predictions of three different models fit the data. Among the tested models, the predic-

tions of the spreading seizure model in the noisy variation were closest to the observed data.

The model with realistic parameters is consistent with most features of the observed TAA

patterns, including a) the duration of the TAA patterns of several seconds (Fig 5A, panel

Duration), b) rarely observed sequential recruitment of neighboring contacts (Fig 5A, panel

Slope), or c) the high percentage of TAAs with highly correlated signals (Fig 5A, panel PCA

VE1). In addition, the model may provide an explanation for the upper limit of the TAA fre-

quency range (Fig 6D). There are however several observations that the spreading seizure

model cannot explain, mainly why are the TAA patterns disproportionately often observed

in the temporal lobe (Fig 4B).

Relation of TAA and spreading seizures

Our results show that the spreading seizure model is the most plausible explanation when

looking at all detected TAA patterns as a group. That, however, does not mean that it is the

best explanation for any single TAA even among the limited selection of models we have eval-

uated. One thus cannot conclude that all TAA occurrences are caused by spreading seizures;

other explanations might be plausible for any individual case. Indeed, TAA patterns were

observed not only in the sites of seizure propagation, but also within the epileptogenic lesions

[10], where the explanation by spreading seizure might be questioned.

One might consider fitting the models for individual TAA patterns using the information

about the geometry of the cortex in the vicinity of the electrode of interest in order to obtain

the parameter values best explaining the individual pattern. These parameters might include,

in case of the spreading seizure model, the velocity and direction of the spread or the location

of the seizure patch. The fitted models could then be compared to establish the probable cause

of each pattern. This effort would however be complicated by factors shared by many inverse

problems, mainly large degree of freedom, ill-posedness and issues linked to identifiability

[28, 29]. To deal with such issues, strong regularization of the model corresponding to strong

assumptions about the nature of the source activity would probably be needed, limiting the

usefulness of the results.

Frequency of occurrence of TAA patterns

In the seizure recordings the TAA pattern was detected in 10% of the channels with seizure

activity. That is partly a consequence of the utilized detection mechanism: on purpose we

have used relatively strict criteria to define what is a TAA pattern in order to get TAA patterns

from which the features can be robustly extracted. If, instead, we opted to classify all channels

according to the electrographic patterns into several distinct categories, more questionable pat-

terns could have been classified as TAA patterns as well and the percentage could be higher.

Indeed, Schiller and colleagues [4] found that in the sites of seizure propagation in mesiotem-

poral lobe, 53% of early patterns consisted of “rhythmic round theta and delta activity” corre-

lated with activity at the onset site, possibly related to the TAA pattern as we defined it here. In
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the sites of seizure propagation in neocortex the proportion was even higher (82%). Also Per-

ucca and colleagues [6] state that the TAA pattern was found in the propagation sites in more

than half of the seizures.

Thalamic involvement

In this work we do not explore the biological or dynamical mechanisms of the traveling waves,

only its manifestations on the intracranial recordings. While the traveling waves might be gen-

erated and sustained purely by the cortex as predicted by some models of seizure dynamics

[19, 20], they might be also driven by or arise from interactions with other structures. One

such structure could be the thalamus. Thalamus was for long implicated in the generation of

rhythmic spike-and-wave discharges in absence seizures [30, 31] but evidence exists for its

involvement in focal seizures as well [32–34]. Interestingly, experimental and computational

evidence show that thalamus can support propagating waves, both in isolation or as a part of a

coupled thalamocortical system [35]. Its involvement in temporal lobe epilepsies [32] could

explain the predominant occurrence of the detected TAA patterns in the temporal lobe.

Modeling of TAA patterns in large scale brain models

Although the forward problem, aka map between source and sensor space, is clearly acknowl-

edged as a contributor to the difficulty in performing correctly model inversion, often such

recognition remains academic. Clinically, SEEG electrode contacts are regularly identified syn-

onymously with brain region locations (electrode contacts A1-A2 for right hippocampus,

B1-B2 for right amygdala, etc.), although there is a well-established variability in terms of sur-

gical implantation and subsequent clinical interpretation, with consequences for surgery suc-

cess rate and scientific reproducibility, in case the data are used for research. Our contribution

highlights the importance of understanding the intracranial signals (and TAA patterns specifi-

cally) as signals generated by spatiotemporal dynamics, that is, by activity supported on spa-

tially extended cortical tissue and exhibiting spatiotemporal phenomena such as wavefronts or

waves with specific direction and velocity. Present results open the door for further efforts,

such as precise localization of the involved cortical tissue and the wavefront direction and

velocity for any TAA instance, utilizing the patient-specific geometry of the cortical folding.

