organic compounds

 $\mu = 0.08 \text{ mm}^{-1}$

T = 173 (2) K

 $R_{\rm int} = 0.050$

200 parameters

 $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

 $0.44 \times 0.33 \times 0.16 \text{ mm}$

3684 independent reflections

2861 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2-Hydroxyethyl)-N-(tricyclo-[3.3.1.1^{3,7}]dec-2-yl)benzamide

Grant A. Boyle,^a Thavendran Govender,^{b*} Hendrik G. Kruger^a and Oluseye K. Onajole^a

^aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and ^bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa

Correspondence e-mail: govenderthav@ukzn.ac.za

Received 23 April 2008; accepted 6 May 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.110; data-to-parameter ratio = 18.4.

The title adamantane derivative, C₁₉H₂₅NO₂, was synthesized as part of a study into potential antituberculosis agents. The adamantane skeleton displays shorter than normal C-C bond lengths ranging between 1.5230 (15) and 1.5329 (16) Å. The structure displays O-H···O hydrogen bonding and an interdigitated layered packing structure with distinct hydrophilic and hydrophobic regions.

Related literature

For related literature, see: Bogatcheva et al. (2006); Jacobson et al. (1987); Lee et al., (2003)

Experimental

Crystal data C19H25NO2 $M_r = 299.40$ Monoclinic, $P2_1/c$

<i>a</i> =	11.424	8 (3) Å
<i>b</i> =	16.090	2 (4) Å
<i>c</i> =	8.7211	(2) Å

 $\beta = 107.9030 \ (10)^{\circ}$ V = 1525.55 (7) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: none 19272 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.109$ S = 1.123684 reflections

Table 1 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$		
$O1-H1A\cdots O2^{i}$	0.84	1.96	2.7735 (12)	164		
Symmetry code: (i) $-x + 1, -y, -z + 1$.						

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006) and WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

We thank Dr Manuel Fernandes of the Jan Boeyens Structural Chemistry Laboratory, University of the Witwatersrand, for his assistance in the acquisition of the crystallographic data. This work was supported by grants from the National Research Foundation (South Africa), GUN 2046819, the University of KwaZulu-Natal and Aspen Pharmacare.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2199).

References

- Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.
- Bruker (1999). SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jacobson, A. R., Makris, A. N. & Sayre, L. M. (1987). J. Org. Chem, 52, 2592-2594.
- Lee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry, C. E. (2003). J. Comb. Chem. 5, 172-187.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, o1029 [doi:10.1107/S1600536808013469]

N-(2-Hydroxyethyl)-*N*-(tricyclo[3.3.1.1^{3,7}]dec-2-yl)benzamide

G. A. Boyle, T. Govender, H. G. Kruger and O. K. Onajole

Comment

Adamantane derivatives have been the subject of much investigation as potential anti-tubercolosis compounds (Bogatcheva *et al.*, 2006, Lee *et al.*, 2003). The novel compound (I) was also synthesized in order to investigate the biological activities of cage amino-alcohol compounds as potential anti-tuberculosis agents. The molecule (I) consists of a polycyclic (lipophilic) hydrocarbon skeleton with polar amine and hydroxyl units (Fig. 1).

The molecule exhibits some C—C bonds that are significantly shorter than the expected C—C bond length of 1.54 Å. These bonds range between 1.5230 (15) Å for C7—C8 to 1.5329 (16) Å for C1—C8 in the adamantane skeleton.

The structure exhibits intermolecular hydrogen bonding interactions between O1 and O2 of adjacent molecules (Fig. 2). There is also a complex network of short contacts between the molecules which result in an interdigitated, layered structure showing distinct hydrophilic and hydrophobic regions (Fig. 2). The hydrophobic region consists of the adamantane skeleton while the hydrophilic layer consists of the polar amine and hydroxyl units.

Experimental

To a stirred solution of 2-(tricyclo[3.3.1.13,7]dec-2-ylamino)-ethanol (1 g, 5.1 mmol) in dichloromethane (30 ml) was added dropwise over 45 minutes a solution of benzoyl chloride (590ul, 5.1 mmol) dissolved in 50 ml of dichloromethane under a nitrogen atmosphere at zero degrees using an external ice salt bath. The reaction was allowed to stir overnight (Jacobson *et al.*, 1987) and then filtered to remove the HCl salt and the solvent was removed *in vacuo*. The mixture was re-crystallized from methanol to obtain the title compound (**I**) (0.91 g, 60%) as a colourless microcrystalline solid.

