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The pattern of neural, physiological and behavioral effects induced by cocaine is consistent
with metabolic neural activation, yet direct attempts to evaluate central metabolic effects
of this drug have produced controversial results. Here, we used enzyme-based glucose
sensors coupled with high-speed amperometry in freely moving rats to examine how
intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the
nucleus accumbens (NAc), a critical structure within the motivation-reinforcement circuit.
In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast
phasic rise appearing during the injection (latency 6–8 s; ∼50 µM or ∼5% of baseline)
followed by a larger, more prolonged tonic elevation (∼100 µM or 10% of baseline, peak
∼15 min). While the rapid, phasic component of the glucose response remained stable
following subsequent cocaine injections, the tonic component progressively decreased.
Cocaine-methiodide, cocaine’s peripherally acting analog, induced an equally rapid and
strong initial glucose rise, indicating cocaine’s action on peripheral neural substrates as
its cause. However, this analog did not induce increases in either locomotion or tonic
glucose, suggesting direct central mediation of these cocaine effects. Under systemic
pharmacological blockade of dopamine transmission, both phasic and tonic components of
the cocaine-induced glucose response were only slightly reduced, suggesting a significant
role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence,
intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space
by involving both peripheral and central, non-dopamine drug actions, thus preventing a
possible deficit resulting from enhanced glucose use by brain cells.
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INTRODUCTION
While recently much attention has been focused on the mech-
anisms underlying cocaine’s addictive properties, cocaine is a
psychoactive drug that also stimulates motor activity (Camp
et al., 1994), increases arterial blood pressure (Poon and Van
Den Buuse, 1998), enhances whole-body and cerebral oxygen
consumption (Ceolin et al., 2007), and elevates brain and body
temperatures (Kiyatkin and Brown, 2005). While all these effects
suggest metabolic neural activation, direct attempts to evaluate
the central metabolic effects of cocaine with deoxyglucose radio-
graphy and positron emission tomography (PET) have produced
conflicting results. Some data indicate that cocaine increases glu-
cose utilization in the striatum and related structures (London
et al., 1986; Porrino et al., 1988; Thomas et al., 1996), suggest-
ing metabolic activation, while others have reported decreases in
cellular glucose consumption (London et al., 1990; Lyons et al.,
1996; Porrino et al., 2002; Thanos et al., 2008), consistent with
metabolic inhibition.

Direct measurement of cocaine-induced fluctuations in extra-
cellular glucose could serve as an important tool to resolve

this apparent discrepancy and clarify how this critical metabolic
parameter is affected by cocaine. In contrast to deoxyglucose
measurements, which characterize glucose uptake by brain cells
generally at single integrated time points (Hodgkin, 1967; Ritchie,
1973; Sokoloff, 1999), extracellular glucose levels depend upon
two opposing variables: its metabolic use by brain cells and its
intra-brain entry from the arterial blood by a gradient-dependent
facilitated diffusion via the GLUT-1 transporter (Fellows and
Boutelle, 1993; Silver and Erecinska, 1994; De Vries et al., 2003).
Using enzyme-based glucose biosensors with high-speed amper-
ometry, we recently showed that glucose levels in the nucleus
accumbens (NAc), a critical structure for sensorimotor integra-
tion and reinforcement (Mogenson et al., 1980; Wise and Bozarth,
1987; Di Chiara, 2002), phasically increase during exposure to
sensory stimuli of different modality (Kiyatkin and Lenoir, 2012).
Since sensory stimuli excite accumbal neurons (Kiyatkin and
Rebec, 1999), these phasic glucose increases appear to reflect its
rapid, neural activity-regulated entry from the arterial blood.
Intravenous (iv) cocaine, by acting on ionic channels on the affer-
ents of visceral sensory nerves, also induces transient activation
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of accumbal neurons (Kiyatkin and Brown, 2007) and pha-
sic NAc glutamate release (Wakabayashi and Kiyatkin, 2014).
Therefore, a similar peripherally triggered central mechanism
could be engaged by cocaine, inducing rapid glucose entry into
brain tissue.

This study was designed to test this hypothesis by direct
monitoring of NAc extracellular glucose levels using enzyme-
based glucose biosensors coupled with high-speed amperometry
in three groups of freely moving rats. First, we examined how
iv cocaine at a low, behaviorally relevant dose affects NAc glu-
cose levels following four repeated injections during 1 day-long
recording session. Second, using the same protocol, we com-
pared these responses to those induced by cocaine-methiodide,
a peripherally acting cocaine analog (Shriver and Long, 1971;
Hemby et al., 1994; Wise et al., 2008). Lastly, to examine the
contribution of dopamine (DA) to cocaine-induced NAc glucose
responses, they were compared to those conducted during full DA
receptor blockade induced by a mixture of D1- and D2-selective
DA antagonists.

MATERIALS AND METHODS
ANIMALS AND SURGERIES
Data from 34 male Long-Evans rats (Charles River Laboratories)
weighing 460 ± 40 g at the time of testing were used in this
study. Rats were individually housed in a climate-controlled ani-
mal colony maintained on a 12-12 light-dark cycle (lights on
at 07:00), with food and water available ad libitum. All proce-
dures were approved by the NIDA-IRP Animal Care and Use
Committee and complied with the Guide for the Care and Use
of Laboratory Animals (NIH, Publication 865-23).

Under general anesthesia (Equithesin 0.33 ml/100 g, ip), rats
were implanted with a BASi cannula (Bioanalytical Systems, Inc.;
West Lafayette, IN) for future insertions of the sensor in the
medial sector of the nucleus accumbens (NAc shell). The target
coordinates were: AP + 1.2 mm, ML ± 0.8 mm and DV 7.3 mm,
according to the stereotaxic atlas of Paxinos and Watson (1998).
The guide cannula hub was fixed to the skull with a head mount
constructed from dental acrylic that was secured using three
stainless steel bone screws. During the same surgical procedure,
rats were also implanted with a chronic jugular catheter, which
ran subcutaneously to the head mount and was secured to the
same head assembly. Rats were allowed a minimum of 4 days of
post-operative recovery; jugular catheters were flushed daily with
0.2 ml heparinized saline (10 units/ml) to maintain patency.

FIXED-POTENTIAL AMPEROMETRY WITH ENZYME-BASED
ELECTROCHEMICAL SENSORS
Commercially produced glucose oxidase-based biosensors
(Pinnacle Technology, Inc.) coupled with fixed-potential amper-
ometry have been extensively used in our previous studies
(Kiyatkin and Lenoir, 2012; Kiyatkin et al., 2013). These reports
describe in detail issues regarding the sensitivity/selectivity
and in vitro and in vivo performance of these sensors. We
also established the importance of control recordings with
enzyme-free null sensors to minimize the contribution of
non-specific chemical and physical influences that affect mea-
surements made with enzyme-based biosensors in freely moving

animals. Since enzyme-free null sensors are identically con-
structed, have a comparable sensitivity to major anionic (i.e.,
ascorbate) and cationic (i.e., DA) contaminants, are similarly
temperature-sensitive, and show a similar downward drift in
current during a long-term in vitro and in vivo recording, their
use reduces the contribution of various chemical and physical
interferents to reveal dynamic fluctuations in extracellular
glucose.

