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With the development of high-throughput and low-cost sequencing technology, a large number ofmarinemicrobial sequences were
generated. The association patterns between marine microbial species and environment factors are hidden in these large amount
sequences. Mining these association patterns is beneficial to exploit the marine resources. However, very few marine microbial
association patterns are well investigated in this field. The present study reports the development of a novel method called HC-
sNMF to detect the marine microbial association patterns. The results show that the four seasonal marine microbial association
networks have characters of complex networks, the same environmental factor influences different species in the four seasons,
and the correlative relationships are stronger between OTUs (taxa) than with environmental factors in the four seasons detecting
community.

1. Introduction

The oceans cover approximately 139 million square miles—
roughly 71% of the earth’s surface. Marine microbes are the
important composition in the marine ecosystem. They can
provide the basis for the ocean’s food webs and facilitate the
flow of nitrogen, carbon, and energy in the ocean. Yet specific
ecological relationships among these taxa and environment
factors are largely unknown. This is partly due to the dilute,
microscopic nature of the planktonic microbial community,
which prevents direct observation of their interactions [1].
Although the technologies of microbial cultivation, gene
chip, and metagenomics [2–4] can provide the information
on microorganisms’ potential ecological roles, they cannot
describe the interactions among microbes and environment.

With the development of high-throughput DNA
sequencing technologies that yield a mass of reads of rRNA
(16S rRNA/18S rRNA) and DNA, we can describe the
compositions of microbial communities, their diversity, and
how communities change across space, time, or experimental
treatments based on these sequence data [5]. However, most

of the current analytical approaches often focus on the
total numbers of taxa, the relative abundances of individual
taxa, and the extent of phylogenetic or taxonomic overlap
between communities or community categories [6–8]. In
contrast, there has been far less attention focused on using
sequence data to explore the direct or indirect relationship
among microbial taxa and environments. Some researchers
used the network analysis to explore cooccurrence pattern
in soil and ocean [9–11], but they just constructed the
association networks to show the cooccurrence pattern
and did not further mine the networks to find the pattern
structures. The microbial association (or cooccurrence)
patterns can offer new insight into the structure of complex
microbial communities, revealing the niche spaces shared
by community members and identifying habitat affinities
or shared physiologies that could guide more experimental
settings.

In this paper, we proposed a novel method called HC-
sNMF to detect the association community patterns and
structures in the four seasonal marine networks. HC-sNMF
provides new insights into the natural history of microbes,
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Figure 1: The flowchart showing the work process of HC-sNMF.

finding the relationship among microbes and environmental
factors and trying to determine the microbial association
pattern difference among seasons and which environmental
factors might have the greatest influence on the varying
diversity.

2. Material and Methods

2.1. Dataset. The 16S rRNA sequence dataset used in this
paper was downloaded from http://vamps.mbl.edu/index
.php, which includes 969,400 sequences generated from 76
time point seawater samples at the surface of L4 sampling
site in the West English Channel [10]. The 76 seawater
samples were arranged into winter (January–March), spring
(April–June), summer (July–September), and fall (October–
December) seasons, in which 16, 24, 21, and 15 samples belong
to winter, spring, summer, and fall seasons, respectively. And
the 16S rRNA sequence numbers of winter, spring, summer,
and fall seasons are 231,640, 276,932, 247,907, and 212,921,
respectively. In order to establish the seasonal association
networks of microbe and environmental factor at the taxo-
nomic level (e.g., species, genus), the 16S rRNA sequences
were grouped into species-level operational taxonomic units
(OTUs) with NbHClust algorithm, which resulted in 6,793
OTUs.

2.2. HC-sNMF Work Engine and Process. The work engine
and process of HC-sNMF consist of the three following parts:
(i) OTUs generation with NbHClust algorithm, (ii) network
construction with mutual information algorithm, and (iii)
community patterns detectionwith symmetrical nonnegative
matrix factorization method. Figure 1 is a flowchart showing
the work process of the HC-sNMF.

