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Abstract: The lens is continuously exposed to oxidative stress insults, such as ultraviolet radia-
tion and other oxidative factors, during the aging process. The lens possesses powerful oxidative
stress defense systems to maintain its redox homeostasis, one of which employs connexin channels.
Connexins are a family of proteins that form: (1) Hemichannels that mediate the communication
between the intracellular and extracellular environments, and (2) gap junction channels that me-
diate cell-cell communication between adjacent cells. The avascular lens transports nutrition and
metabolites through an extensive network of connexin channels, which allows the passage of small
molecules, including antioxidants and oxidized wastes. Oxidative stress-induced post-translational
modifications of connexins, in turn, regulates gap junction and hemichannel permeability. Recent
evidence suggests that dysfunction of connexins gap junction channels and hemichannels may induce
cataract formation through impaired redox homeostasis. Here, we review the recent advances in the
knowledge of connexin channels in lens redox homeostasis and their response to cataract-related
oxidative stress by discussing two major aspects: (1) The role of lens connexins and channels in
oxidative stress and cataractogenesis, and (2) the impact and underlying mechanism of oxidative
stress in regulating connexin channels.

Keywords: oxidative stress; connexin; gap junction; hemichannel; lens; redox homeostasis;
cataractogenesis

1. Introduction

The lens is an avascular and transparent organ in the anterior segment of the eye.
Its primary function is to transmit and focus light onto the retina. The lens transmits
various wavelengths of light and filters out almost all ultraviolet (UV) light. Lenses are
constantly exposed to UV radiation, which generates reactive oxygen species (ROS) and
causes photochemical damages to biological molecules [1,2]. ROS, including superoxide
anion (O2

•−), hydroxyl (HO•), singlet oxygen (1O2), and hydrogen peroxide (H2O2), cause
oxidative modifications of proteins, resulting in protein function loss and aggregation,
and ultimately cataract formation [2]. To maintain redox homeostasis under continuous
oxidative insults, the lens develops an oxidative stress defense mechanism with powerful
capacities to modulate redox metabolism. This complex antioxidative mechanism includes
simple ROS scavengers and more advanced enzyme protective systems [3,4]. Moreover, an
internal lens microcirculation system composed of connexin channels, ion channels, and
ion pumps mediates the transport of nutrition and metabolites. It also plays a critical role
in protecting the lens against oxidative damage [5]. Under physiological or pathological
conditions, connexin channels are regulated and modified in response to several oxidative
insults and can, in turn, regulate the redox state [6]. In this review, we will discuss the
important roles of connexin channels in the lens under oxidative stress and cataractogenesis,
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focusing on regulating connexin-forming gap junction intercellular communication (GJIC)
and hemichannels (HCs) under physiological or pathological conditions. We aim to provide
a summary of recent research advances in our understanding of mechanical roles of
connexin channels in lens redox homeostasis and oxidative stress-induced lens disorders.

2. Connexins and Intercellular Communication in the Lens
2.1. Expression of Connexin Isoforms in the Lens

Connexins are a family of membrane proteins containing four transmembrane do-
mains, two extracellular loop domains, and one cytoplasmic loop domain. The N- and
C-termini are located in the cytoplasm [7]. Six connexin molecules are intracellularly
oligomerized and assembled into a hemichannel (also called connexons) and then trans-
ported to the plasma membrane. Hemichannels can consist of either the same connexin
isoforms or a combination of different connexin isoforms, referred to as homomeric or
heteromeric hemichannels, respectively [8]. Two hemichannels from two adjacent cells
dock with each other in the extracellular space to form a complete gap junction channel [9].
Two adjacent cells contribute different types of hemichannels, which can pair either with
a single type or different homomeric or heteromeric hemichannels (connexons), to form
homotypic channels and heterotypic channels, respectively. However, not all connexins
can form functional heteromeric or heterotypic channels; for instance, Cx43 can form
heterotypic channels with Cx50, but not with Cx46 [10]. The formation of these complex
structures depends on the compatibility of connexins composing the channels. In turn,
the connexin composition in the channels influences the conductance, permeability, and
selectivity of the channels [11,12].