Success in this effort would lead to better understanding of the pathways of seizure propaga-

tion in individual patients, and possibly improved localization of the epileptogenic zone.

Epilepsy research is particularly deeply connected to nonlinear dynamics. One of the few

fundamental discriminants of nonlinear dynamics is sudden qualitative changes in behavior,

which are technically described by bifurcations [36–38]. They are powerful tools of modeling,

because the behavior of any dynamic system can be smoothly mapped upon a set of canonical

equations (so-called normal form) that is representative for the transition. In epilepsy, there is

large evidence that the majority of seizure onset and offset transitions can be understood as

bifurcations [39–41], although also other forms of transitions have been recognized, for

instance in absence seizures so-called false bifurcations, in which significant changes occur

rather smoothly than discretely [42]. Bifurcation analysis permits the construction of a seizure

taxonomy based on purely dynamic features [40, 43], which guides further research and may,

for instance, lead to the discovery of novel attractors [44]. From the perspective of bifurcations,

the TAA patterns would be classified as a dynamical system undergoing a supercritical Hopf

bifurcation, whose distinguishing feature is the gradually increasing amplitude of the oscilla-

tions after crossing the bifurcation [40, 43]. As we have demonstrated here, the TAA pattern

can also be produced by spreading seizures with fast traveling waves. It was shown that these

features can be generated using the spatially extended Epileptor model [19], which uses the
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saddle-node bifurcation to initiate the seizure. This misidentification has two consequences:

first, the extent of the oscillation source in a spreading seizure model changes over time, thus a

simple spatial inversion assuming a static source is not appropriate and could lead to a mis-

identification of the epileptogenic zone; second, the bifurcation type may be incorrectly

inferred, which has important consequences for the behavior of the dynamical system, such as

the response to external stimulation, responses to local interventions via drug administrations

and difference in network propagation. For instance, dynamical system theory predicts that

stimulation of a system close to a supercritical Hopf bifurcation will not be able to trigger a

seizure, whereas stimulation close to a saddle-node bifurcation generally will [38]. Such is a

consequence of the different properties of multistability following from each bifurcation. Rele-

vance of these theoretical observations for clinical practice is clear considering that electrical

stimulation is used both for seizure suppression [45] and seizure induction aiding the epilepto-

genic zone localization [46]. Yet, because of the insufficient understanding of the underlying

dynamical mechanisms, accurate prediction of the stimulation effects or their interpretation

poses a limitation for more widespread application. This understanding remains restricted

despite the promise of recent studies systematically linking the bifurcation theory with the in-

vivo seizure dynamics [47] and with the response to electrical stimulation [48], and so the inte-

gration of spatial and spatiotemporal consequences of realistic forward modeling is an impor-

tant element to be integrated in the future workflows.

Limitations of the study

The results have to be interpreted within the limitations of the study. Importantly, it is the

sample size. Even with a large cohort of fifty patients and multiple seizure recordings for each

patient, only 32 TAA groups were detected in the recordings, and the model comparison was

based on these 32 samples. Although it is only the model comparison that is affected by the

small sample size and the model predictions are independent, the conclusions need to be con-

sidered in light thereof.

Further limitation is that the results of the model comparison inevitably depend on exact

form of the models and the choice of the ranges of the model parameters. We have not

attempted to fit the parameters to the observed data, instead, we chose the parameters distribu-

tions based on the experimental observations in the literature, and our choices could be ques-

tioned. We therefore advise not too interpret the results in an overly formal way such as

evaluating Bayes factors leading to the statements on the strength of evidence in favor of one

or the other model [49]. The main goal of the work was not to select the best model from the

candidate models; such task is not even necessary. Rather it was to gain insight about the

behavior, predictions, and shortcomings of the spreading seizure model when compared to

the empirical data. The other models served us mainly as a baseline in this endeavor.

Methods

Ethics statement

The approval was granted by the local ethics comittee (Comité de Protection des Personnes

Sud-Méditerranée I); the patients signed a written informed consent form according to its

rules.