2.3. NbHClust Algorithm. For OTU inflation caused by 454
sequencing errors, we proposed a heuristic clusteringmethod
based on neighbor seeds, namely, NbHCluster. Based on the
distribution of homopolymer, the idea of neighbor sequence
was introduced to generated neighbor seeds.Then, a heuristic
cluster strategy was used to cluster the sequences based on
neighbor seeds instead of single seed. Finally, a constraint
parameter based on cluster size was used to fine the clusters.
The pseudocode of NbHClust is as shown in Pseudocode 1.

2.4. Networks Construction. In order to research the associ-
ation among different microbial species and environmental
factors, we use vectors 𝑋𝜇 and 𝑋] to represent OTU and
environmental factor in the four seasons, respectively,

𝑋𝜇 = [𝑥𝜇1, 𝑥𝜇2, . . . , 𝑥𝜇𝑠, . . . , 𝑥𝜇𝑆] , (𝜇 = 1, . . . , 6739) ,

𝑋] = [𝑥]1, 𝑥]2, . . . , 𝑥]𝑠, . . . , 𝑥]𝑆] , (] = 1, . . . , 18) ,

(1)

where 𝑥𝜇𝑠 is the 𝜇th OTU abundance value in the sth
sampling; that is, 𝑥𝜇𝑠 equals the ratio of the sequence number
𝑁𝜇𝑠 contained in the 𝜇thOTU and the total sequence number
𝑁𝑠 contained in the sth sampling. To reduce the sequencing
effort bias, the 𝑥𝜇𝑠 value was set to zero if 𝑁𝜇𝑠 < 5. For
reducing the false higher correlation between vectors, we
also remove these OTU vectors which contain less than
3 nonzero elements. After this processing, we can obtain
1,212 OTU vectors, in which spring season contains 280,
summer 254, fall 313, and winter 365 OTUs, respectively.
𝑥]𝑠 is the environmental factor variable such as serial day
(E1), day length (E2), DX1 (E3), DX2 (E4), photosynthetically
active radiation (E5), North Atlantic Oscillation data (E6),
primary productivity (E7), daily primary productivity (E8),
mixed layer depth (E9), the concentrations of ammonia (E10),
chlorophyll (E11), NO2 + NO3 (E12), salinity (E13), silicate
(E14), SRP (E15), temperature (E16), total organic carbon
(E17), and total organic nitrogen (E18) [10]. Then, the four
microbial abundance matrixes and four environment factor
matrixes of spring, autumn, fall, and winter seasons were
constructed by normalizing every OTU and environment
factor vector with zero-mean normalization method.

Beyond Pearson correlation, mutual information (MI)
can capture nonlinear dependencies and topology sparseness
between variables. Here, we used MI [11] to compute the
association relationship between variables and construct the
seasonal marine microbial association networks.The process
of MI can be described simply as follows.

Suppose that 𝐷 is the value range of variable 𝑋 and the
subinterval set {𝐷𝜆}, 𝜆 = 1, 2, . . . ,𝑀, is a partition of 𝐷,
satisfying that ∪𝜆{𝐷𝜆} = 𝐷 and𝐷𝜆 ∩ 𝐷𝛾 = 𝜙 if 𝜆 ̸= 𝛾. Define
the following two delta functions:

𝛿 (𝑥𝑠, 𝐷𝜆) = {
1, if 𝑥𝑠 ∈ 𝐷𝜆

0, else,

𝛿 (𝑥𝑠, 𝑦𝑠, 𝐷𝜆, 𝐷𝛾) = {
1, if 𝑥𝑠 ∈ 𝐷𝜆, 𝑦𝑠 ∈ 𝐷𝛾

0, else

(𝑠 = 1, 2, . . . , 𝑆; 𝜆, 𝛾 = 1, 2, . . . ,𝑀) .