The ocular lens is comprised of two cell types—epithelial cells that form a single
layer along the lens anterior, and fiber cells that make up the bulk of the lens organ.
Three connexin isoforms have been identified in the lens with different spatial expression
patterns. Cx43 is expressed in the lens epithelium, but not fiber cells, and its expression
is downregulated as the epithelium differentiates into fiber cells in the equatorial lens
region. Cx46 is absent in epithelial cells, but becomes highly expressed during fiber cell
differentiation. In comparison, Cx50 is initially synthesized in the epithelium and remains
at high levels in differentiating fiber and mature fiber cells [13–15]. Interestingly, a recent
study by Gong et al. [16] reported that human and mouse lenses have different distribution
patterns of connexin proteins. For example, in contrast to the mouse lens, where Cx46
is primarily expressed in the fiber cells [17,18], both Cx46 and Cx50 in the human lens
are expressed in the epithelial cells of transparent and cataractous lenses. Gong et al. [16]
further reported that the ratio between Cx43 and Cx46/Cx50 in humans is 9:1, which is
higher than in mice (5:1), indicating a different expression pattern of connexin isoforms.
Although transcripts for a fourth connexin, Cx23, have been detected in the zebrafish
embryo and mouse lens, there is no report for its expression in the human lens [19,20].
Therefore, Cx23 will not be further discussed in the present review. It should provide a
concise and precise description of the experimental results, their interpretation, and the
experimental conclusions that can be drawn.

2.2. Connexin Channels and Lens Microcirculation

Connexin channels allow the passage of molecules with size no more than 1 kDa [21],
and provide a pathway for the intercellular and intracellular exchange of ions, small
metabolites, and second messengers, such as Na+, K+, Ca2+, cAMP, cGMP, inositol trispho-
sphate (IP3), ADP, ATP, prostaglandin E2 (PGE2), glucose, and glutathione [12,22–24].
Although under certain physiological conditions, few unopposed HCs are open, studies
show that HCs can open and act as channels, independently from gap junctions. HCs can
open at the plasma membrane under physiological and pathophysiological conditions in
several cell types, including lens cells and bone osteocytes [21,25].

As an optical element in the light pathway, the lens maintains transparency and has
evolved a unique structure to minimize light scattering through organelle degradation and
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loss [26]. Interestingly, the mature fiber lacking organelles survive throughout their entire
life without de novo synthesis of proteins. Hence, transporting nutrition and metabolites
between mature fiber cells is crucial for their survival [1]. An internal transport model
has been proposed by Mathias et al. [27] that the lens operates a microcirculatory system
that delivers water, ions, and solute for lens cells. In this model, the current enters the
lens and the extracellular spaces between cells at both the anterior and posterior poles,
and exits at the lens equator [1,28]. Fiber cell gap junctions are one of the major compo-
nents of the lens microcirculation model [5]. The equatorial differentiating fiber cells are
postulated to regulate the angular variation in conductance through an fibroblast growth
factor (FGF)-mediated increase of the number of open gap junction channels [29]. This
model is consistent with the distribution of ion channels and pumps in the lens [28]. This
system is critical for maintaining the optical properties and enhancing the transparency
of the lens. Studies show that gap junction conductance plays an important role in the
microcirculation of the lens and that GJIC modulates lens microcirculation through lens
intracellular hydrostatic pressure. [30–32]. Ebihara et al. [33] report that Cx46 HCs may
play an important role in the lens internal circulation system by allowing the entry of
sodium from the extracellular space into lens fiber cells. Connexin HCs on the surface of
lens fiber cells are subjected to fluid flow shear stress (FFSS) applied by mechanical loading,
which is caused by lens accommodation and constitutive microcirculation [5]. Our recent
study provides direct evidence that glucose and antioxidants are efficiently transported
through lens microcirculation mediated by Cx50 HC opening induced by FFSS. It indi-
cates HCs as a potential, major delivery portal for nutrients and antioxidants in lens fiber
cells [34]. In addition, recent studies show that mutations in Cx50 and Cx46 cause cataracts
by compromising lens circulation through calcium accumulation and precipitation [35–37].

3. Oxidative Stress and Cataractogenesis
3.1. Oxidative Damage in Cataract Formation

Oxidative stress plays an important role in various aging-related pathogenetic pro-
cesses and diseases. For example, oxidative free radicals induce cumulative and irreversible
cellular malfunction and even cell death [38]. Oxidation of proteins, lipids, and DNA has
been demonstrated in cataractous lenses [39–43]. In the most advanced cataracts, over 90%
of protein sulfhydryl (-SH) groups are lost, and almost half of the methionine residues
in the nuclear protein become oxidized to methionine sulfoxide [44]. Oxidation-related
modifications, including protein insolubilization/loss of soluble protein, aggregation, and
non-disulfide crosslinking, are likely caused by a homeostatic imbalance of the redox
state in the lens. Various lines of evidence suggest the loss of glutathione (GSH) and the
significant increase of oxidized GSH (also known as glutathione disulfide, GSSG) levels in
age-related cataract development [45,46].