Both glucose and null sensors are prepared from Pt-Ir wire of
180 µm diameter, with a sensing cavity of ∼1 mm length on its
tip. The active electrode in both types of sensors is incorporated
with an integrated Ag/AgCl reference electrode. On the active sur-
face, glucose oxidase converts glucose to glucono-1, 5-lactone and
hydrogen peroxide (H2O2), which is detected as an amperomet-
ric oxidation current generated by a +0.6 V applied potential (Hu
and Wilson, 1997). The potential contribution of ascorbic acid
to the measured current is competitively reduced by co-localizing
ascorbic acid oxidase enzymes on the active surface of the sensor.
This enzyme converts ascorbic acid to non-electroactive dehy-
droascorbate and water. In addition, a negatively charged Nafion
polymer layer under the enzyme layer serves to exclude endoge-
nous anionic compounds (Hu and Wilson, 1997). Null sensors
are prepared identically to glucose sensors except for the absence
of glucose oxidase.

Both types of sensors were calibrated immediately before and
after each in vivo experiment. In vitro calibrations were conducted
in PBS (pH 7.3) by incrementally increasing the concentration
of glucose (Sigma-Aldrich) from 0 to 0.5, 1.0, and 1.5 mM fol-
lowed by a single addition of ascorbate (25 µM). Within this
physiological range (Fellows and Boutelle, 1993; McNay et al.,
2001), glucose sensors used in this study produced incremental
linear current increases. Mean sensitivity to glucose was 2.62 ±
0.28 nA/0.5 nM at 22–23◦C and 5.12 nA at 37◦C. Glucose sen-
sors showed low sensitivity to ascorbate (0.12 ± 0.02 nA/25 µM
at 22–23◦C) and, as showed previously, they were low sen-
sitive to DA at its physiological levels (5–50 pA/10–100 nM).
Glucose sensors remained equally sensitive to glucose and selec-
tive against ascorbate during post-recording in vitro calibrations
(2.23 ± 0.22 nA/0.5 mM and 0.10 nA ± 0.03/25 µM, respec-
tively). Consistent with their design, null sensors generated no
oxidation current following repeated applications of glucose (0–
2 mM) and showed equally small current response to application
of ascorbate (0.06 ± 0.03 nA/25 µM). Differences in basal cur-
rents detected in vivo by both types of sensors were used for
calculating basal levels of glucose in the NAc and their possible
changes during the recording sessions.

EXPERIMENTAL PROTOCOL
In vivo electrochemical procedures occurred during the day
(9:00–18:00) in an electrically insulated chamber (38 × 47 ×
47 cm) under continuous dim illumination (20 W red light bulb),
with a room wide air filter fan providing background noise. The
cage was equipped with four infrared motion detectors (Med
Associates, Burlington, VT, USA), which were used to moni-
tor rat locomotion. Prior to recording, rats were habituated to
the testing environment for a minimum of 6 h per day for 3
consecutive days.
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At the beginning of each experimental session, rats were
minimally anesthetized (>2 min) with isoflurane and a calibrated
sensor (either glucose or null) was inserted into the brain through
the guide cannula. The sensor was connected to the potentiostat
(Model 3104, Pinnacle Technology) via an electrically shielded
flexible cable and a multi-channel electrical swivel. Additionally,
the injection port of the jugular catheter on the head mount was
connected to two plastic catheter extensions that allowed stress-
and cue-free delivery of saline and the tested drug from outside
the cage, thus minimizing possible detection of the iv drug injec-
tion by the rat. Testing began ∼140 min after insertion of the
sensor when the baseline currents relatively stabilized.

Each rat was recorded during one daily session with either glu-
cose or null sensor. Prior to all experiments, rats were subjected
to three control stimuli presented 15 min apart. These stimuli
were: a brief auditory stimulus (75 dB, 0.25 s), presentation of
a novel object (a small glass beaker manually introduced and
later removed from the cage) for 1 min, and one or two saline
injections (0.2 ml over 20 s) delivered via a dedicated catheter
extension from outside the cage, thus excluding any stress or cue
associated with its delivery. These control tests were important
for assessing in vivo sensor performance, evaluating the contribu-
tion of sensory input and arousal to changes in [glucose] during
cocaine exposure, and to ascertain the response to the procedure
of injection. Then, three sequential experiments were conducted.

In Experiment I (n = 13 rats; 7 with glucose and 6 with
null sensors), we examined changes in glucose levels ([glucose])
induced by four repeated cocaine injections within the same 8–
9-h recording session. Cocaine HCl (1 mg/kg in 0.2 ml saline
over 20 s) was iv injected with 90-min inter-injection intervals.
Similar to saline injection, cocaine was delivered via separate
catheter extension from outside the cage, thus excluding any
stress or cue associated with the injection. This dose of cocaine
is within the range for the development and maintenance of self-
administration in rats (Pickens and Thompson, 1968; De Wit
and Stewart, 1981; Kiyatkin and Stein, 1995; Wise et al., 1995;
Kiyatkin and Brown, 2003) and induces clear behavioral, physio-
logical, and neurochemical effects (Wise et al., 1995, 2008; Brown
and Kiyatkin, 2005; Wakabayashi and Kiyatkin, 2014). Cocaine
at this dose was also used in our previous studies, thus allow-
ing us to compare different sets of behavioral, physiological and
neurochemical data. The interval between injections is about 10-
fold longer than the half-life of cocaine with iv administration
in freely moving rats (Tsibulsky and Norman, 1999) and is suf-
ficiently enough for all basic physiological parameters to return
to baseline. At the end of each session, rats were iv injected with
Equithesin (0.8 ml by iv injection over 2 min) to induce general
anesthesia. Then, the rat was disconnected from the potentiostat
and the sensor was removed for post-recording calibrations.

Experiment II (n = 11 rats; 6 with glucose and 5 with null
sensors) was conducted with an identical protocol but, instead
of cocaine, rats received four injections of cocaine-methiodide
(1.33 mg/kg in 0.2 ml saline over 20 s) delivered with the same,
90-min inter-injection intervals. The dose of cocaine-methiodide
is equimolar to that of cocaine HCl and this drug at this dose
induces a clear behavioral response during the injection dura-
tion, rapid and robust changes in EEG and EMG (Kiyatkin

and Smirnov, 2010), increases in NAc glutamate (Wakabayashi
and Kiyatkin, 2014), and modest increases in brain and body
temperature (Brown and Kiyatkin, 2006).