(2)
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Input: Sequence Set𝑋 = {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
}, Minimum Length with Polymers l, Neighborhood

Parameter 𝜎, ClusteringThreshold 𝛼, MinClusterSize
Output: Clustering Result of Sequence Set𝑋
{

Seed = {𝑆
𝑖
}; // Initialize the Seed Sequence Set

For (𝑖 = 1, 𝑖 ≤ 𝑁, 𝑖++) // Traverse the Distance of the Input sequence 𝑆
𝑖
and current Seed Set

For (𝑘 = 1, 𝑘 <= length (Seed), 𝑘++) // Compute Distance of 𝑆
𝑖
and Seed

𝑘
(or Simmilary);

If ∃𝑘Meet Distance (𝑆
𝑖
, Seed

𝑘
) ≤ 𝛼,

// then Sequence𝑆
𝑖
∈ Clustering Unit of Seed

𝑘
, and output

OTUseed𝑘 = OTUseed𝑘 + 𝑆
𝑖
, label(𝑆

𝑖
) = arg 𝑢label(seed𝑘);

Else
// with Neighbor Sequence Expanding Method, yield to 𝜎 Neighbor Sequence (𝑆

𝑖
)

Seed ← Seed + Neighbor(𝑆
𝑖
), // Expanding Current Seed Sequence Set

ClusterNum = ClusterNum + 1;
End If

End For
END For // Travel all of Clustering Units, Subtract the Clustering Results the Parameter

MinClusterSize
If Cluster𝑖

 < MinClusterSize,
Reassigned (Cluster

𝑖
) // Recluster Sequence in Clustering Units 𝑖 base on the Nearest

Neighbor Clustering Algorithm, Assigned to the nearest cluster units 𝑗, and 𝑗 Meet Cluster𝑗

> MinClusterSize

End If
}

Notes: Seed
𝑘
denotes the 𝑘th Seed Sequence in Sequence Set; Neighbor (𝑆

𝑖
) denotes 𝜎

Neighbor Sequence (𝑆
𝑖
); OTUseed𝑘 denotes Clustering Unit of Seed𝑘.

Pseudocode 1

The probability of {𝐷𝜆} according the variable 𝑋 and the
joint probability of {𝐷𝜆, 𝐷𝛾} according to variables 𝑋 and 𝑌

are defined as

𝑝𝑋 (𝐷𝜆) =
1

𝑆

𝑆

∑

𝑠=1

𝛿 (𝑥𝑠, 𝐷𝜆) ,

𝑝𝑋,𝑌 (𝐷𝜆, 𝐷𝛾) =
1

𝑆

𝑆

∑

𝑠=1

𝛿 (𝑥𝑠, 𝑦𝑠, 𝐷𝜆, 𝐷𝛾) .

(3)

The entropy and joint entropy of𝑋 and 𝑌 are defined as

𝐻(𝑋) = −

𝑀

∑

𝜆=1

𝑝𝑋 (𝐷𝜆) log𝑝𝑋 (𝐷𝜆) ,

𝐻 (𝑌) = −

𝑀

∑

𝜆=1

𝑝𝑌 (𝐷𝜆) log𝑝𝑌 (𝐷𝜆) ,

𝐻 (𝑋, 𝑌) = −

𝑀

∑

𝜆=1

𝑀

∑

𝛾=1

𝑝𝑋,𝑌 (𝐷𝜆, 𝐷𝛾) log𝑝𝑋,𝑌 (𝐷𝜆, 𝐷𝛾) .

(4)

So, we can calculate the mutual information between two
variables𝑋 and 𝑌 according to the following formulate:

𝐼 (𝑋, 𝑌) = 𝐻 (𝑋) + 𝐻 (𝑌) − 𝐻 (𝑋, 𝑌) . (5)

The permutation test was used to calculate the statistical
significance.We considered that there are robust associations
between OTU-OTU and OTU environmental factor vector
if 𝑃 value ≤ 0.01, and there is a robust association between

environmental factor vectors if 𝑃 value ≤ 0.05. In the end, we
can construct the fourmarinemicrobial association networks
(Figure 4) of spring, summer, fall, and winter seasons. These
networks are weighted and undirected networks in which the
edge weight is MI value of two variables (nodes).