Besides aging, many other risk factors play major roles in cataractogenesis, such as
ultraviolet light, hyperglycemia, tobacco, and selenite [44,47–54]. The lens is capable of
transmitting light of various wavelengths and filtering out almost all UV light. In response
to strong, continuous UV radiation, this filtering function can be compromised, leading
to lens protein damage and the development of cataracts [55–57]. Ultraviolet B (UVB)
is responsible for photochemical reactions that damage the lens through the generation
of ROS [57,58]. The free UV filters (tryptophan derivatives) decrease with aging, which
causes the lens to be progressively more susceptible to UV damage and oxidation [48].
Many studies report increased free radicals, impaired antioxidant capacity, and increased
susceptibility to oxidative stress in diabetic lenses, suggesting that high glucose induces
cataracts through increased oxidative stress [59,60].

3.2. Redox System in the Lens

ROS can be generated endogenously in different cellular compartments during nor-
mal metabolism through the enzymatic activities of lipoxygenases, NADPH oxidase, cy-
tochrome P450, and mitochondrial electron transport, or through the effects of exogenous
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factors [61]. One of the most important and fundamental sources of endogenous ROS is the
formation of O2

•− via the electron transport chain in the mitochondria [62,63]. The produc-
tion of O2

•− can increase multiple damaging ROS species and promote redox imbalance
in the lens. Moreover, because of the small size, some of the ROS generated outside the
lens can pass through the plasma membrane of lens cells and lead to increased oxidative
stress [64].

To maintain redox homeostasis and transparency, the lens develops a powerful antiox-
idant defense system containing several non-enzymatic and enzymatic mechanisms that
protect the lens and repair damaged cell components. The lens possesses one of the highest
tissue levels of reduced GSH (~4–6 mM), which represents the primary reducing system in
the lens [65]. Other well-studied and important ROS scavengers in the lens are ascorbate
(vitamin C) and vitamin E, crystallin protein chaperones, and free UV filters [45,66–69].
ROS are also degraded through the activities of enzymatic antioxidants, including super-
oxide dismutase (SOD), glutathione peroxidase (GPX), peroxiredoxins, microperoxidases,
and catalase (CAT) [70–72]. GSH is converted to its oxidized form, GSSG, while GSSG can
be regenerated back to its reduced form by glutathione reductase (GSR). Under normal
cellular conditions in the lens epithelium, GSH is almost entirely found in its reduced state
with barely detectable levels of GSSG [73,74]. A high level of reduced GSH is also found
in healthy lens fibers cells, and likely is imported through connexin channels considering
their lack of synthetic enzymes, due to degeneration of organelles [31,45,75–78].

As aforementioned, several protein modifications occur due to oxidative stress and
lead to the formation of the high molecular weight insoluble protein aggregates [79–81].
After oxidative damage, lens protein repair requires the participation of the GSH-dependent
thioltransferase, the NADPH-dependent thioredoxin/thioredoxin reductase system, and
the methionine sulfoxide reductases [38]. A previous study has reported that deficiency of
lens repair systems results in loss of mitochondrial membrane potential and increased ROS
levels in lens cells [82].

In summary, cataractogenesis is a complex and multifactorial pathological process,
and oxidative stress plays a critical role in the process. Antioxidant defense systems and
protein repair mechanisms are developed to maintain redox homeostasis and transparency
of the lens.

4. Oxidative Stress and Connexin Channels in Cataractogenesis
Connexin Channels in Cataract Formation

Connexin-formed gap junctions and hemichannels in the lens mediate the small
molecule fluxes according to their chemical concentration gradients [5,83]. Gong et al. [16]
recently found that Cx43 is significantly upregulated by almost 50% in cataractous lenses,
while both Cx46 and Cx50 are downregulated. Moreover, Cx50 is downregulated more
than 90%, much greater than Cx46, in the fiber cells of ≥50-year-old human lenses. The
altered expression patterns during aging suggest that age-dependent loss of Cx46 and
Cx50 could contribute to senile cataractogenesis. It is also reported that there was no
significant difference in the amounts of either Cx46 or Cx50 during selenite-induced
cataract formation, while a decrease of Cx46 phosphorylation and an increase of cleaved
Cx50 were observed [84].