In Experiment III (n = 10 rats; 7 with glucose and 3 with
null sensors), we examined the changes in [glucose] induced by
four cocaine injections conducted during full pharmacological
blockade of DA transmission induced by a mixture of selec-
tive D1-like (SCH 23390, 0.4 mg/kg) and D2-like (eticlopride,
0.4 mg/kg) receptor antagonists. Under a modified protocol simi-
lar to experiments I and II, rats received subcutaneously a mixture
of these drugs (0.4 ml) 20 min prior to the first cocaine injec-
tion, with additional maintenance doses of 0.2 mg/kg 15–20 min
prior to each subsequent cocaine injection. These drugs are highly
selective toward D1 and D2 receptors (relative D1:D2 affinity,
SCH = 2500:1 and ETI = 1:514,000; Neve and Neve, 1997)
and at this combined dose significantly attenuate striatal neu-
ronal responses to DA for at least 90 min post-injection (Kiyatkin
and Rebec, 1999) and fully block cocaine-induced locomotor
responses (Kiyatkin, 2008). Relatively large doses of DA antago-
nists and a within-session drug boosting were used to maintain
full blockade of DA transmission during the session.

HISTOLOGY
Under deep anesthesia with Equithesin, rats were transcardially
perfused with room-temperature PBS (pH 7.4) followed by 10%
formalin. Brains were sectioned on a cryostat to a thickness
of 45 µm. The location of the sensors was verified using the
stereotaxic atlas of Paxinos and Watson (1998).

DATA ANALYSIS
Electrochemical data were sampled at 1 Hz (i.e., mean cur-
rent over 1 s) using the PAL software (Version 1.5.0, Pinnacle
Technologies) and analyzed using two time resolutions. Slow
changes in electrochemical currents were analyzed with 1-min
quantification bins using an analysis window of 5 min before
and 60 min after each iv drug injection. Rapid current changes
were analyzed with 2-s bins for 30 s before and 180 s after
control stimuli presentation, saline, and drug injections. Since
the baseline currents slightly varied in amplitude between indi-
vidual glucose electrodes, and both glucose and null sensors
showed current changes following a stimulus presentation or drug
injection, absolute current changes were transformed into rel-
ative changes taking a basal value before each event (30 s for
slow and 8 s for rapid time-course analyses) as 0 nA. Current
differentials (changes generated by each glucose sensor minus
mean changes generated by null sensors) were then calculated to
reduce the influence of extraneous physical and chemical con-
tributors to the glucose current. These current differences were
then transformed into glucose concentration (µM) based on
sensor sensitivity determined during pre-recording in vitro cal-
ibrations and adjusted by the temperature coefficient (95.6%)
determined in previous analytical studies (Kiyatkin et al., 2013)
and confirmed for selected sensors in this study. Locomotor
activity was quantified as the number of infrared beam breaks
per minute. These data were used to determine the relation-
ships between changes in glucose and drug-induced motor
activation.
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Statistical data analyses included three stages. First, we deter-
mined whether relative changes in currents detected by the
glucose and null sensors differed from each other, using two-
way repeated measures (RM) ANOVA. Since both glucose and
glucose-null currents were analyzed as a change from 0 nA base-
line, the length of the drug effect was determined as the average
duration when either the two currents were different (signifi-
cant glucose vs. null current main effect) or when the glucose
current was changing with respect to the null current (signifi-
cant Current × Time interaction). Second, if a significant effect
was found, One-Way RM ANOVAs were conducted on calculated
[glucose] values to find time periods where there was a significant
post-injection main effect and individual bins were compared
with respect to baseline using a Fisher post-hoc test. One-Way
RM ANOVA was also used for evaluating statistical significance
of changes in locomotion. Fisher post-hoc tests were used for
pair-wise comparisons, and the latency of the glucose response
was determined based on the first data point significantly differ-
ent from baseline (p < 0.05). Third, differences in total effects of
repeated drug injections for both [glucose] and locomotion were
expressed as the area under the curve (1-min bins [glucose] and
locomotion: 20 min post-injection; 2-s bins [glucose]: 30 s post-
injection); mean values of this parameter were analyzed for each
drug using One-Way RM ANOVA with subsequent Fisher post-
hoc tests. For clarity, statistical details are presented in the figure
legends.

RESULTS
By comparing basal electrochemical currents recorded by glu-
cose and null sensors during in vivo recordings and transferring
their differences into concentration values, we estimated that
basal [glucose] in the NAc shell (∼2 h after sensor insertion
in the brain) was 702 ± 40 µM (SD = 171 µM). These val-
ues remained relatively stable during an ∼8-h recording session,
slightly decreasing by its end (585 ± 37 µM; SD = 158 µM).
These values are consistent with previous estimates obtained with
no-net-flux microdialysis and electrochemistry in the striatum of
awake rats (0.47 mM; Fellows et al., 1992; 0.71 mM, McNay and
Gold, 1999; 0.39 mM, Lowry et al., 1998) as well as NAc glucose
levels determined in our previous study (540 µM; Kiyatkin and
Lenoir, 2012).

COCAINE INDUCES RAPID AND STRONG BI-MODAL INCREASES IN
NAc EXTRACELLULAR [GLUCOSE]
When analyzed at the 1-min time-scale, the initial cocaine injec-
tion in a drug-naive rat induced a significantly different cur-
rent response in the glucose and null sensors [Current × Time
interaction; F(6, 660) = 5.94; p < 0.05] for the entire 60-min anal-
ysis duration (Figure 1A), revealing a rapid, significant [glu-
cose] increase from the first minute post-injection [Figure 1B;
F(60, 360) = 7.07, p < 0.05]. This increase peaked at 15–20 min
(∼110 µM or ∼11% of baseline) followed by a slow return
to baseline at ∼45 min post-injection. Importantly, the largest
rate of [glucose] increase occurred during the first min post-
injection. Cocaine also induced modest locomotor activation
(Figure 1C) for ∼20–30 min post-injection [F(12, 732) = 4.14,
p < 0.05]. While the rise in [glucose] resulted primarily from

current changes detected by glucose sensors, cocaine also induced
a tonic increase in currents detected by null currents; this latter
change was much smaller than that recorded by glucose sensors.

Each subsequent cocaine injection also induced significant dif-
ferences between glucose and null currents for the entire 60-min
analysis interval [Figures 1D,G,J; Current × Time interaction
F(6, 600) = 3.03, 1.94, and 4.72, respectively; p < 0.05]. These
differences revealed increases in [glucose] with each injection,
with the largest rate of increases occurring during the first post-
injection minute (Figures 1E,H,K). However, the magnitude and
duration of this slow [glucose] increase became weaker with each
subsequent injection [Figure 1M; F(3, 18) = 4.94, p < 0.05]. In
contrast, there were no significant differences in cocaine-induced
locomotor activation with each of the four cocaine injections
(Figure 1N), although there was a tendency for a more rapid
onset (Figures 1C,F,I,L).