2.5. Symmetrical Nonnegative Matrix Factorization (s-NMF)
Clustering Algorithm. For a weighted and undirected graph
𝐺(𝑉, 𝐸) with 𝑛 nodes and 𝑙 links, we can describe it by a
weighted adjacency matrix 𝐴 = [𝐴 𝑖𝑗]𝑛×𝑛

, where 𝐴 𝑖𝑗 ≥ 0. Let
𝑂 be the feature matrix of graph 𝐺 calculated from 𝐴, and 𝑂

represents the node-node similarity.
Suppose that 𝑛 nodes can be grouped into 𝑟 overlapping

cliques (or communities). Then, a clique-node similarity
matrix 𝑊 = [𝑊𝑘𝑖]𝑟×𝑛 was introduced to represent the
similarity degree between node and clique. 𝑊𝑘𝑖 indicates
the closeness degree between node 𝑖 and clique 𝑘. Here, 𝑊
is nonnegative matrix, reflecting the relationship between
node and clique. Because∑𝑟

𝑘=1
𝑊𝑘𝑖𝑊𝑘𝑗 is an approximation of

similarity between node 𝑖 and node j, and 𝑍 also represents
the node-node similarity; thus, we can use 𝑍𝑖𝑗 to estimate
∑
𝑟

𝑘=1
𝑊𝑘𝑖𝑊𝑘𝑗. Our task can now be summarized as computing

the parameter𝑊 so as to minimize the function 𝐹𝐺:

min
𝑊≥0

𝐹𝐺 (𝑂,𝑊) =

𝑂 −𝑊

𝑇
𝑊


2

𝐹

=
1

2
∑

𝑖𝑗

[(𝑂 −𝑊
𝑇
𝑊) ∘ (𝑂 −𝑊

𝑇
𝑊)]
𝑖𝑗
,

(6)
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where 𝐴 ∘ 𝐵 is the Hadamard product (or element-by-
element product) ofmatrices𝐴 and𝐵. To solve this optimiza-
tion problem, we will introduce a symmetrical nonnegative
matrix factorization (s-NMF) method which is an improved
method of nonnegative matrix factorization [12]. NMF can
be described as a linear decomposition 𝑂 ≈ 𝑊

𝑇
𝐻, where

𝑂 ∈ 𝑅
𝑛×𝑚 is a positive matrix and 𝑊 ∈ 𝑅

𝑟×𝑛 and 𝐻 ∈ 𝑅
𝑟×𝑚

are nonnegative matrices. 𝑊 and 𝐻 are iteratively updated
according to the following rules [13, 14]:

𝐻𝑘+1 = 𝐻𝑘 ∘
[𝑊𝑘𝑂]

[𝑊𝑘𝑊
𝑇

𝑘
𝐻𝑘]

, (7)

𝑊𝑘+1 = 𝑊𝑘 ∘
[𝐻𝑘𝑂]

[𝐻𝑘𝐻
𝑇

𝑘
𝑊𝑘]

, (8)

where [𝐴]/[𝐵] is the Hadamard division (or element-by-
element division) of matrices 𝐴 and 𝐵.

Supposing that𝐻 = 𝑊, s-NMF can be seen as a constraint
form of NMF.Thus, the iteratively updated rule of s-NMF can
be described as follows:

𝑊𝑘+1 = 𝑊𝑘 ∘
[𝑊𝑘𝑂]

[𝑊𝑘𝑊
𝑇

𝑘
𝑊𝑘]

. (9)

Obviously, the optimal solution of s-NMF is a subset of
the NMF solution set. The stable points of (8) can only fall
into the set of NMF’s stationary points which satisfy𝐻 = 𝑊,
hence guaranteeing the convergence of s-NMF.

By normalizing the column of𝑊, we can obtain the fuzzy
membership degreematrix𝑈.Then, the clique corresponding
to the largest element of each column in 𝑈 is determined as
the final membership clique of each node.That is, if𝑈𝑘𝑖 is the
maximum in the column i, the node 𝑖 is classified as the clique
𝑘.