Patient data

In this study we have used imaging and electrographic data from a cohort of 50 patients who

underwent a clinical presurgical evaluation (S1 Table). The clinical evaluation was described
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in detail before [21]. The T1-weighted images (MPRAGE sequence, repetition time = 1900 ms,

echo time = 2.19 ms, 1.0 × 1.0 × 1.0 mm, 208 slices) were obtained on a Siemens Magnetom

Verio 3T MR-scanner. The patients were implanted with multiple stereotactic EEG electrodes.

Each electrode has up to 18 contacts (2 mm long and 0.8 mm in diameter), which are either

uniformly placed on the electrode, separated by 1.5 mm from each other, or placed in groups

of five, which are separated by 9 mm. The location and number of electrodes varied between

the patients depending on individual clinical considerations (mean number of electrodes

12.00, s.d. 2.65; mean number of contacts 125.92, s.d. 32.91). The SEEG was recorded by a 128

channel Deltamed system using at least 256 Hz sampling rate. The recordings were band-pass

filtered between 0.16 and 97 Hz by a hardware filter. After the electrode implantation, a CT

scan of the patient’s brain was acquired to obtain the location of the implanted electrodes.

Cortical surface reconstruction

The brain anatomy was reconstructed from the T1-weighted images by FreeSurfer v6.0.0 [50]

using the recon-all procedure. Afterwards, the triangulated surface used in this study was

obtained by taking the midsurface of the pial surface and white matter-gray matter interface,

i.e. the surface lying halfway between these surfaces. The position of the contacts in the CT

scan with implanted electrodes was marked using the GARDEL software [51], and then trans-

formed to the T1 space using the linear transformation obtained using the linear registration

tool FLIRT from the FSL toolbox [52].

Computational models

The models define the source activity on the subject’s cortex O, and its projection on the sen-

sors implanted in the brain. Specifically, the models prescribe the seizure activity on the

recruited partOr(t) of the excitable patch Oe of the cortex, Or(t)� Oe� O. On the rest of the

cortex not recruited in the seizure activity only noise is prescribed.

One source model. In the one homogeneous source model, the whole excitable patch is

recruited at time t0,

OrðtÞ ¼

(
; if t < t0;

Oe if t � t0:
ð1Þ

The excitable patch Oe is in each simulation selected randomly by choosing a center point on

the cortex O which is placed closer than 15 mm from any of the electrode contacts. Then the

patch size is chosen from its prescribed range (Table 2), and the patch is extended from the

Table 2. Ranges and values of model parameters. Model abbreviations: OS—One Source, TS—Two Sources, SS—

Spreading seizure. † For noise-free / noisy simulations.

Parameter Model Value

Size of the excitable patch |Os| [mm2] OS, TS, SS [400, 2500]

Frequency f [Hz] OS, TS, SS [4, 13]

Onset duration δ [s] OS, TS [1, 30]

Delay of the onset of the second patch Δ [s] TS [0, 10]

Spread velocity [mm s−1] SS [0.5, 4.0]

Wave velocity [mm s−1] SS [100, 500]

Scaling coefficient q† OS 8.16 / 7.87

Scaling coefficient q† TS 9.96 / 9.85

Scaling coefficient q† SS 16.28 / 15.34

https://doi.org/10.1371/journal.pcbi.1008731.t002
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initial point until the desired size is reached. This is performed using a queue-based expansion:

all neighboring vertices of the initial vertex are added to the queue, and then until the desired

size is reached, first element from the queue is taken, added to the patch, and its neighbors not

yet assigned to the patch are added at the end of the queue. Due to the possible inhomogeneous

triangulation density, the created patches might not be circular even on a flat surface.

The source activity at point x on the cortical surface and time t is given by

sðx; tÞ ¼

(
q min 1; t� t0

d

� �
ysðt � t0Þ þ anðx; tÞð Þ if x 2 OrðtÞ;

Zðx; tÞ if x =2 OrðtÞ;
ð2Þ

where

ysðtÞ ¼

( asð� 2tf þ 1Þ if tf � btf c < 1

2
;

asð2tf � 3Þ elsewhere;
ð3Þ

is a triangle wave with frequency f, with power normalization constant as ¼
ffiffiffi
3
p

. Next, η(x, t)
and ν(x, t) is the background and seizure noise, described below, with the latter present only

for the noisy simulations, i.e. α = 0 for noise-free and α = 1 for noisy simulations. Finally, δ is

the duration of the onset pattern and q is a scaling coefficient (Table 2). We chose to use the

triangle wave at the source to best approximate the typical waveform of theta-alpha activity, in

literature sometimes described as “sharp” [6, 10].