Refinement

Hydrogen atoms were first located in the difference map then positioned geometrically, and allowed to ride on their respective parent atoms, with bond lengths of 0.99 Å (CH₂), 1.00 Å (Methine CH), 0.95 Å (Ar—CH) or 0.84 Å (OH). Isotropic displacement parameters for these atoms were set equal to 1.2 (CH₂ and CH), or 1.5 (OH) times U_{eq} of the parent atom.

Figures

Fig. 1. ORTEP diagram showing displacement ellipsoids at the 50% probability level.

Fig. 2. Diagram of the packing viewed down the c axis showing the layered structure and intermolecular hydrogen bonding. Hydrogen atoms have been omitted for clarity.

N-(2-Hydroxyethyl)-N-(tricyclo[3.3.1.1^{3,7}]dec-2-yl)benzamide

Crystal data	
C ₁₉ H ₂₅ NO ₂	$F_{000} = 648$
$M_r = 299.40$	$D_{\rm x} = 1.304 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5317 reflections
<i>a</i> = 11.4248 (3) Å	$\theta = 2.3 - 28.2^{\circ}$
<i>b</i> = 16.0902 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 8.7211 (2) Å	T = 173 (2) K
$\beta = 107.9030 \ (10)^{\circ}$	Block, colourless
V = 1525.55 (7) Å ³	$0.44 \times 0.33 \times 0.16 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	2861 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.050$
Monochromator: graphite	$\theta_{\text{max}} = 28.0^{\circ}$
T = 173(2) K	$\theta_{\min} = 1.9^{\circ}$
φ and ω scans	$h = -15 \rightarrow 15$
Absorption correction: none	$k = -21 \rightarrow 21$
19272 measured reflections	$l = -11 \rightarrow 11$
3684 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_o^2) + (0.0562P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$ 200 parameters $\Delta \rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.26872 (10)	0.12522 (7)	0.22178 (13)	0.0191 (2)
H1	0.2797	0.1396	0.3369	0.023*
C2	0.32356 (10)	0.03827 (6)	0.21268 (13)	0.0170 (2)
H2	0.4145	0.0414	0.2656	0.020*
C3	0.30029 (10)	0.01726 (7)	0.03325 (13)	0.0179 (2)
Н3	0.3322	-0.0398	0.0239	0.021*
C4	0.16309 (10)	0.02106 (7)	-0.06201 (14)	0.0215 (3)
H4A	0.1512	0.0068	-0.1762	0.026*
H4B	0.1172	-0.0198	-0.0177	0.026*
C5	0.11394 (11)	0.10846 (7)	-0.05095 (14)	0.0226 (3)
Н5	0.0244	0.1109	-0.1128	0.027*
C6	0.18444 (11)	0.17132 (7)	-0.12046 (14)	0.0250 (3)
H6A	0.1522	0.2279	-0.1143	0.030*
H6B	0.1728	0.1583	-0.2352	0.030*
C7	0.32164 (11)	0.16808 (7)	-0.02533 (14)	0.0220 (3)
H7	0.3678	0.2092	-0.0707	0.026*
C8	0.33836 (11)	0.18828 (7)	0.15074 (14)	0.0212 (3)
H8A	0.3071	0.2449	0.1592	0.025*
H8B	0.4269	0.1869	0.2126	0.025*
C9	0.13223 (11)	0.12772 (7)	0.12635 (14)	0.0225 (3)
H9A	0.0986	0.1835	0.1362	0.027*
H9B	0.0872	0.0864	0.1709	0.027*
C10	0.36964 (10)	0.08045 (7)	-0.03724 (13)	0.0210 (3)
H10A	0.4586	0.0778	0.0223	0.025*
H10B	0.3586	0.0668	-0.1515	0.025*
C11	0.27216 (11)	-0.11302 (7)	0.24168 (14)	0.0206 (3)