In order to determine the optimal number of community
𝑟, we iteratively increase 𝑟 and choose the one which results
in the highest modularity 𝑄𝑓 [15]:

𝑄𝑓 =
1

2𝐼
∑

𝑖,𝑗

[𝐴 𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝐼
] ⋅ 𝑠𝑖𝑗, (10)

where 𝑘𝑖 is the degree of node 𝑖, 𝐼 is the total number of edges
in the network, and 𝑠𝑖𝑗 = ∑

𝑟

𝑘=1
𝑈𝑘𝑖𝑈𝑘𝑗.

3. Results and Discussion

3.1. Performance of NbHClust. In order to evaluate the
performance of NbHClust, we compared NbHClust with
the common used heuristic clustering methods CDHIT [16],
Uclust [17], and DNAClust [18] on the Clone43 dataset [19],
which consists of 202,340 reads from amixture of 43 plasmid
clones spanning the V6 region of 16S rRNA gene with an
average length of 61 nt. Due to lack of ground truth, that
is, species origin that each read belongs to is unknown,
we used the number of OTUs estimated to evaluate the
clustering quality. Figure 2 shows the clustering results of four
methods. From Figure 2, we can see that, at the commonly
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Figure 2: Results of four methods with Clone43 dataset.

used threshold 97%, the smallest number of OTUs was ∼

260 returned by NbHClust, followed by Uclust (∼1400),
and CDHIT (∼1900). The largest number was returned by
DNAClust (∼3700). These results show that NbHClust can
reduce the OTU inflation and is much closer to the expected
number (i.e., 43).

The number of seasonal microbial OTUs generated with
NbHClust at 97% sequence identity is displayed in Figure 3,
which shows that there are seasonal variations in OTU
number throughout a 6-year period, and there are also
repeating patterns.

3.2. Topology Analysis of Four Seasonal Marine Microbial
Association Networks. In order to analyze the microbial
diversity and the relationship among OTUs and environ-
mental factors in spring, summer, fall, and winter seasons,
we should construct the four seasonal marine microbial
association networks. In general, mutual information (MI)
provides a natural generalization of the correlation since
it measures nonlinear dependency (which is common in
biology) and has the ability to deal with thousands of
variables (nodes). Although conditional mutual information
(CMI) can detect the joint relationship of interesting variable
(e.g., OTU) by two or more variables and other nonlinear
interaction by two variables, its computational complexity is
more than that of MI for large scale networks. Considering
the number of OTUs and the computational time, we select
MI to construct the four seasonalmarinemicrobial networks.
The four seasonal marine microbial association networks
with MI algorithm are shown in Figure 4. We also computed
their topological parameters including the average degree,
average clustering coefficient, average power law degree, and
modularity and compared them with their corresponding
random networks. The comparison results of four seasonal
networks and random networks are summarized in Table 1.

From Table 1, we can see that there is some difference
in the topological parameters among the spring, summer,
fall, and winter seasonal microbial correlation networks.
Compared with random networks, four seasonal microbial
correlation networks have bigger average clustering coef-
ficient, average power law degree, and modularity, which
indicate that the four seasonal microbial associate networks
have some characters of complex network.
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Figure 3: The distribution of seasonal microbial OTUs generated with NbHClust.

Table 1: Topological parameters of four seasonal marine microbial correlational networks and the corresponding random networks.

Seasonal networks Random networks
Spring Summer Fall Winter 1 2 3 4

Node number 280 254 313 365 280 254 313 365
Edge number 793 855 845 2970 793 855 845 2970
Avg. degree 5.664 6.732 5.399 16.274 5.664 6.732 5.399 16.274
Avg. clustering coefficient 0.235 0.282 0.237 0.389 0.010 0.026 0.022 0.046
Avg. power law degree 1.237 1.287 1.467 0.968 0.666 0.442 0.659 0.013
Modularity 0.579 0.567 0.561 0.365 0.39 0.34 0.404 0.217