An earlier study reported that there are no detectable abnormalities of lens trans-
parency and lens fiber differentiation in Cx43-knockout mice [85]. In neonatal Cx43 (−/−)
lenses, fiber cells exhibit largely separated apical surfaces of epithelial cells, grossly dilated
extracellular spaces, and intracellular vacuoles between fiber cells [85,86]. Although Cx43
deletion does not influence prenatal lens development, the changes in Cx43 knockout mice
are associated with early-stage cataract formation and indicate its unique, diverse function
in regulating postnatal growth and homeostasis [85,86]. Since Cx43 knockout mice die
shortly after birth, due to blockage of the ventricular outflow from the heart [87], it is chal-
lenging to observe postnatal cataract development and lens homeostasis. Most identified
Cx43 single-point mutations in humans are correlated with several abnormalities, including
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oculodentodigital dysplasia, visceroatrial heterotaxia, hypoplastic left heart syndrome, and
atrial fibrillation [88], but only one is associated with a lens disorder. These studies suggest
that Cx43 dysfunction may not cause abnormalities of embryonic lens development. The
Cx43 Y17S mutation has previously been associated with cataracts in oculodentodigital
syndrome [89]. Furthermore, a study by Lai et al. [90] showed that the Y17S mutation in
Cx43 reduces the activity of gap junctions and HCs in C6 cells compared to wild type Cx43.
These observations suggested that Cx43 Y17S mutation-induced cataract formation is due
to partial loss-of-function of connexin channels. Interestingly, our recent study revealed
that the haploinsufficiency of Cx43 elevated oxidative stress and promoted susceptibility
to cataracts in the mouse lens (unpublished data). However, the mechanical role of lens
epithelial Cx43 in cataractogenesis remains largely elusive.

There have been ample studies with regards to the type of cataracts induced by genetic
alterations of connexins, including nuclear, nuclear pulverulent, zonular pulverulent, finely
granular embryonal, coppock-like and posterior polar [3,91–94]. Our recent study also
provides evidence that connexin channels likely play a role in oxidative stress-related
protein aggregation [95], which offers a potential mechanism in protecting lens proteins
after oxidative damage. However, there are limited studies that investigate the role of
connexins in the lens in response to oxidative stress in vivo. One study reported that
deletion of protein kinase C gamma (PKCγ), an oxidative stress sensor [96,97], abolishes
Cx50 phosphorylation on serine and threonine residues in the lens, eliminates the effects
of uncoupling of Cx50 gap junctions upon H2O2 treatment, and decreases the frequency
of gap junctions in lens cortical fiber cells, which, in turn, increase the susceptibility to
oxidative damage of the lens [98]. Recently, two mouse connexin gene knockin models
were developed employing two connexin mutants—Cx46fs380 and Cx50D47A. In these
two models, connexin expression is decreased [99,100], and GJIC is attenuated both in
differentiating and mature fibers. By detecting gap junction (GJ) coupling conductance,
coupling conductance per area of radial contact between fiber cells was calculated from
the reciprocal of resistivity multiplied by fiber cell width [36,101]. Since the effective
intracellular resistivities are dominated by the resistance of GJs, they are inversely propor-
tional to the number of opening GJs per area of radial cell-cell contact. GSH is reported
to be transported through GJIC, and as a result of functional GJIC and other antioxidants
mechanisms, oxidative damage is not an early critical event in cataractogenesis [102]. In
this study [102], the GSH level unexpectedly does not decrease in Cx50D47A (2.5 months)
and Cx46fs380 (4.5 months) mice lenses, while the level of glutathione synthetase is in-
creased. These results indicate an unnecessary correlation between GSH level and the
early stages of cataractogenesis. However, the data contradicts the previous concept of the
association between decreased GSH levels and cataract formation. These studies further
suggest the involvement of the p62-dependant antioxidant response [103], and the possible
compensatory effects in response to the impaired differentiation in Cx50D47A mice [100],
where the elevated GSH synthetase activity and GSH level are required to support the
remaining organelles.