Two sources model. In the two homogeneous sources model, there are two excitable

patches which are recruited with delay Δ, so that t0
2
¼ t0

1
þ D and

Ori
ðtÞ ¼

(
; if t < t0

i

Oei
if t � t0

i

i ¼ 1; 2: ð4Þ

The excitable patches Oe1
and Oe2

are selected in a similar way as in the one source model.

First, the patch centers are randomly chosen so that they lie closer than 15 mm from any of the

electrode contacts and also closer to each other than 10 mm. Then the patch size is chosen,

and each of the patches is expanded to half of its value. The source activity is given by

sðx; tÞ ¼

q min 1;
t� t0

1

d1

� �
ysðt � t0

1
Þ þ anðx; tÞ

� �
if x 2 Or1

ðtÞ;

q min 1;
t� t0

2

d2

� �
ysðt � t0

2
Þ þ anðx; tÞ

� �
if x 2 Or2

ðtÞ;

Zðx; tÞ if x =2 ðOr1
ðtÞ [ Or2

ðtÞÞ;

8
>>>>><

>>>>>:

ð5Þ

with the waveform ys given by Eq 3, background and seizure noise η(x, t) and ν(x, t) described

below, and onset duration δ1 and δ2 and scaling coefficient q as in Table 2.

Spreading seizure model. With the spreading seizure model, the excitable patch is

recruited sequentially,

OrðtÞ ¼

(
; if t < t0;

fx j x 2 Os; dðx; x0Þ < ðt � t0Þ uspreadg if t � t0;
ð6Þ

where d(x, x0) is the geodesic distance of the point x from the seizure origin x0 and uspread is

the velocity of seizure spread. The excitable patch is created the same way as in the one source

model, and the seizure origin x0 is selected randomly from all points on the excitable patch.
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The cortical activity is prescribed as

sðx; tÞ ¼

( qðypðt � t0 � dðx; x0Þ=uwaveÞ þ anðx; tÞÞ if x 2 Or

Zðx; tÞ if x =2 Or

ð7Þ

where

ypðtÞ ¼

( ap if tf � btf c < tf

0 elsewhere:
ð8Þ

is a pulse wave with duty cycle τ = 0.25 and frequency f, ap ¼
ffiffiffiffiffiffiffiffiffiffi
16=3

p
is the power normaliza-

tion coefficient, the parameter uwave is the velocity of the fast waves traveling across the

recruited part of the excitable patch, q is the scaling coefficient, and η(x, t) and ν(x, t) is the

background and seizure noise. The pulse waveform was chosen mainly for the simplicity, and

other waveforms could have been used to model the traveling wave instead. However, since

the subsequent analysis of the signals and the TAA detection is to a great extent oblivious to

the specifics of the waveforms, we consider it unlikely that a different choice would lead to

qualitatively different results.

Noise. The noise in the simulations consist of the background noise η(x, t) present in the

regions not recruited into seizure activity, and (in case of noisy simulations) the seizure noise

ν(x, t). Both the background and seizure noise are modeled as pink (i.e. 1/f) noise with power

equal to one. The seizure noise is modeled as spatially correlated with kernel k(x, x0) = exp

(−d(x, x0)/l) with l = 10 mm, d(x, x0) is the geodesic distance of two points on the cortical sur-

face. For reasons of computational efficiency, the background noise of the whole cortex is not

modeled as spatially correlated, instead, the cortex is divided into patches of average area 100

mm2, and the same noise time series is used for all points in one patch. The division is per-

formed by randomly selecting appropriate number of seed vertices and then expanding all

patches until the whole cortex is covered.

The scaling coefficient q was set experimentally so that the normalized log power of the

simulated SEEG would have comparable maximal values as the normalized log power of the

recorded signals. Specifically, for each model and for both noisy and noise-free simulations,

sixty simulations with randomly chosen parameters were performed with fixed q̂ ¼ 10. Then

the 80th percentile of log power normalized to preictal levels was calculated for all channels

(across time), and 95 percentile psim was again calculated across all channels and simulated sei-

zures. The same value prec was calculated for the recorded seizures, and the scaling coefficient

was updated, q ¼ 10
prec � psim

2 q̂.