When analyzed at the second scale (Figure 2; 2-s bins,
180-s analysis window), we found significant differences
between glucose and null currents after all cocaine injections
(Figures 2A,C,E,G; see statistical details in figure legends), indi-
cating a rapid increase in [glucose] during each drug injection
(Figures 2B,D,F,H). This rise peaked near the end of the injec-
tion (20–50 µM or a 3–7% increase) and began to fall there-
after. Immediately after the first injection (Figure 2A), this post-
injection decrease was minimal before the onset of the second,
slower increase clearly seen in the longer 60-min analysis win-
dow (see Figure 1A). However, during each subsequent injection
the onset of this second rise was weaker and delayed, revealing
a gap distinguishing the rapid and slow components of the glu-
cose response to cocaine (Figures 2D,F,H). The rapid initial rise
was relatively stable after each cocaine injection, but showed a
tendency to decrease in magnitude and duration (Figure 2I).

The cocaine-induced changes in [glucose] were not related
to the procedure of drug injection. Our control tests revealed
that iv injection of saline did not induce any increase in electro-
chemical currents (see Figure 7 below). In contrast to cocaine,
currents detected by the glucose sensors slightly decreased dur-
ing a saline injection, whereas null currents remained relatively
stable [Figure 7A; Current × Time interaction F(90, 2430) = 1.94,
p < 0.05], indicating a weak but significant drop in [glucose]
[Figure 7D; ∼10 µM or ∼1% vs. baseline, F(18, 1620) = 3.77, p <

0.05]. Saline injection had no effects on locomotor activity.

BBB-IMPERMEABLE COCAINE-METHIODIDE INDUCES EQUALLY RAPID
AND STRONG INCREASES IN NAc EXTRACELLULAR [GLUCOSE] BUT
NO TONIC GLUCOSE ELEVATION AND NO MOTOR ACTIVATION
Previously, we have found that cocaine-methiodide, a peripher-
ally acting cocaine analog, mimics cocaine in its ability to induce
cortical EEG desynchronization and EMG activation (Kiyatkin
and Smirnov, 2010), excite accumbal and ventral tegmental
area neurons (Kiyatkin and Brown, 2007; Brown and Kiyatkin,
2008) and induce rapid NAc but not slow glutamate release
(Wakabayashi and Kiyatkin, 2014). The ultra-rapid dynamics of
cocaine-induced changes in [glucose] and its similarity with glu-
cose responses induced by sensory stimuli (Kiyatkin and Lenoir,
2012 and Figure 7 below) suggest a peripherally triggered neu-
ral mechanism as its origin. To test this hypothesis, we examined
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FIGURE 1 | Relative changes in NAc [glucose] induced by cocaine

injections assessed at low temporal resolution (1-min bins). Top graphs
(A,D,G,J) show mean ± SEM changes in relative currents (nA) detected by
Glucose and Null sensors. Middle graphs (B,E,H,K) show mean ± SEM
changes in [glucose] (µM) as a difference between active and null sensors.
Bottom graphs (C,F,I,L) show changes in locomotor activity (mean ± SEM;
counts/min). Vertical hatched lines (at 0 min) marked the onset of 20-s cocaine
injection. Horizontal dotted lines show basal levels (= 0 nA and µM). The
difference in current dynamics between active and null sensors was significant
(p < 0.05) for the entire 60-min duration after each cocaine injection [Two-Way
repeated measures (RM) ANOVA; Current × Time interaction F(6, 660) = 5.94,

3.03, 1.94, and 4.72, all p < 0.05 for injections 1–4, respectively]. Concentration
change was also significant for each cocaine injection [F(60, 360) = 7.07, 3.63,
2.30, and 5.61, all P < 0.05 respectively]. Individual concentration values
significantly different from baseline (Fisher test) are shown as filled symbols.
Cocaine induced significant locomotor activation after each injection
[F(12, 732) = 4.14, 5.45, 4.61, 5.20 for injections 1–4, respectively; p < 0.05].
Right panels (M,N) show differences in mean ± SEM values of glucose and
locomotor responses induced by cocaine injections as assessed by area under
the curve. The effect of injection number was significant for [glucose]
[One-Way RM ANOVA: F(3, 18) = 4.94, p < 0.05] but not significant for
locomotion. Asterisks and star show significant between-injection differences.

how cocaine-methiodide impacts NAc extracellular [glucose] and
how these responses differ from those induced by regular cocaine,
which acts in both the brain and the periphery.

When injected at an equimolar dose (Figure 3) cocaine-
methiodide induced highly rapid increases in the glucose cur-
rent while having a minimal influence on the null current
when all four injections were analyzed at second-scale resolu-
tion (Figures 3A,C,E,G). The differences between these currents
revealed significant increases in [glucose] during and immedi-
ately after each drug injection (Figures 3B,D,F,H). However, these
changes differed from those seen with regular cocaine. While the
rapid effects of cocaine-methiodide were very similar to cocaine
in their time-course, magnitude and tendency to show a slight
tolerance for ∼30 s after the injection onset (Figure 3I), cocaine-
methiodide always induced an unimodal, phasic increases with
no evidence of a second, tonic rise seen most clearly during the
first cocaine injection. When compared as an average for all injec-
tions in cocaine and cocaine-methiode groups (Figure 3J), the

time-course of changes was surprisingly similar with no statistical
differences between groups.

The lack of a tonic effect can be seen even more clearly
at the 1-min time scale (Figure 4), where cocaine-methiodide
induced changes in the glucose current relative to the null cur-
rent for only the first three injections (Figures 4A,D,G,J), and
only showed relatively clear changes in [glucose] during the
first injection [Figure 4B; F(60, 300) = 3.83 p < 0.05]. Unlike reg-
ular cocaine, this increase in [glucose] in this case was tran-
sient (13–15 min) and was followed by a strong decrease below
the pre-injection baseline. The lack of a tonic rise contributed
to an overall much lower [glucose] response assessed as an
area under the curve (Figure 4N). When the averages for all
injections were compared for cocaine and cocaine-methiodide
groups (Figure 4M), both drugs induced identical NAc [glu-
cose] changes for the first post-injection minute, and thereafter
these changes drastically differed from each other. Consistent with
our previous findings (Brown and Kiyatkin, 2006; Wakabayashi
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FIGURE 2 | Relative changes in NAc [glucose] induced by cocaine

injections assessed at high temporal resolution (2-s bins). Top graphs
(A,C,E,G) show mean ± SEM changes in relative currents (nA) detected by
Glucose and Null sensors. Bottom graphs (B,D,F,H) show mean ± SEM
changes in [glucose] (µM) as a difference between active and null sensors.
Two vertical hatched lines (at 0 and 20) marked the onset and offset injection.
Horizontal dotted lines show basal levels (= 0 nA and µM). After cocaine
injections, the Glucose and Null currents differed significantly (A 1:
Glucose/Null [180 s, F(1, 11) = 6.97], interaction [180 s, F(90, 990) = 2.88]; C 2:

Interaction [180 s, F(90, 990) = 1.44]; E 3: Glucose/Null [180 s, F(1, 11) = 8.31],
interaction [153.5 s, F(77, 847) = 1.31]; G 4: Glucose/Null [47.5 s,
F(1, 11) = 4.69], interaction [180s, F(90, 990)=3.58], all p < 0.05), resulting in a
significant [glucose] change for each cocaine injection during the entire
analysis window [F(6, 546) = 3.47, 1.69, 1.37, and 4.31, all p < 0.05].
Concentration values significantly different from baseline (Fisher test) are
shown as filled symbols. Right panel (I) shows mean ± SEM values of
glucose responses induced by cocaine injections assessed by area under the
curve for 30 s after the injection onset (n.s.).

and Kiyatkin, 2014), cocaine-methiodide induced only mini-
mal increases in locomotion during and immediately after the
injection (Figures 4C,F,I,L,O).