H11A	0.2282	-0.1153	0.1246	0.025*
H11B	0.2266	-0.1482	0.2972	0.025*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C12	0.40094 (11)	-0.14766 (7)	0.27306 (14)	0.0242 (3)
H12A	0.3964	-0.2032	0.2226	0.029*
H12B	0.4490	-0.1107	0.2243	0.029*
C13	0.29089 (10)	-0.01541 (7)	0.45859 (13)	0.0206 (3)
C14	0.22837 (11)	-0.07451 (7)	0.54113 (13)	0.0206 (2)
C15	0.10237 (11)	-0.08725 (8)	0.48552 (15)	0.0264 (3)
H15	0.0542	-0.0607	0.3896	0.032*
C16	0.04662 (12)	-0.13882 (9)	0.56983 (16)	0.0316 (3)
H16	-0.0399	-0.1468	0.5324	0.038*
C17	0.11626 (12)	-0.17845 (8)	0.70758 (15)	0.0299 (3)
H17	0.0780	-0.2149	0.7635	0.036*
C18	0.24153 (12)	-0.16534 (7)	0.76451 (15)	0.0270 (3)
H18	0.2895	-0.1923	0.8601	0.032*
C19	0.29721 (11)	-0.11306 (7)	0.68239 (14)	0.0231 (3)
H19	0.3833	-0.1034	0.7229	0.028*
N1	0.27326 (8)	-0.02630 (5)	0.29804 (11)	0.0183 (2)
01	0.46035 (8)	-0.15413 (6)	0.44118 (10)	0.0311 (2)
H1A	0.5219	-0.1226	0.4676	0.047*
O2	0.34988 (8)	0.04282 (5)	0.53714 (10)	0.0301 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0225 (6)	0.0194 (5)	0.0167 (5)	-0.0003 (4)	0.0081 (5)	-0.0023 (4)
C2	0.0180 (5)	0.0183 (5)	0.0157 (5)	-0.0021 (4)	0.0064 (4)	0.0004 (4)
C3	0.0201 (6)	0.0183 (5)	0.0166 (5)	-0.0001 (4)	0.0075 (4)	-0.0018 (4)
C4	0.0212 (6)	0.0250 (6)	0.0177 (6)	-0.0035 (5)	0.0052 (5)	-0.0039 (4)
C5	0.0161 (6)	0.0281 (6)	0.0217 (6)	0.0016 (5)	0.0030 (5)	-0.0006 (5)
C6	0.0282 (7)	0.0261 (6)	0.0199 (6)	0.0028 (5)	0.0060 (5)	0.0034 (5)
C7	0.0244 (6)	0.0218 (6)	0.0214 (6)	-0.0014 (5)	0.0094 (5)	0.0032 (5)
C8	0.0235 (6)	0.0186 (5)	0.0218 (6)	-0.0019 (5)	0.0071 (5)	-0.0007 (4)
C9	0.0208 (6)	0.0240 (6)	0.0248 (6)	0.0013 (5)	0.0102 (5)	-0.0015 (5)
C10	0.0193 (6)	0.0269 (6)	0.0183 (6)	-0.0003 (5)	0.0082 (5)	0.0000 (5)
C11	0.0237 (6)	0.0178 (5)	0.0220 (6)	-0.0031 (4)	0.0094 (5)	-0.0016 (4)
C12	0.0251 (6)	0.0211 (6)	0.0282 (7)	0.0004 (5)	0.0109 (5)	0.0004 (5)
C13	0.0208 (6)	0.0225 (6)	0.0182 (6)	-0.0011 (5)	0.0054 (5)	0.0010 (4)
C14	0.0248 (6)	0.0206 (6)	0.0183 (5)	-0.0017 (5)	0.0097 (5)	-0.0022 (4)
C15	0.0242 (6)	0.0327 (7)	0.0222 (6)	-0.0018 (5)	0.0070 (5)	0.0008 (5)
C16	0.0248 (7)	0.0387 (7)	0.0349 (7)	-0.0082 (5)	0.0142 (6)	-0.0039 (6)
C17	0.0386 (8)	0.0254 (6)	0.0340 (7)	-0.0043 (6)	0.0233 (6)	0.0009 (5)
C18	0.0368 (7)	0.0234 (6)	0.0246 (6)	0.0045 (5)	0.0150 (6)	0.0028 (5)
C19	0.0226 (6)	0.0248 (6)	0.0233 (6)	0.0002 (5)	0.0091 (5)	0.0002 (5)
N1	0.0212 (5)	0.0171 (5)	0.0178 (5)	-0.0024 (4)	0.0078 (4)	-0.0006 (4)
01	0.0250 (5)	0.0372 (5)	0.0302 (5)	0.0001 (4)	0.0070 (4)	0.0092 (4)
02	0.0386 (5)	0.0317 (5)	0.0189 (4)	-0.0140 (4)	0.0072 (4)	-0.0028 (4)

umeters (Å, °)					
	1.5258 (15)	С9—Н	I9B	0.9900)
	meters (Å, °)	umeters (Å, °) 1.5258 (15)	meters (Å, °) 1.5258 (15) C9—H	umeters (Å, °) 1.5258 (15) C9—H9B	meters (Å, °) 1.5258 (15) C9—H9B 0.9900