5. Connexin Channels in Response to Oxidative Stress
5.1. The Role of Connexin Channels in Response to Oxidative Stress

Previous studies have shown the biphasic, protective, and detrimental roles of Cx43
channels in modulating oxidative stress-induced cellular damage in several different tis-
sues [78,104–115]. Whether connexin channels exert a protective or destructive effect in
response to oxidative stress is dependent on the insults and cell and tissue types. Our pre-
vious work has demonstrated a protective mechanism mediated by Cx43 channels against
oxidative stress in bone osteocytes [108]. In retinal pigment epithelial cells, Cx43 GJIC
protects cells against the chemical oxidant tert-butyl hydroperoxide (t-BOOH)-induced
cells death [107]. Selective inhibition of Cx43 HCs by Gap19, a selective Cx43 inhibitor of
HCs, protects human umbilical vein endothelial cells from lipopolysaccharide-induced
apoptosis [113]. Cigarette smoke extract and H2O2 lead to membrane depolarization
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and opening of HCs; this, in turn, likely predisposes epithelial cells to injury and apop-
tosis [112]. Chi et al. [115] prove that efflux of GSH via Cx43 HCs contributes to the
Ca2+ depletion-elicited disassembly of cell junctions. In cardiomyocytes, the translocation
of Cx43 to the mitochondrial inner membrane exerts cardioprotection ischemic and hy-
poxic postconditioning [114,116]. Recent studies show that Cx43 HCs in cardiomyocyte
mitochondria interact with ATP-sensitive potassium channels (mKATP) and protect car-
diomyocytes against hypoxia/ischemia stress [117,118]. In contrast to the cardioprotection,
mitochondrial Cx43 HCs facilitate mitochondrial Ca2+ entry and may trigger permeability
transition and cell injury/death by using connexin-targeting peptides interacting with
extracellular (Gap26) and intracellular (Gap19, RRNYRRNY) Cx43 domains [119,120], indi-
cating a detrimental role of Cx43 HCs in cardiomyocytes. In astrocytes, Cx43 deficiency or
Cx43 channel inhibition resulted in increased ROS-induced astrocytic death, supporting
a protective effect of Cx43 channels [105]. The viability of astrocytes is reduced in the
hypoxia/reoxygenation process through increased permeability of Cx43 HCs and release
of ATP and glutamate [121,122].

In response to environmental radiation and oxidants, ROS accumulates excessively in
lens cells, including epithelial cells and the bulky fiber cells, as well as the surrounding
fluids, such as the aqueous humor [123]. Connexins are subject to oxidative stress-induced
post-translational modification, which can alter the conductance and activities of the lens
connexin channels [96,124]. The previous study has shown that H2O2 leads to a dose- and
time-dependent decrease of Cx46 in differentiated chick lens cultures [3]. A recent study
demonstrated that glucose oxidase-induced oxidative stress causes significant upregulation
of Cx43, and downregulation of Cx46 and Cx50 [16].

Our previous work has demonstrated a protective role of lens connexin channels
against oxidative stress [78,125]. The Cx46 G143R missense mutation, associated with
congenital Coppock cataracts, decreased Cx46 gap junctional coupling, and increased HC
activity. Moreover, this mutation decreased the resistance of the cells to oxidative stress,
primarily due to the increased HC function [125]. Recently, the study by Retamal et al. [126]
further showed that Cx46 in the lens was carbonylated by 4-Hydroxynonenal (4-HNE)
in a selenite-induced cataract animal model, suggesting that Cx46 is post-translationally
modified by a lipid peroxide and that this modification reduces Cx46 HC activity. In lens
fiber cells, Cx50 HCs open in response to H2O2 stimulation, which supports the cellular
protective role of HCs against oxidative damage [78]. In this study, the dominant-negative
mutants in Cx50, Cx50P88S (inhibiting both gap junctions and HCs), and Cx50H156N (only
inhibiting HCs), block the protective role of Cx50 in response to H2O2-induced apoptosis,
while the Cx50 E48K (only inhibiting gap junctions) does not have such effect. By using a
Cx43E2 antibody, a specific Cx43 HC inhibitor [127], our group recently revealed that Cx43
HCs protect lens epithelial cells against oxidative stress (unpublished data). In contrast to
the cell-protective effect, it has been reported that Cx43 HCs in lens epithelial cells play a
detrimental role in linoleic acid-induced cell death [110]. This effect of HCs was validated
by TATGap19, a specific Cx43 hemichannel inhibitor, but this study did not rule out the
involvement of GJIC.

To date, most of the studies support the protective role of connexin channels against
oxidative stress in the lens. The alteration in the expression of connexin isoforms in the
lens during aging indicates that Cx43 may play a critical role in response to compromised
redox homeostasis. On the other hand, connexin HCs opening in other cells/tissues has
been shown to mediate the loss of GSH [115], implying a possible adverse effect on the lens
under certain conditions.

5.2. Cellular Communication through Connexin Channels under Oxidative Stress

As an avascular organ, most of the lens’ metabolic needs rely on the aqueous hu-
mor and anterior epithelial cells. Lens fiber cells have limited antioxidant capabilities
and require the import of antioxidant compounds like GSH, which are produced by lens
epithelial cells. Connexin channels permit the transfer of ions and molecules less than
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1 kDa [128], therefore permit delivery of reductant molecules to maintain a reduced envi-
ronment in the lens fibers. The transport of such antioxidants and their oxidation molecules
between the epithelial cells at the anterior surface of the lens and the bulk of lens fibers is
through a microcirculation system, a network of membrane channels that includes connexin
channels [5].