SEEG projection. In the human cortex, the most numerous neuron type is the pyramidal

cell. Due to their geometrical structure with long dendrites oriented perpendicularly to the

cortical surface, they might be well represented as electrical dipoles [25]. Following this idea,

we assume that each point on the cortical surface acts as electrical dipole. In the spatially con-

tinuous formulation the local field potential measured by the electrode contact at point xs gen-

erated by the source activity s(x, t) on the surface O is given by

�ðxs; tÞ ¼
Z

O

n � ðxs � xÞ=jxs � xj
ðjxs � xj þ �Þ2

sðx; tÞ dx; ð9Þ

where n is the outward oriented normal of the surface, and the constant � = 1 mm is added to

prevent the singularities at the surface. In the discretized version using the calculated solution
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on a triangulated surface the formula is instead

�ðxs; tÞ �
X

v2V

Av
nv � ðxs � xvÞ=jxs � xj
ðjxs � xvj þ �Þ

2
svðtÞ; ð10Þ

where V is the set of all vertices on the triangulated surface, Av is the area associated with a

vertex (calculated as one third of the sum of areas of neighboring triangles), nv is the outwards

oriented normal of a vertex (calculated as a weighted average of the normals of neighboring tri-

angles), xv is the position of the vertex, and sv(t) is the activity at the vertex prescribed by one

of the above models (Eqs (2), (5) or (7)).

TAA pattern detection

The occurrences of the TAA pattern in all channels of the recorded (or simulated) electro-

graphic signals are detected in two steps. In the first step, we look for the temporal interval

where the power in the θ − α band grows from the preictal baseline to full seizure activity. In

the second step, we check that this tentative interval satisfies further conditions on the TAA

pattern, namely that the oscillatory activity is dominated by single frequency oscillations in the

θ − α range and the growth is close to linear.

The first step is implemented as follows. The power in the θ − α band (4 to 13 Hz) of the

SEEG signals in monopolar representation is calculated using the multitaper method (time

bandwidth = 2.0, number of cycles = 8). The θ − α log-power LPθ − α is then normalized to

preictal baseline (calculated from sixty seconds preceding the clinically marked seizure

onset) so that hLPθ − αipreictal = 0. The channel is marked as seizing if the 90-th percentile of

the power P90 is at least ks-times larger than the baseline with ks = 30. If it is not seizing, than

it is also marked as not TAA. Otherwise, the limits of the tentative interval of the TAA pat-

tern [to, tt] are set as tt = min{t | LPθ−α(t) < k2 P90} and to = max{t | t< tt, LPθ−α(t) > k1 P90},

where the lower threshold coefficient is set to k1 = 0.15 and upper threshold coefficient to

k2 = 0.85. This procedure implies that this tentative TAA interval can be preceded by any

activity as long as its θ − α log-power does not cross the upper threshold; the TAA patterns

that we detect can thus appear after abnormal electrographic activity of low power or outside

of the θ − α band.

Next, we check that the signal in the tentative interval satisfies our criteria on TAA patterns.

First, we apply the linear regression on the log-power over time, and check that the coefficient

of determination is sufficiently high, R2 > 0.75. Second, we calculate the power spectral density

of the signal in the tentatively determined interval in the range 1 to 100 Hz, we flatten the spec-

trum by multiplying it by the frequencies, and we normalize it so that the maximum is equal to

one. We then detect the peaks in the spectrum (minimum peak height 0.25, peak distance 2

Hz). The pattern is confirmed to be the TAA pattern if the frequency of the largest peak f0 lies

in the θ − α range (i.e. 4 to 13 Hz), and if all other peaks fi are harmonics of f0 (with tolerance

0.15f0, i.e |fi − kf0|< 0.15f0 for some k = 1, 2, . . .).