C1—C8	1.5329 (16)	C10—H10A	0.9900
C1—C2	1.5450 (15)	C10—H10B	0.9900
C1—H1	1.0000	C11—N1	1.4783 (14)
C2—N1	1.4922 (14)	C11—C12	1.5174 (16)
C2—C3	1.5420 (15)	C11—H11A	0.9900
С2—Н2	1.0000	C11—H11B	0.9900
C3—C10	1.5293 (15)	C12—O1	1.4175 (14)
C3—C4	1.5330 (15)	C12—H12A	0.9900
С3—Н3	1.0000	C12—H12B	0.9900
C4—C5	1.5283 (16)	C13—O2	1.2319 (13)
C4—H4A	0.9900	C13—N1	1.3632 (14)
C4—H4B	0.9900	C13—C14	1.4996 (16)
С5—С9	1.5270 (16)	C14—C15	1.3858 (16)
C5—C6	1.5295 (17)	C14—C19	1.3876 (16)
С5—Н5	1.0000	C15—C16	1.3867 (18)
C6—C7	1.5325 (16)	C15—H15	0.9500
С6—Н6А	0.9900	C16—C17	1.3766 (19)
С6—Н6В	0.9900	C16—H16	0.9500
С7—С8	1.5230 (15)	C17—C18	1.3793 (18)
C7—C10	1.5280 (16)	C17—H17	0.9500
С7—Н7	1.0000	C18—C19	1.3804 (16)
C8—H8A	0.9900	C18—H18	0.9500
C8—H8B	0.9900	C19—H19	0.9500
С9—Н9А	0.9900	O1—H1A	0.8400
C9—C1—C8	109.43 (9)	С1—С9—Н9А	109.6
C9—C1—C2	111.00 (9)	С5—С9—Н9А	109.6
C8—C1—C2	108.03 (9)	С1—С9—Н9В	109.6
С9—С1—Н1	109.5	С5—С9—Н9В	109.6
C8—C1—H1	109.5	Н9А—С9—Н9В	108.1
C2—C1—H1	109.5	C7—C10—C3	110.19 (9)
N1—C2—C3	112.39 (9)	С7—С10—Н10А	109.6
N1—C2—C1	112.35 (9)	C3—C10—H10A	109.6
C3—C2—C1	107.73 (9)	C7—C10—H10B	109.6
N1—C2—H2	108.1	C3—C10—H10B	109.6
С3—С2—Н2	108.1	H10A—C10—H10B	108.1
C1—C2—H2	108.1	N1—C11—C12	112.21 (9)
C10—C3—C4	108.99 (9)	N1—C11—H11A	109.2
C10—C3—C2	108.25 (9)	C12—C11—H11A	109.2
C4—C3—C2	111.70 (9)	N1—C11—H11B	109.2
С10—С3—Н3	109.3	C12-C11-H11B	109.2
С4—С3—Н3	109.3	H11A—C11—H11B	107.9
С2—С3—Н3	109.3	O1—C12—C11	110.06 (10)
C5—C4—C3	109.69 (9)	O1—C12—H12A	109.6
C5—C4—H4A	109.7	C11—C12—H12A	109.6
C3—C4—H4A	109.7	O1—C12—H12B	109.6
C5—C4—H4B	109.7	C11—C12—H12B	109.6
C3—C4—H4B	109.7	H12A—C12—H12B	108.2
H4A—C4—H4B	108.2	O2—C13—N1	123.49 (10)
C9—C5—C4	108.18 (9)	O2—C13—C14	118.37 (10)