BOTH COMPONENTS OF THE NAc GLUCOSE RESPONSE PERSIST BUT
BECOME WEAKER DURING PHARMACOLOGICAL BLOCKADE OF DA
TRANSMISSION
While inhibition of DA reuptake and a subsequent increase in DA
levels is commonly viewed as the primary mechanism underly-
ing the reinforcing properties of cocaine (Ritz et al., 1987; Wise
and Bozarth, 1987; Di Chiara, 2002), many important physio-
logical effects of cocaine are resistant to DA receptor blockade
(Kiritsy-Roy et al., 1990; Poon and Van Den Buuse, 1998; Tella
and Goldberg, 1998). To test how DA receptor blockade affects
cocaine-induced changes in NAc [glucose], we examined the
effects of four cocaine injections after the rats were pretreated
with a combination of selective D1-like (SCH23390) and D2-
like (eticlopride) DA antagonists at doses that provide efficient
blockade of DA transmission.

When analyzed at a second-scale resolution (Figure 5), DA
receptor blockade did not eliminate the first, rapid component

of the cocaine-induced NAc glucose response (Figures 5A–H).
Similar to untreated conditions, this immediate effect also
showed progressive tolerance following repeated cocaine injec-
tions [Figure 5I; F(3, 18) = 6.62 p < 0.05]. The overall glucose
response to cocaine during DA receptor blockade was weaker than
that with cocaine in untreated conditions and cocaine methiodide
[effect of drug F(2, 17) = 5.30 p < 0.05]. While the time-course
of the cocaine-induced glucose rise was initially identical in
both groups, the peak magnitude during DA antagonism was
lower, and was followed by a more pronounced negative rebound
(Figures 5D,F,H,I,J).

Surprisingly, DA receptor blockade that fully blocked the
locomotor effects of cocaine (Figures 6C,F,I,L,O) did not block
the second, tonic elevation of NAc glucose induced by cocaine
(Figures 6A,B,D,E,G,H,J,K). The tonic rise in NAc [glucose] was
greatest after the first cocaine injection (∼100 µM), progres-
sively decreased following subsequent injections, and was almost
absent (∼20 µM) after the last cocaine injection [Figure 6N;
F(3, 18) = 10.53, p < 0.05]. These changes were associated with a
progressive enhancement of rebound-like decreases in NAc glu-
cose, which were atypical to cocaine in untreated conditions.
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FIGURE 3 | Relative changes in NAc [glucose] induced by

cocaine-methiodide injections assessed at high temporal resolution

(2-s bins). Top graphs (A,C,E,G) show mean ± SEM changes in relative
currents (nA) detected by Glucose and Null sensors. Bottom graphs
(B,D,F,H) show mean ± SEM changes in [glucose] (µM) as a difference
between Glucose and Null sensors. Two vertical hatched lines (at 0 and 20)
marked the onset and offset of the injection. Horizontal dotted lines show
basal levels (= 0 nA and µM). The difference in current dynamics between
active and null sensors was significant (p < 0.05) for the entire 180-s
duration after each cocaine injection (A 1: Glucose/Null [F(1, 9) = 6.69],

interaction [F(91, 819) = 3.60]; C 2: Glucose/Null [F(1, 9) = 26.6], interaction
[F(91, 819) = 2.23]; E 3: Glucose/Null [F(1, 9) = 1.85], interaction
[F(91, 819) = 4.03]; G 4: interaction [F(91, 819) = 2.33], all p < 0.05].
Concentration change was also significant for each cocaine injection for
the entire analysis window [F(5, 445) = 4.28, 2.74, 5.01, and 2.95, all
p < 0.05]. Individual values significantly different from baseline (Fisher test)
are shown as filled symbols. Right panel (I) shows mean ± SEM v
glucose responses assessed by area under the curve (n.s.). Right panel (J)

compares the mean glucose response between the cocaine and
cocaine-methiodide group; no significant differences found.

A between-group comparison (Figure 6M) revealed that during
DA antagonism the rise in glucose was significantly less, its lev-
els fell more strongly below the pre-injection baseline [effect of
treatment: F(1, 54) = 9.32 p < 0.05], and the response dynamics
differed by a delayed onset and faster time to peak [Treatment ×
Time interaction F(60, 3240) = 4.73 p < 0.05].

PHASIC INCREASES IN [GLUCOSE] INDUCED BY SENSORY STIMULI
During each experiment, we also examined drug-free glucose
responses induced by two sensory stimuli (a brief auditory stim-
ulus and 1-min exposure to a novel object) and one or two injec-
tions of saline (Figure 7). The brief auditory stimulus induced a
very rapid but short-lived difference in active and null currents
[Figure 7B; 129 s, current × time: F(65, 1690) = 1.95, p < 0.05]
reflecting a rise of NAc [glucose] [Figure 7E: F(18, 1620) = 2.41,
p < 0.05] that became significant within the first 2–4 s after the
stimulus onset. After peaking at 5–7 s (15–20 µM), [glucose]
decreased gradually below the pre-stimulus baseline. A similarly
rapid but stronger and more prolonged difference in active and

null currents was found after the introduction of a novel object
into the cage [Figure 7C; F(90, 2070) = 4.34, p < 0.05]. This dif-
ference indicated a dynamic elevation in [glucose] [Figure 7F;
F(18, 1620) = 14.9 p < 0.05], which peaked at 10–20 s (∼30 µM),
remained elevated within the test, and showed an additional,
weaker peak when the novel object was removed from the cage.
In contrast to both sensory stimuli, stress- and cue-free iv injec-
tion of saline failed to induce significant changes in NAc glucose
(Figures 7A,D).

RESULTS OF HISTOLOGICAL VERIFICATION OF SENSOR LOCATIONS
Our previous studies suggest significant between-structure dif-
ferences in glucose responses (Kiyatkin and Lenoir, 2012).
Therefore, in this study it was critical to carefully examine the
location of the recording sensors and exclude all cases where sen-
sor tips were localized out of the target area. As can be seen in
Figure 8, all sensors in rats included in our data set were closely
localized within the NAc shell with relatively small dorso-ventral
and anterior-posterior variability. Rats (n = 5), where the sensors
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FIGURE 4 | Relative changes in NAc [glucose] induced by injections of

cocaine-methiodide assessed at low temporal resolution (1-min bins).