Several studies have shown that connexin channels are permeable to ROS and
GSH [76,78,112,129–131]. Thus, it is expected that connexin channels play a pivotal role
in maintaining the redox homeostasis of the lens. Furthermore, the oxidized form of
GSH, GSSG, is believed to diffuse back to the lens periphery, where it can be reduced to
regenerate GSH. The permeability of Cx43, Cx46, and Cx50 in the lens was investigated in
a study by Slavi et al. [76]. They found that deletion of Cx46 led to a marked and selective
decrease in GSH levels in the lens core, indicating that Cx46, but not Cx50, is necessary for
the transport of GSH to the lens nucleus. However, GSSG permeation through fiber cell
gap junction channels was undetectable in these studies. Contrary to GSH transport under
normal conditions, we found that under oxidative stress conditions, Cx50 HCs protect
lens fiber cells against H2O2-induced cell death by uptaking exogenous GSH [78]. Our
recent study also indicates that Cx43 HCs in lens epithelium could uptake exogenous GSH
and release GSSG in response to oxidative stress. Interestingly, we also found that Cx43
HCs protect epithelium through mediating H2O2 influx against H2O2-induced oxidative
stress (unpublished data). These findings imply that the entry of ROS not only facilitates
the acceleration of redox imbalance [112], but also triggers cellular antioxidant activities
under certain oxidative conditions. Connexin channels are likely to maintain the redox
hemostasis by redistributing oxidants/antioxidants with neighboring cells via GJIC or the
extracellular microenvironment via HCs and preventing intracellular ROS accumulation.

5.3. Regulation of Lens Connexin by Oxidative Stress

Communication via connexin channels is dynamically regulated at multiple levels,
which is achieved by changes in the unitary conductance of single-channels or probability
of channel opening, as well as the presence of channels on the plasma membrane affected
by the rates of synthesis and assembly, post-translational modification and/or protein
degradation [21]. It was thought that HCs remained closed until their docking with another
HC to prevent undesired leakage. However, increasing evidence supports that unopposed
HCs can open under physiological or pathological conditions [132]. This open probability
allows connexin HCs to participate in several cellular processes. The modification and
regulation of connexin channel gating mechanisms under physiological or pathological
conditions have been well-reviewed [6,133–137]. Here, we will focus on the role of redox
signaling as an intermediary of connexin channels in regulating the lens under oxidative
stress. In recent years, growing evidence supports that the responses of connexin GJICs and
HCs can be observed with various methods of oxidative stress induction, such as cigarette
smoke extract, cadmium, nitric oxide, metabolic inhibition, and H2O2 [78,104,112,138–144].
We recently studied the effect of two major oxidative stress sources, H2O2 and UVB
radiation, on connexin HCs in the lens, and found that connexin HCs open in response
to either H2O2 or UVB radiation (unpublished data). All these observations suggest that
connexin channels are activated in response to oxidative stress, but the question is how
oxidative stress opens HCs. The likely oxidative stress-induced regulatory factors include
protein kinases/phosphatase, pH, intracellular Ca2+, and changes of membrane potential.

The study by Contreras et al. [140] suggested that connexin channels can be modulated
by two free radical scavengers, melatonin and trolox. Moreover, Retamal et al. [138]
reported that Cx43 HC opening can be blocked by dithiothreitol (DTT), a membrane-
permeable reductant, but this blockage was not observed with membrane-impermeable
GSH. The results indicate that HC inhibition by reducing agents likely acts on the oxidized
intracellular cysteine (Cys) residues. In addition, another study [104] detected the activities
of GJIC and HCs in astrocytes under a proinflammatory cytokine and oxidative stress
environment. They showed that the increase of HC activity could be inhibited by L-name
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(an inhibitor of the nitric oxide synthase) and DTT; however, the decrease in GJIC was
unaffected by either of the reagents. The modification of HCs by redox potential was
also confirmed in HeLa cells by metabolic inhibition [141] and in smooth muscle cells
upon stimulation by constrictor phenylephrine [142]. Cys271 has been suggested as an
oxidation site of Cx43 [142], and recently validated as an S-nitrosylation site activated
directly by nitric oxide [144]. We further found that Cx43 HCs activation induced by UVB
radiation is regulated by the intracellular redox state through a different cysteine residue,
Cys260 (unpublished data). Different Cys groups are differentially oxidized and induce
different modifications to channel properties [145]. Therefore, further research is required
to understand the role of specific Cys groups at the connexin C-terminus and their effect on
connexin channels upon oxidative insults, which will ultimately aid in our understanding
of the role of redox in pathological and physiological processes.