When the TAA pattern is detected on four or more neighboring contacts of a single elec-

trode, five features are computed for the group. Two are obtained from linear regression of the

TAA onset times to w.r.t. the position on the electrode: slope and the coefficient of determina-

tion R2. Next is the average duration of the TAA pattern, i.e. htti � toi ii, where i indexes the con-

tacts in the group. The last two features are determined by performing a principal component

analysis of the recorded (or simulated) signals in the interval ½minitoi ;maxitti �, and calculating

the variance explained by the first one (PCA VE1) and first two (PCA VE2) components.
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Measures of goodness-of-fit

We use three measures to quantify the fit between the features of the TAA patterns detected in

the recordings and in the simulated data sets. In the following paragraphs, we assume that

from the recordings we have n d-dimensional samples Xp ¼ fxp;ig
n
i¼1

from the probability dis-

tribution P with unknown probability density function p, and that we have m model-generated

samples Xq ¼ fxq;ig
m
i¼1

from the distribution Q with probability density function q.

Log-likelihood. The log-likelihood measures how likely are the samples Xp under the

hypothesis represented by the probability distribution Q,

logqðXpÞ ¼
Xn

i¼1

log qðxp;iÞ: ð11Þ

The probability density function q is however not known, and we approximate it with its k-

nearest-neighbor estimation,

LLk ¼
Xn

i¼1

log q̂ðxp;iÞ ¼
Xn

i¼1

log
k Gðd=2þ 1Þ

m pd=2skðxp;i; xqÞ
ð12Þ

where Γ is the gamma function and sk is the distance from xp,i to its k-nearest-neighbor among

Xq.

Bhattacharyya distance. The Bhattacharyya distance [53] measures the overlap of two

probability distributions. It relies on the binning of the samples. Given the probabilities pj and

qj in j = 1 . . . nb bins, the distance is defined as

DBðP;QÞ ¼ � log ðBCðP;QÞÞ; ð13Þ

where BCðP;QÞ ¼
Pnb

j¼1

ffiffiffiffiffiffiffi
pjqj

p
is the Bhattacharyya coefficient.

Earth mover’s distance. Intuitively, Earth mover’s distance [54] corresponds to minimal

amount of work needed to transport the mass from one distribution to another. Again, we

need to bin the samples into bins to obtain the probabilities pj and qj in j = 1 . . . nb bins. Then

the Earth Mover’s distance is defined as

DEMDðP;QÞ ¼ min
f

Xnb

i¼1

Xnb

j¼1

dijfij; ð14Þ

where dij is the Euclidean distance between the centers of i-th and j-th bin. The distances along

each dimensions are normalized by the standard deviation of the feature values in the record-

ing samples. The cost function is minimized over all possible flows f ¼ ffijg
nb
i;j¼1

, subject to fol-

lowing constraints:

fij � 0 i; j ¼ 1; . . . ; nb; ð15Þ

Xnb

j¼1

fij ¼ qj i ¼ 1; . . . ; nb; ð16Þ

Xnb

i¼1

fij ¼ pj j ¼ 1; . . . ; nb: ð17Þ

The constraint (15) guarantees that only positive amount of mass is transported, while (16)
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and (17) limit the amount of mass transported from and to a single bin to the amount given by

the distributions. The optimization is implemented using the OR-Tools package [55].

Supporting information

S1 Fig. Study of the mesh dependence. (A-D) Sixty simulations of spreading seizure in the

noise-free variant of the model were performed on the standard triangulation (described in

the main text) and on refined triangulation of the cortex, obtained by splitting every existing

triangle into four. The simulation parameters were chosen randomly as in the main text, but

were kept between the simulations on standard and fine triangulations, so that the results are

directly comparable. The background noise was however different between the simulations on

standard and fine triangulation. (A) The activity of the simulated SEEG signals were classified

into non-seizing (NSZ), seizing but not TAA (SZ), and TAA (see Methods). (B) For the signals

classified as TAA in both standard and fine simulations, the determined time of TAA onset is

compared. Perfect fit would lie on the diagonal marked by black dashed line. (C) Same as B

but for the determined duration of TAA pattern. (D) Histogram of the differences of the TAA

onset times and durations from panels B and C. The range is clipped for visualization, amount

of clipped values is shown in the inset text. (E-F) To assess the influence of the background

noise, second set of simulations on the standard triangulation was performed. The parameters

of the simulations were again kept the same as in the first set, only with the background noise

changed. Panels are equivalent to panels A-D, showing the fit between the two sets of simula-

tions on standard triangulations. Comparison between the first and second row of the figure

indicates that the differences between the simulations on standard and fine triangulations are

caused mainly by the stochastic background noise, since they are present also for the simula-

tions on the same triangulations. The level of mesh refinement thus does not introduce differ-

ences of higher order of magnitude.