Top graphs (A,D,G,J) show mean ± SEM changes in relative currents (nA)
detected by Glucose and Null sensors. Middle graphs (B,E,H,K) show mean
± SEM changes in [glucose] (µM) as a difference between Glucose and Null
sensors. Bottom graphs (C,F,I,L) show changes in locomotor activity (mean ±
SEM; counts/min). Vertical hatched lines (at 0 min) marked the onset of 20-s
drug injection. Horizontal dotted lines show basal levels (= 0 nA and µM).
There were significant differences in Glucose and Null currents for the first
three injections (A 1: interaction [59.5 min, F(60, 540) = 2.64]; D 2:
Glucose/Null [10.5 min F(1, 9) = 5.72], interaction [3.5 min F(4, 36) = 2.91]; G 3:

Glucose/Null [59.5 min F(1, 9) = 6.08], interaction [2.5 min F(3, 27) = 3.08], all
p < 0.05), and no changes for injection 4. This resulted in significant changes
in glucose concentration after the first [F(60, 300) = 3.83] and third injection
[F(60, 300) = 1.49, both p < 0.05] for the entire analysis window. Individual
concentration values significantly different from baseline (Fisher test) are
shown as filled symbols. (M) shows significant differences in mean ± SEM
glucose responses to cocaine and cocaine methiodide [mean of 4 injections;
Main effect F(1, 50) = 5.89, Drug × Time interaction F(60, 3000) = 8.20, both
p < 0.05]. (N,O) show mean ± SEM glucose and locomotor responses
induced by cocaine-methiodide injections as assessed by area under the
curve (both n.s.).

were localized out of the target area were excluded from data anal-
yses. While the number of rats in each group did not allow for
a rigorous statistical evaluation of anterior-posterior differences
in glucose responses, there were no evident differences along this
axis of the NAc shell.

DISCUSSION
This study produced three novel findings. First, we showed that
iv cocaine at a low, behaviorally active dose rapidly increases NAc
extracellular [glucose], suggesting enhanced entry of this critical
nutrient from the arterial blood to brain cells supporting their
metabolic activity. Second, by using a BBB-impermeable cocaine
analog, we demonstrated that the initial, rapid rise in [glucose]
induced by cocaine is triggered via peripheral drug actions,
possibly involving drug’s action on afferents of sensory nerves
and rapid neural transmission to the CNS via visceral sensory
pathways. This peripherally driven neural mechanism was further
supported by using simple and complex sensory stimuli that also
induced equally rapid but transient increases in NAc glucose.

Third, in addition to the initial phasic rise that was mimicked
by sensory stimuli, cocaine also induced a larger tonic elevation
in NAc glucose. This effect was absent with cocaine-methiodide,
suggesting its dependence upon central actions of cocaine.
Despite full blockade of locomotor activation, both components
of cocaine-induced glucose response were only slightly inhibited
by DA antagonists, indicating a major role of non-DA central
mechanisms in their mediation. Finally, in contrast to previously
reported sensitized neural responses to cocaine, both components
of cocaine-induced NAc [glucose] increases underwent within-
session tolerance, suggesting a possible experience-dependent
dissociation of neural and metabolic effects of cocaine. Taken
together, our results suggest that cocaine induces highly
dynamic, experience-dependent changes in accumbal glucose
inflow.

EXTRACELLULAR GLUCOSE AND ITS PHYSIOLOGICAL FLUCTUATIONS
Unlike neurotransmitters and neuromodulators that are
synthesized by brain cells and released into the extracellular space
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FIGURE 5 | Relative changes in NAc [glucose] induced by cocaine

injections under conditions of full dopamine receptor blockade

assessed at high temporal resolution (2-s bins). Top graphs (A,C,E,G)

show mean ± SEM changes in relative currents (nA) detected by Glucose
and Null sensors. Bottom graphs (B,D,F,H) show mean ± SEM changes in
[glucose] (µM) as a difference between Glucose and Null sensors. Two
vertical hatched lines (at 0 and 20) marked the onset and offset injection.
Horizontal dotted lines show basal levels (= 0 nA and µM). The difference
in current dynamics between Glucose and Null sensors was significant
after each cocaine injection (A 1: Glucose/Null [25 s F(1, 8) = 5.89],
interaction [21 s F(10, 80) = 2.24]; C 2, E 3, G 4: interaction [180 s,

F(90, 720) = 1.41, 1.28, 1.30, respectively] all p < 0.05. [Glucose] change
was also significant for each cocaine injection [F(6, 540) = 2.56, 3.53, 3.11,
3.62, respectively all p < 0.05] Concentration values significantly different
from baseline (Fisher test) are shown as filled symbols. (I) shows
significant differences in mean ± SEM glucose responses (area under
curve) induced by four cocaine injections during DA receptor antagonism
[F(3, 18) = 6.62 p < 0.05]. Asterisk denotes significant (p < 0.05) differences
between the 4th injection and all others (Fisher test). (J) shows significant
differences in [glucose] between cocaine and cocaine-methiodide groups
for the entire analysis window [Main effect: F(1, 54) = 5.16, Treatment ×
Time interaction: F(90, 4860) both p < 0.05] assessed for all drug injections.

following neuronal activation, glucose enters the extracellular
space from the arterial blood, where its concentration is 5–8-fold
higher (Fellows and Boutelle, 1993; Silver and Erecinska, 1994;
De Vries et al., 2003), and is continuously used by brain cells for
their metabolic activity. Therefore, the extracellular [glucose]
reflects the dynamic balance between two opposing variables:
its entry into the brain tissue and its loss due to metabolic
consumption. Although glucose biosensors provide an accurate
picture of fluctuations in extracellular [glucose], this approach
does not allow assessment of glucose consumption by brain
cells. However, increases in [glucose] reliably indicate its inflow
into the brain environment to satisfy metabolic demands of
neural cells. Consistent with previous findings (Kiyatkin and
Lenoir, 2012), NAc [glucose] rapidly increased following sensory
stimulation, which is known to induce cortical EEG desynchro-
nization (Kiyatkin and Smirnov, 2010), NAc glutamate release
(Wakabayashi and Kiyatkin, 2012), and excitations of accumbal
neurons (Kiyatkin and Brown, 2007). These findings as well as

rapid increases in NAc [glucose] induced by local, intra-NAc
glutamate microinjections (Kiyatkin and Lenoir, 2012), suggest
neural activity as a critical trigger for rapid glucose entry into the
extracellular space. While rapid, neural activity-driven increases
in local cerebral blood flow (CBF) appears to be the primary
mechanism that promotes inflow of glucose and oxygen to
the active brain area (Attwell et al., 2010; Mergenthaler et al.,
2013), intra-brain inflow of glucose and oxygen can also be
enhanced as a consequence of metabolic activation due to the
release of different metabolites and messengers from neurons
and astrocytes that dilate brain arterioles and capillaries. This
effect, however, is much slower but more prolonged. Finally,
brain glucose levels could also slowly rise when blood glucose
levels are rising (Kiyatkin and Wakabayashi, 2015). While this
gradient-dependent mechanism is activated during glucose-
drinking behavior (Wakabayashi et al., 2015) and systemic
glucose administration, its contribution appears to be minimal
under physiological conditions and after cocaine administrations.
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FIGURE 6 | Relative changes in NAc [glucose] induced by cocaine