It is known that under pathological conditions, connexins can be modified by in-
creased ROS, and the protein phosphorylation induced by oxidative stress is considered the
most common form of post-translational modification. Connexin molecules have multiple
consensus phosphorylation sites, and the phosphorylation of connexins mostly occurs at
the C-terminal region. The direct phosphorylation of connexins can regulate GJCs and HCs
properties, as well as connexin trafficking, GJ assembly, and stability [146–148]. Generally,
connexins can be directly phosphorylated by serine/threonine kinases or tyrosine kinases,
including protein kinase C (PKC), MAP kinase (MAPK), cAMP-dependent protein kinase A
(PKA), casein kinase (CK), p34cdc2, protein kinase G (PKG), Ca2+/calmodulin-dependent
kinase II (CaMKII), and the tyrosine kinase Src. Reported phosphorylation sites of connex-
ins, responsible kinases, and the effect on GJIC and HCs have recently been described and
summarized by Pogoda et al. [6]. Here, we primarily focus on oxidative stress-correlated
connexin phosphorylation in the lens.

It has been reported that PKC-dependent connexin phosphorylation decreases GJ
conductance or dye coupling [149], and inhibition of PKC increases Cx43 HC activity [150].
The correlation between activities of GJIC and PKC-dependent Ser368 phosphorylation
of Cx43 has been established in various cell types [6]. In ovine lens epithelial cells, TPA
induced a gradual disappearance of Cx43 gap junction plaques and a transient decrease in
Cx43 levels [151]. In rabbit lens epithelial cells, PKCγ phosphorylates Cx43, and this phos-
phorylation causes disassembly and loss of gap junction plaques from the cell surface [152].
Contrary to PKCγ, overexpression of PKCα leads to an increase in cell surface expression
of Cx43. Furthermore, it has been reported by Lin and Takemoto [96] that H2O2-induced
oxidation of the C1 domain activates PKCγ, and inhibits gap junctions. Similar increases in
the phosphorylation of Cx46 and Cx50 were observed in rat lenses treated with H2O2 [124].

In addition to the most studied PKC, several studies have reported PKA kinase activity
in the lens, including C43 phosphorylation at its C-terminal region [146,149]. There are
also multiple in vivo phosphorylation sites of bovine Cx50 and Cx46 identified by mass
spectrometry [153]. In earlier studies, Walsh and Patterson [154] reported that the topical
administration of PKA activators, forskolin or 8-Br-cAMP, increased the equatorial current
of the lens, although the substrates and the process remained unclear. Berthoud et al. [155]
demonstrated constitutive phosphorylation of the Cx46 C-terminus in primary chicken
lentoids. Both PKC and PKA efficiently phosphorylated GST-Cx56CT at S493 in vitro.
A previous study by our laboratory [156] conducted mass spectrometry analysis and
found that Ser395, located at the PKA consensus site at the C-terminus of chicken Cx50
was phosphorylated in the lens. Furthermore, analysis of Cx50 phosphorylation by two-
dimensional thin-layer chromatography with tryptic phosphopeptide profiles suggested
that Ser395 was directly phosphorylated by PKA in vivo. Moreover, PKA activation
enhanced both Cx50 gap junction and HC function. Our study further confirmed that
the enhanced GJIC did not involve increased Cx50 trafficking to the cell surface, Cx50
expression, or gap junction plaque formation, but gap junctions did appear to be stabilized
in a more conductive configuration by single-channel recordings [156]. PKA enhanced
transitions between the closed and open state (~200 ps), while simultaneously reducing
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transitions between the open state and a ~65-ps subconductance state. The mutation of
Ser395 to alanine attenuated the PKA-mediated increase in GJIC and altered, but did not
eliminate, the channel response to PKA. This study also showed that PKI, a specific PKA
inhibitor abolished the increase induced by PKA activators. This phenomenon is consistent
with a previous report from Calvin et al. [157], who showed that introducing large cortical
cataracts with severe disturbances of lens electrolytes by H-89, an inhibitor of PKA. It is
plausible that the primary cause of H-89-induced cataracts involves the inhibition of PKA
phosphorylation.