3.3. The Association Communities in Seasonal Microbial
Networks Detected by s-NMF. The four seasonal marine
microbial association communities detected by s-NMF were
shown in Figure 5. The results in Figure 5 show that the
association community pattern diversity of winter is more
than that of spring, summer, and fall, which indicates that
the seasonal variability might have the greatest influence
on the marine microbe diversity. We also find that some
environmental factors are strongly associated with some
microbes, and there are different association structures in
four seasons. For instance, for M1 community in spring
microbial network, the environmental factor E12 (NO2 +
NO3) is correlative with OTU 206 (Loktanella) and OTU
228 (Alphaproteobacteria) and E14 (Silicate) are correlative
with OTU 206 (Loktanella) and OTU 517 (Chloroplast).
For M1 in summer microbial network, E12 (NO2 + NO3)
is correlative with OTU 7 (SAR11), OTU 41 (SAR11), OTU
57 (SAR11), OTU 62 (SAR11), OTU 85 (SAR11), OTU 106
(SAR11), OTU 120 (SAR11), OTU 130 (SAR11), OTU 135
(SAR11), OTU 459 (Haliea), OTU 705 (SAR86), OTU 817
(Gammaproteobacteria), OTU 390 (Alphaproteobacteria),
OTU 915 (SAR406), OTU 1036 (Pseudospirillum), and OTU
1980 (Araneosa); and E4 (DX2 = sin(2𝜋(𝑑/365))), where 𝑑
is the number of days from December 20, is correlative with
OTU 210 (Rhodobacteraceae), OTU 379 (SAR116), OTU 496

(Fluviicola), andOTU 1597 (SAR86); and E11 (Chlorophyll A)
is correlative with OTU 3 (SAR11), OTU 9 (SAR11), OTU 418
(Rhodospirillaceae), and OTU 735 (unknown). For M1 in fall
microbial network, E12 (NO2 +NO3) is correlative withOTU
14 (SAR11), OTU 92 (SAR11), OTU 130 (SAR11), OTU 406
(SAR116), OTU 342 (Rhodospirillaceae), OTU 459 (Haliea),
OTU 1035 (Oceanospirillales), and OTU 789 (Hellea); and
E16 (temperature) is correlative with OTU 1 (Roseovarius),
OTU68 (SAR11), OTU82 (SAR11), OTU92 (SAR11), OTU 158
(SAR11), OTU 294 (SAR86), OTU 534 (Chloroplast), OTU
418 (Rhodospirillaceae), OTU 456 (Alteromonadaceae), and
OTU 789 (Hellea). For M4 in winter microbial network, E12
(NO2 +NO3) is correlativewithOTU494 (Cryomorphaceae)
and OTU 443 (Chloroplast); and E7 (primary production) is
correlative with OTU 443 (Chloroplast), OTU 473 (Chloro-
plast), OTU 532 (Chloroplast), and OTU 735 (unknown).

According to the annotation information of OTUs at
taxonomic level by using a number of different annotation
strategies (e.g., GAST [6], BLAST against Greengenes [20],
SIVA [21], and RDP [22]), we analyzed in detail the OTU
composition of community that included more environmen-
tal factors for every seasonal network.

The M1 community in spring microbial network is
composed of 7 environmental factors (E1, E2, E4, E5, E6,
E12, and E14) and 38 OTUs in which the 26 OTUs come
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Figure 4: Marine microbial correlation networks in spring, summer, fall, and winter seasons (I-OTU,△-environmental factor).

from Bacteria, 11 come from organelle, and 1 OTU has not
been annotated. In the 26 Bacteria OTUs, 12 OTUs were
identified in class level as Alphaproteobacteria, 6 OTUs as
Gammaproteobacteria, 5 OTUs as Flavobacteria, and other
three OTUs as Betaproteobacteria, Deferribacteres, Opitutae,
respectively. In the 11 organelle OTUs, 10 OTUs come from
Chloroplastand 1 OTU fromMitochondria.