injections under full dopamine receptor antagonism assessed at low

temporal resolution (1-min bins). Top graphs (A,D,G,J) show mean ± SEM
changes in relative currents (nA) detected by Glucose and Null sensors. Middle
graphs (B,E,H,K) show mean ± SEM changes in [glucose] (µM). Bottom graphs
(C,F,I,L) show mean ± SEM changes in locomotion. Vertical hatched line (0 min)
marked the onset of injection. Horizontal dotted lines denote basal levels (=
0 nA and µM). The difference in current dynamics between active and null
sensors was significant (p < 0.05) for the entire analysis window (59.5 min)
after each cocaine injection [Current × Time interaction: F(60, 480) = 2.25, 2.83,
4.01, and 7.57, respectively, all p < 0.05] indicating a significant concentration

change over the same time period for each cocaine injection [F(6, 360) = 5.64,
7.10, 10.06, and 18.95, all p < 0.05] Concentration values significantly different
from baseline (Fisher test) are shown as filled symbols. Right panel (M)

compares mean ± SEM glucose responses induced by cocaine injections in
control conditions and during DA receptor blockade [Main effect: F(1, 54) = 9.32,
Treatment × Time interaction F(60, 3240) = 4.73, both p < 0.05]. (N) shows
mean ± SEM [glucose] responses induced by cocaine injections during DA
receptor antagonism assessed by area under the curve [F(3, 18) = 10.53
p < 0.05]. Asterisk denotes significant differences between first and all other
injections (Fisher test). (O) shows mean ± SEM locomotor responses (as area
under curve); no significant between-injection changes were seen.

PERIPHERAL TRIGGERING OF THE INITIAL, ULTRA-FAST RISE IN NAc
[GLUCOSE] INDUCED BY IV COCAINE
Iv cocaine passively administered to freely moving rats at a low,
behaviorally active dose induced very rapid (∼4-s latency) rise in
NAc [glucose]. This initial response mimicked those induced by
sensory stimuli and cocaine-methiodide, suggesting peripheral
neural triggering. Since salient sensory stimuli, cocaine, and
its BBB-impermeable analog all induce phasic excitations of
most accumbal neurons (Kiyatkin and Rebec, 1996; Kiyatkin
and Brown, 2007) as well as a rapid rise in NAc glutamate
(Wakabayashi and Kiyatkin, 2012, 2014), this fast NAc glucose
rise could result from its active, neural activity-driven entry
into brain tissue. In addition to its known central actions on
monoamine uptake, iv cocaine activates multiple ionic channels
on the afferents of sensory nerves (Lee et al., 2005; Premkumar,
2005; Wu et al., 2006) that densely innervate blood vessels (Goder
et al., 1993; Michaelis et al., 1994). This creates an ascending
excitatory signal to the CNS, which is transmitted via visceral

sensory pathways, resulting in generalized neural activation,
involving the NAc shell.

While this ultra-fast rise in extracellular [glucose] could be
viewed as surprising, many neural effects of iv cocaine are equally
rapid, appearing within the injection duration and before the
drug can physically reach brain tissue and act directly on its
receptive substrates (Kiyatkin et al., 2000). In addition to EEG
desynchronization, EMG activation, firing of accumbal neurons
and NAc glutamate release that all appeared with 4–8-s latencies
from the start of cocaine injection, an increase in arterial blood
pressure peaks at ∼10 s and significantly decays within 60 s post-
injection (Poon and Van Den Buuse, 1998). Slightly larger, but
still short onset latencies (10–20 s) are also found with cocaine-
induced skin temperature decreases (Kiyatkin and Brown, 2007),
another centrally mediated effect of cocaine that reflects periph-
eral vasoconstiction (Knuepfer and Branch, 1992). Similar to the
ultra-fast rise in [glucose] in this study, all these neural and
physiological effects are resistant to DA antagonism, which fully
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FIGURE 7 | Rapid changes in NAc [glucose] induced by saline injection

(A,D) and exposure to a brief auditory stimulus (B,E) and a novel object

(C,F). Top graphs show changes in Glucose and Null currents and bottom
graphs show resulting changes in glucose concentration. Saline injections
resulted in a significant difference in current dynamics (p < 0.05) for the
entire analysis window [180 s; Interaction: F(90, 2430) = 1.94 p < 0.05]
indicating a significant decrease in glucose after the injection

[F(18, 1620) = 3.773 p < 0.05]. Concentration values significantly different from
baseline (Fisher test) are shown as filled symbols. A brief audio stimulus and
a novel object induced rapid and dynamic differences in Glucose and Null
currents [Audio Stimulus, 129 s; Interaction F(65, 1690) = 1.95; Novel object,
180 s; Interaction F(90, 2070) = 4.34, both p < 0.05], revealing highly phasic
glucose changes over the entire analysis window [Audio Stimulus,
F(18, 1620) = 2.41; Novel object, F(18, 1620) = 14.85, both p < 0.05].

blocked cocaine-induced hyperlocomotion. It should be noted
that DA antagonism slightly attenuated the rapid glucose rise,
suggesting that only a small proportion of the normal glucose
response to iv cocaine at this timescale is modulated by DA.

While the initial rapid NAc glucose rise induced by cocaine is
obviously caused by active, neural activity-driven glucose entry,
the mechanistic link between neural activity, local cerebral blood
flow, and transporter-mediated facilitated diffusion of glucose
via the BBB (Duelli and Kuschinsky, 2001; Barros et al., 2005)
remains less clear. Since glucose influx into the extracellular space
tightly correlate with changes in local CBF (Fellows and Boutelle,
1993) and iv cocaine rapidly increases CBF in both animals and
humans (Stein and Fuller, 1993; Schmidt et al., 2006; Howell et al.,
2010), this effect could be mediated in the NAc by local vasodila-
tion, increases in local CBF, and accelerated glucose transport via
the BBB.

SLOW COCAINE-INDUCED CHANGES IN NAc [GLUCOSE]: POSSIBLE
MECHANISMS
Cocaine also induced a second, tonic rise in NAc [glucose], which
was the greatest (∼100 µM or 10–12% over baseline) after the

first cocaine injection and progressively decreased with subse-
quent injections. This decrease in responsiveness is in line with
the well-known tolerance of cardiovascular effects of this drug
(Smith et al., 1993; Lichtman et al., 1995; Tella et al., 1999;
Wilson et al., 2000), suggesting the involvement of vascular mech-
anisms in its mediation, but it differs markedly from other neural,
physiological and behavioral effects of cocaine, which are either
stable or show experience-dependent sensitization (i.e., changes
in DA and glutamate release; Addy et al., 2010; Wakabayashi and
Kiyatkin, 2014). Although the absence of this effect with periph-
erally acting cocaine analog suggests that a direct central action
of cocaine is essential in its mediation, it is more challenging to
explain its mechanisms.