6. Conclusions

As illustrated in Figure 1, growing evidence has unveiled the importance of GJIC
and HCs in redox regulation and cataratogenesis in the lens. During aging, lens redox
states gradually transition from being reductive to highly oxidative. This is associated
with changes of expression and post-translation modifications of connexin molecules.
The oxidative-induced alterations of connexin proteins decrease GJIC, leading to the
accumulation of oxidants and consequently cataract formation, since antioxidant molecules
cannot be delivered into the lens core. In contrast to GJIC, oxidative stress opens HCs, and
this opening enables a cellular protective mechanism against oxidative stress-induced cell
death. The oxidative stress on lens proteins, lipids, and DNA may result in an imbalanced
redox environment and activation of signaling pathways that induce post-translational
modifications of connexins and oxidation of connexin molecules. As a critical regulator
of redox homeostasis, the responses of connexin channels to oxidative stress are complex,
and the net effects likely depend upon multiple factors, such as phosphorylation, cellular
redox state, and membrane potential. Studies regarding crosstalk between these factors
will help to elucidate the relationship to oxidative stress, GJIC/HCs, and cataracts. In
general, current evidence strongly supports the key roles of connexin channels in oxidative
stress-related disorders in the lens, but the underlying molecular mechanisms between
oxidative stress, connexin channels, and cataract formation require further investigation.



Antioxidants 2021, 10, 1374 10 of 16Antioxidants 2021, 10, 1374 10 of 16 
 

 
Figure 1. Illustration of connexin-forming gap junctions and hemichannels in the lens under normal 
and oxidative stress conditions. The distribution of connexin subtypes in various lens regions is 
shown (upper panel). At normal physiological conditions (middle left panel), the expression of 
antioxidant genes, such as superoxide dismutase 1 (SOD1) and glutathione peroxidase 1 (GPX1), is 
high, and glutathione (GSH) synthesized by lens epithelial cells is released possibly through con-
nexin hemichannels. The extracellular GSH will be uptaken by cortical lens fiber cells through fiber 
connexin hemichannels and further delivered through gap junctions to inner lens fiber cells. The 
ratio of GSH and oxidized GSH (also known as glutathione disulfide, GSSG) is high in the normal 
lens. When the lens is continuously subjected to oxidative stress, due to (ultraviolet radiation) UVR, 
aging, or high glucose (HG) (middle right panel), expression of antioxidant gene expression is 
lower, and the biosynthesis of GSH is reduced in lens epithelial cells. This leads to reduced GSH 
release, and in the meantime, less GSH will be uptaken by cortical lens fiber cells. The reduced GSH 
level in lens cortical fiber cells will disrupt the balanced redox potential accompanied with elevated 
oxidant GSSG and reactive oxygen species (ROS), and lower GSH/GSSG ratio. Consequently, fewer 
reductants, but more oxidants will be transferred to the inner lens fibers through gap junctions. The 
compromised redox homeostasis will generate a vicious cycle, and resulted in elevated oxidative 
stress will lead to cataratogenesis. Connexins can be post-translationally phosphorylated at its C-
terminus by protein kinases, such as protein kinase A (PKA) and protein kinase C PKC. Oxidative 
stress, such as H2O2 and NO, can alter connexin phosphorylation, leading to changes in connexin 
hemichannel function (bottom left panel). 

  

Figure 1. Illustration of connexin-forming gap junctions and hemichannels in the lens under normal
and oxidative stress conditions. The distribution of connexin subtypes in various lens regions is
shown (upper panel). At normal physiological conditions (middle left panel), the expression of
antioxidant genes, such as superoxide dismutase 1 (SOD1) and glutathione peroxidase 1 (GPX1),
is high, and glutathione (GSH) synthesized by lens epithelial cells is released possibly through
connexin hemichannels. The extracellular GSH will be uptaken by cortical lens fiber cells through
fiber connexin hemichannels and further delivered through gap junctions to inner lens fiber cells. The
ratio of GSH and oxidized GSH (also known as glutathione disulfide, GSSG) is high in the normal
lens. When the lens is continuously subjected to oxidative stress, due to (ultraviolet radiation) UVR,
aging, or high glucose (HG) (middle right panel), expression of antioxidant gene expression is lower,
and the biosynthesis of GSH is reduced in lens epithelial cells. This leads to reduced GSH release, and
in the meantime, less GSH will be uptaken by cortical lens fiber cells. The reduced GSH level in lens
cortical fiber cells will disrupt the balanced redox potential accompanied with elevated oxidant GSSG
and reactive oxygen species (ROS), and lower GSH/GSSG ratio. Consequently, fewer reductants, but
more oxidants will be transferred to the inner lens fibers through gap junctions. The compromised
redox homeostasis will generate a vicious cycle, and resulted in elevated oxidative stress will lead to
cataratogenesis. Connexins can be post-translationally phosphorylated at its C-terminus by protein
kinases, such as protein kinase A (PKA) and protein kinase C PKC. Oxidative stress, such as H2O2

and NO, can alter connexin phosphorylation, leading to changes in connexin hemichannel function
(bottom left panel).
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