supplementary materials

C9—C5—C6	110.02 (10)	N1-C13-C14	118.02 (10)
C4—C5—C6	109.57 (10)	C15—C14—C19	119.26 (11)
С9—С5—Н5	109.7	C15—C14—C13	121.52 (10)
C4—C5—H5	109.7	C19—C14—C13	119.08 (10)
С6—С5—Н5	109.7	C14—C15—C16	120.01 (12)
C5—C6—C7	109.79 (9)	C14—C15—H15	120.0
С5—С6—Н6А	109.7	С16—С15—Н15	120.0
С7—С6—Н6А	109.7	C17—C16—C15	120.22 (12)
С5—С6—Н6В	109.7	С17—С16—Н16	119.9
С7—С6—Н6В	109.7	С15—С16—Н16	119.9
H6A—C6—H6B	108.2	C16—C17—C18	120.05 (12)
C8—C7—C10	109.21 (9)	С16—С17—Н17	120.0
C8—C7—C6	109.21 (10)	С18—С17—Н17	120.0
C10—C7—C6	108.86 (9)	C17—C18—C19	119.94 (12)
С8—С7—Н7	109.8	C17—C18—H18	120.0
С10—С7—Н7	109.8	C19—C18—H18	120.0
С6—С7—Н7	109.8	C18—C19—C14	120.48 (11)
C7—C8—C1	110.27 (9)	С18—С19—Н19	119.8
С7—С8—Н8А	109.6	С14—С19—Н19	119.8
C1—C8—H8A	109.6	C13—N1—C11	116.51 (9)
С7—С8—Н8В	109.6	C13—N1—C2	117.71 (9)
C1—C8—H8B	109.6	C11—N1—C2	117.16 (9)
H8A—C8—H8B	108.1	C12—O1—H1A	109.5
C1—C9—C5	110.23 (9)		
C9—C1—C2—N1	-67 42 (12)	C4—C3—C10—C7	60.22 (11)
C8 - C1 - C2 - N1	172 61 (9)	$C_{2} = C_{3} = C_{10} = C_{7}$	-61 46 (11)
C9-C1-C2-C3	56 91 (12)	N1-C11-C12-O1	65 78 (12)
C8 - C1 - C2 - C3	-63.06(11)	02-C13-C14-C15	121 39 (13)
N1 - C2 - C3 - C10	-17253(9)	N1-C13-C14-C15	-54.82(15)
C1 - C2 - C3 - C10	63 16 (11)	02-C13-C14-C19	-54.31(15)
N1 - C2 - C3 - C4	67 48 (11)	N1-C13-C14-C19	129 49 (11)
C1 - C2 - C3 - C4	-56 83 (11)	C19-C14-C15-C16	-0.74(18)
C10-C3-C4-C5	-59.62(12)	C13-C14-C15-C16	-17643(11)
$C_{2} - C_{3} - C_{4} - C_{5}$	59 94 (12)	C_{14} C_{15} C_{16} C_{17}	-0.94(19)
C_{3} C_{4} C_{5} C_{9}	$-60\ 20\ (12)$	C_{15} C_{16} C_{17} C_{18}	16(2)
C_{3} C_{4} C_{5} C_{6}	59 75 (12)	C16-C17-C18-C19	-0.61(19)
C9 - C5 - C6 - C7	58 95 (12)	C17 - C18 - C19 - C14	-1.08(18)
C4-C5-C6-C7	-59.87 (12)	C15-C14-C19-C18	1 75 (17)
$C_{5}^{}C_{6}^{}C_{7}^{}C_{8}^{}$	-59.44 (12)	C_{13} C_{14} C_{19} C_{18}	1.75(17)
$C_{5} - C_{6} - C_{7} - C_{10}$	59 72 (12)	02-C13-N1-C11	144.02(12)
$C_{10} - C_{7} - C_{8} - C_{1}$	-59.05(12)	C14 - C13 - N1 - C11	-39.99(14)
C_{6} C_{7} C_{8} C_{1}	59 90 (12)	02-C13-N1-C2	-2.93(16)
C9-C1-C8-C7	-5943(12)	C14-C13-N1-C2	173 06 (9)
C_{2} C_{1} C_{8} C_{7}	61 54 (11)	C12-C11-N1-C13	-80.57(12)
C8 - C1 - C9 - C5	58 41 (12)	C12 - C11 - N1 - C2	66 57 (12)
$C_2 - C_1 - C_2 - C_5$	-60.73(12)	C_{3} C_{2} N_{1} C_{13}	178 49 (9)
C4-C5-C9-C1	61.06(12)	C1 - C2 - N1 - C13	-59.80(13)
C6-C5-C9-C1	-58 61 (12)	C_{3} C_{2} N_{1} C_{11}	31 75 (13)
C8-C7-C10-C3	58 96 (12)	C1 - C2 - N1 - C11	153 46 (9)

C6—C7—C10—C3	-60.20 (12)			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H··· A
O1—H1A···O2 ⁱ	0.84	1.96	2.7735 (12)	164
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.				

Fig. 2