This slow component of NAc glucose rise could be a correlate
of cocaine-induced metabolic activation that manifests in hyper-
locomotion and increases in brain and body temperatures (Brown
and Kiyatkin, 2006). In contrast to rapid neural effects, iv cocaine
induced modest brain hyperthermia that occurred with ∼60-s
onset latencies, peaked at 20–25 min, and slowly decreased within
30–50 min, corresponding well with dynamics of the second,
tonic NAc glucose rise. However, in contrast to the progressive
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FIGURE 8 | Histological locations of electrochemical sensors. Locations
of the active area of Glucose (red) and Null (blue) sensors used in this study
shown with the stereotaxic coordinates of Paxinos and Watson (1998).
While the sensors were equally implanted in both sides of the brain, for
clarity, glucose sensors are shown on the right and null sensors are shown
on the left hemispheres.

decreases in slow glucose responses in this study, cocaine-
induced brain temperature increases were relatively stable with
a tendency for enhancement following repeated drug injections
(Brown and Kiyatkin, 2006). While metabolic activation is an
appealing explanation, peripherally acting cocaine-methiodide
also increased NAc temperature (Brown and Kiyatkin, 2006),
indicating metabolic brain activation, but did not induce tonic
elevation in glucose levels in this structure. Surprisingly, tonic
glucose responses were only slightly attenuated during pharma-
cological blockade of DA transmission, which fully blocks both
motor-activating and hyperthermic effects of cocaine (Kiyatkin,
2008). Nevertheless, DA antagonists did influence the overall
dynamics of this effect, indicating that DA is a minor contrib-
utor to the tonic component of cocaine-induced NAc glucose
response. While the mechanisms underlying this slow effect of
cocaine require further investigation, it could be at least in part
related to slow elevations in blood glucose that occur after iv
cocaine injection (Han et al., 1996). While reported only for larger
doses (5 mg/kg, iv), a∼20–30% rise in blood glucose (or 1–2 mM)

detected in this study could potentially tonically increase NAc
[glucose] within 100 µM.

Progressive tolerance of glucose responses also contrasts with
previously reported changes in NAc glutamate (Wakabayashi
and Kiyatkin, 2014). While the rapidity of the initial com-
ponents of cocaine-induced glucose and glutamate responses
and their tight correlation support a common link with local
neural activation (Sibson et al., 1998; Attwell et al., 2010;
Mergenthaler et al., 2013), in contrast to glucose, the NAc glu-
tamate response progressively increased following repeated drug
treatment. Interestingly, peripherally acting cocaine-methiodide,
which induced only rapid, transient increases in NAc [gluta-
mate] in drug-naive rats, induced robust glutamate responses in
cocaine-experienced rats. While the mechanisms underlying the
opposite experience-dependent changes in these two presumably
tightly related neurochemical parameters (Attwell et al., 2010)
remain unclear, a major source of slow fluctuations in extracellu-
lar glutamate could be astrocytes (Miele et al., 1996; Timmerman
and Westerink, 1997; Kalivas, 2004; Vizi et al., 2010). Additionally,
tolerance of slow glucose responses could be also related to its
increased metabolic use or a decrease in its delivery from the
blood, both processes where astrocytes play a prominent role
(Attwell et al., 2010). Although the slower time course in both glu-
cose and glutamate tonic changes suggests astrocyte or other glial
cell involvement (Vizi et al., 2010; Howarth, 2014), additional
work is needed to clarify these exact mechanisms.

EXTRACELLULAR GLUCOSE AND BRAIN METABOLISM
While monitoring of extracellular glucose shows real-time avail-
ability of this critical energetic substrate within the NAc, it is chal-
lenging to extend our findings with respect to cocaine’s effects on
brain metabolism and glucose consumption. Data obtained with
deoxyglucose autoradiography and PET studies with radiolabeled
glucose are controversial (see Introduction) due to differences
in detection methodology, sampling periods, species, drug doses,
brain structures, and the experimental conditions related to drug
administration. Moreover, these data in fact provide a measure of
glucose uptake but not its metabolism (Fillenz et al., 1999). While
it is clear that the brain increases glucose and oxygen utilization
upon activation (Sokoloff, 1999), real consumption of these sub-
stances appears to be less than their availability provided by rapid
increases in local CBF and their enhanced entry into the extra-
cellular space that prevents risky drops in these critical energetic
substrates (Fox et al., 1988; Attwell et al., 2010; Mergenthaler et al.,
2013).

While neuronal activation and subsequent slow changes in
metabolites could be the primary factors determining functional
hyperemia and enhanced entry of glucose and oxygen into the
extracellular space, increases in CBF also serve to remove heat
accumulated in brain tissue during metabolic activity. It is known
that brain activity consumes large amounts of energy, all of which
is eventually transformed into heat (Siesjo, 1978), resulting in
relatively large (1–2◦C) increases in brain temperature (Kiyatkin
et al., 2002; Kiyatkin, 2010). In contrast to rapid changes in other
neural parameters, cocaine-induced NAc temperature increases
appeared much slower and peaked at ∼20 min (Kiyatkin and
Brown, 2005), paralleling tonic changes in glucose seen in this
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study. Therefore, intra-brain heat production is not only a valid
measure of metabolic brain activation but appears to be a pos-
sible factor contributing to the known mis-match between the
“excessive” rise in CBF with “over-delivery” of oxygen and glucose
and the actual use of these metabolic substrates during functional
brain activation (Fox et al., 1988).

CONCLUSIONS AND FUNCTIONAL IMPLICATIONS
Rapid increases in NAc extracellular [glucose] induced by iv
cocaine result from active glucose entry from the peripheral cir-
culation. This effect appears to be triggered by drug’s actions
on afferents of sensory nerves, resulting in neuronal activation,
which is critical to induce an accelerated glucose entry into the
NAc tissue. Therefore, the change in neuronal activity is not
only the cause of multiple physiological and behavioral responses
induced by cocaine, but also a factor that facilitates efficient deliv-
ery of required energetic resources such as glucose and oxygen to
the areas of enhanced metabolic demand. The cocaine-induced
increases in NAc [glucose] are within the range of physiological
fluctuations (∼50–100 µM or 7–15% of baseline) seen with nat-
ural arousing stimuli and they show rapid tolerance with repeated
drug injections. While this pattern mimics that seen with vascu-
lar effects of cocaine, implying their involvement in rapid glucose
transfer via the BBB, it contrasts to the sensitization of motor
and some neural effects of cocaine. This mismatch between the
increase in some neural responses and decrease in their metabolic
supply could eventually trigger cocaine-induced neural, vascu-
lar, and behavioral abnormalities that are associated with cocaine
addiction in humans (Volkow et al., 1991, 1993).
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