(PDF)

S2 Fig. Properties of non-group TAA instances. A TAA instance is classified as belonging to

group if it is one of at least four TAA instances on neighboring contacts of the same electrode.

(A) Number of detected TAA instances on the same electrode for each non-group TAA

instance. For each detected non-group TAA, we counted the number of TAA instances on the

same electrode. Instances that occur in isolation represent 29% of non-group TAA instances

and 21% of all TAA instances. A non-group TAA instance can occur on one electrode with

more than three other TAA instances if they are non-contiguous. (B) Frequency, duration,

and delay from the seizure onset for the detected non-group TAA instances (n = 448) and the

group TAA instances (n = 160). Statistical analysis (Mann-Whitney U-test) does not indicate a

difference in frequencies (U = 34639.5, p = 0.265), durations (U = 33969.0, p = 0.163), or delays

(U = 33732.5, p = 0.135).

(PDF)

S3 Fig. Distance of the electrode contacts to the suspected epileptogenic zone. Plotted are

the histograms and kernel density estimates of distances of contacts with detected seizure

activity, with non-group TAA instances, and with group TAA instances. For the purpose of

this figure, we considered the epileptogenic zone to be located at the contact pair with the

highest calculated Epileptogenicity index (EI) [27]. Note however that the EI was calculated

only for some seizures (25.4%); for others we used the EI from other seizure in the same sub-

ject (54.4%), and yet other seizures where EI was not available for the subject were excluded

from this analysis (20.1%). Results indicate that the contacts with the group and non-group
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TAA instance follow the same distribution of distances as all seizing contacts.

(PDF)

S4 Fig. Similarity and variability of the detected TAA instances. We applied the k-means

clustering on the normalized features of the detected TAA instances. We applied the k-

means clustering on the normalized features of the detected TAA instances. (A) Optimal num-

bers of clusters, assessed by the second derivative of sum of squared deviations (SSD, lower is

better), silhouette score (higher is better), and Calinski-Harabasz score (higher is better). Tak-

ing the three criteria into account, we identify five clusters as optimal. (B) The clusters can be

roughly described as: TAA instances with large duration (cluster 2), instances with low vari-

ance explained by first two PCA components, either with small slope (cluster 1) or large slope

(cluster 4), and instances with high variance explained, either with small slope and low R2

(cluster 3) or varying slope and high R2 (cluster 5). The difference between the latter two clus-

ters might not be meaningful, as the coefficient of determination R2 does not convey useful

information when the slope is small. (C) Detected TAA instances in individual subjects. The

numbers refer to the S1 Table, each circle represents a detected TAA instance with coloring

corresponding to the clusters in panel B, and each row represents one seizure. None of the

clusters is specific to a single subject, and no subject is thus clear outlier from the rest of the

data set.

(PDF)

S5 Fig. Stability of the main results with respect to the parameters of the TAA detection

procedure. Figure shows the confidence intervals of the differences of the log-likelihoods to

those of noisy spreading seizure model. The log-likelihoods are estimated by k-nearest-neigh-

bor approximation with k = 10. The charts thus correspond to the lower left panel of Fig 5B in

the main text. (A-C) Results when systematically varying three parameters of the TAA detec-

tion procedure (seizure threshold ks, A; lower threshold k1, B; and upper threshold k2, C),

while keeping the other two at its default values. (D-E) Results for the default detection proce-

dure, but with modified range of the model parameters frequency and patch size. The default

parameter values are given in Table 2 in the main text. Although quantitative differences exists,

qualitatively the results for most parameter values or ranges agree, with the exception of the

patch size. For small patch sizes both the two source model and one source model are also

plausible. That can be explained by considering that the with reduction of the size the activity

on the patch in the spreading seizure model becomes more homogeneous, thus less distin-

guishable from the homogeneous source models. Abbreviation of the model names: OS—One

homogeneous source, TS—Two homogeneous sources, SS—Spreading seizure.

(PDF)

S6 Fig. Properties of non-group TAA instances. Effects of the parameters in the spreading

seizure model in the noisy variant, visualizing the relations on Fig 6A in the main text. Each

panel shows the relation between one parameter and one feature. Solid line and points repre-

sent the mean of the features, the shaded area is the 10-90 percentile range. The last row shows

the histogram of the parameters among the detected TAAs.

(PDF)

S1 Table. Patient table.

(PDF)
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