The M1 community in summer microbial network is
composed of 13 environmental factors (E1, E2, E3, E4, E5,
E8, E9, E10, E11, E12, E14, E17, and E18) and 87 OTUs
in which the 85 OTUs come from Bacteria, 1 come from
Chloroplast, and 1 OTU has not been annotated. In the 85
Bacteria OTUs, 47 OTUs were identified in class level as
Alphaproteobacteria, 20 OTUs as Gammaproteobacteria, 6
OTUs as Flavobacteria, 3 OTUs as Deferribacteres, 2 OTUs
as Betaproteobacteria, 2 OTUs as Verrucomicrobiae, and
other OTUs as Actinobacteria, Clostridia, Cyanobacteria,
Lentisphaeria, and Sphingobacteria, respectively.

TheM1 community in fallmicrobial network is composed
of 10 environmental factors (E1, E2, E3, E4, E6, E12, E14,
E15, E16, and E18) and 65 OTUs in which the 59 OTUs
come from Bacteria and 6 come from Chloroplast. In the
59 Bacteria OTUs, 42 OTUs were identified in class level
as Alphaproteobacteria, 9 OTUs as Gammaproteobacteria, 2
OTUs as Betaproteobacteria, 2 OTUs as Deltaproteobacteria,

and other OTUs as Actinobacteria, Flavobacteria, Cyanobac-
teria,and Verrucomicrobiae, respectively.

The M1 community in winter microbial network is
composed of 2 environmental factors (E4, E16) and 158
OTUs in which the 144 OTUs come from Bacteria, 12 come
from Chloroplast, 1 comes from Crenarchaeota, and 1 comes
from unknown. In the 144 Bacteria OTUs, 95 OTUs were
identified in class level as Alphaproteobacteria, 29 OTUs
as Gammaproteobacteria, 4 OTUs as Betaproteobacteria, 7
OTUs as Deltaproteobacteria, 2 OTUs as Actinobacteria,
2 OTUs as Bacilli, 8 OTUs as Deferribacteres, 4 OTUs as
Verrucomicrobiae, and other OTUs as Clostridia, Cyanobac-
teria,and Planctomycetacia, respectively.

The M4 community in winter microbial network is
composed of 3 environmental factors (E7, E11, and E12) and 11
OTUs in which the 3 OTUs come from Bacteria, 7 come from
Chloroplast, and 1 OTU has not been annotated. The 3 Bacte-
riaOTUswere identified in family level as Flavobacteria, Cry-
omorphaceae, and Rhodobacteraceae,respectively. The anal-
ysis results of other communities in the four seasonmicrobial
networks can be found in the Supplementary Material (avail-
able online at http://dx.doi.org/10.1155/2014/189590).

The community structural analysis in four seasonal
microbial networks shows that a large fraction microbial
association in class level occurs among Alphaproteobacteria
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Figure 5: Continued.
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Figure 5:The structure of microbial interaction pattern detected by s-NMF algorithm in four seasonal networks. (I-OTU,△-environmental
factor).

andGammaproteobacteria; the community dense of summer,
fall, and spring is bigger than that of winter; the correlative
relationships are stronger between OTUs (taxa) than with
environmental factors. This may indicate that biological
rather than physical factors can be more important in
defining the fine-grain community structure.

4. Conclusions

Mining the marine microbial association patterns and diver-
sity is a key for exploiting the marine resources. Considering
that the marine microbes are symbiosis or competition,
exhibiting numerous, significant intra- or interlineage asso-
ciations, we used the NbHClust and s-NMF approaches to
analyze the potential association patterns between themarine
microbes and environmental factors from the 16S rRNA
sequences. The results show that the four seasonal marine
microbial association networks have characters of complex
networks, and the marine microbial association patterns
are related to the seasonal variability; in the four seasons,
the association between microbe and environmental factor
is significantly different; that is, the same environmental
factor influences the different species; and the correlative
relationships are stronger between OTUs (taxa) than with
environmental factors. Although we cannot claim that we
have a comprehensive view of association within marine

microbial communities, our analysis method is more feasi-
ble and interesting for exploring the unseen patterns that
emerged in the complex dataset, including nonrandom asso-
ciation, deterministic processes at different taxonomic levels,
and expected relationship between community members.
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