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DeepGhost: real‑time 
computational ghost imaging 
via deep learning
Saad Rizvi, Jie Cao*, Kaiyu Zhang & Qun Hao*

The potential of random pattern based computational ghost imaging (CGI) for real-time applications 
has been offset by its long image reconstruction time and inefficient reconstruction of complex 
diverse scenes. To overcome these problems, we propose a fast image reconstruction framework 
for CGI, called “DeepGhost”, using deep convolutional autoencoder network to achieve real-time 
imaging at very low sampling rates (10–20%). By transferring prior-knowledge from STL-10 dataset 
to physical-data driven network, the proposed framework can reconstruct complex unseen targets 
with high accuracy. The experimental results show that the proposed method outperforms existing 
deep learning and state-of-the-art compressed sensing methods used for ghost imaging under similar 
conditions. The proposed method employs deep architecture with fast computation, and tackles the 
shortcomings of existing schemes i.e., inappropriate architecture, training on limited data under 
controlled settings, and employing shallow network for fast computation.

Computational ghost imaging1 acquires spatial information about an unknown target by illuminating it with a 
series of random binary patterns generated by a spatial light modulator (SLM). For each projected pattern, the 
light intensity back-reflected from the target plane is recorded by an ordinary photodiode. By correlating inten-
sity measurements with corresponding projected patterns, the target image is reconstructed. One downside of 
CGI is the requirement of a large number of measurements to produce a good-quality image, which increases its 
imaging time. Despite the emergence of basis scan schemes2, CGI (using random patterns) is still employed in 
many applications due to its simplicity, inherent encryption of patterns3, and ease of deployment4. Therefore, it is 
important to improve the efficiency of CGI by integrating it with some optimization technique to avoid complex 
(hardware based) methods5 that fail to reap the benefits of reduced cost and simplicity in ghost imaging (GI). 
Owing to its advantages of low cost, robustness against noise and scattering, and ability to operate over long 
spectral range, CGI is widely used in many applications6–8.

In order to make CGI practical, more specifically for real-time imaging, it is important to reduce its imaging 
time. The imaging time of CGI can be sub-categorized as data acquisition time and image reconstruction time. 
The data acquisition time of CGI depends on the required number of measurements and mainly on the projection 
rate of SLM. Recent advances in SLM technology make it easy to reduce data acquisition time by employing com-
mercially available high-resolution digital micromirror devices (DMDs) operating at ~ 20 kHz. The acquisition 
time can also be reduced by employing some simple yet novel solutions9,10. Therefore, the image reconstruction 
time remains the main bottleneck towards achieving high speed imaging in CGI. This image reconstruction time 
can be reduced by employing an efficient image reconstruction framework.

Recently, compressive sensing (CS) techniques11 have been applied to recover an image with fewer (com-
pressive) measurements. Although a promising technique, CS suffers from two inherent problems. First, to 
reconstruct an image from a few samples, CS algorithms require prior knowledge about the scene. However, for 
practical applications, images may not be sparse in a fixed basis, thereby limiting application flexibility. Second, 
the computational cost associated with most high-performance CS algorithms is very high, which increases 
reconstruction time, hence restricting their use in real-time applications. Although CS has been applied suc-
cessfully in GI12, fast image reconstruction requires an alternative advanced method.

Recent years have seen the rise of Deep learning (DL) as a powerful technique for solving complex problems 
in computational imaging13. DL has the potential to significantly enhance the performance of GI for real-time 
applications. For some years, the GI community remained skeptic about using DL for fast image reconstruction, 
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relying on basic correlation and probabilistic methods for target detection14,15. Recently, there have been some 
interesting studies that explore the potential of DL for GI16–20. For GI, the most relevant deep neural network 
model is the denoising autoencoder21. An autoencoder can be used as an unsupervised feature learner to extract 
features from high-dimensional data in a systematic fashion. For GI, the autoencoder model can be used to 
recover a clean image from an undersampled ghost image reconstructed from fewer measurements, thus reduc-
ing reconstruction time.

The existing DL methods applied to CGI have limited applicability due to: (a) inappropriate architecture, (b) 
training on limited data or targets, and (c) employing shallow network for real-time operation. These schemes 
can work under controlled settings but fail when tested on a large dataset with complex scenes and measure-
ment noise. For example, in Ref.16 a stacked neural network model was used, confirming the potential of DL in 
CGI. The model employs a shallow fully connected network which is known to have computational complexity 
and is prone to data overfitting22. The model seems to work well with MNIST dataset, but its fully connected 
architecture is not suitable for complex image analysis. For image analysis, a more apt choice is the convolutional 
neural network (CNN)23. The work presented in Ref.17 proposed a better (autoencoder) model based on CNN 
for CGI. However, the network was only trained for a particular object with limited training dataset, therefore 
not utilizing the true power of CNN.

In this paper, we demonstrate a CGI system that employs deep convolutional autoencoder network (DCAN) 
to reconstruct real-time images, using only a photodiode and random binary patterns for target scanning. The 
proposed DCAN (called “DeepGhost”) strikes a balance between depth of layers and computation speed by 
employing a novel architecture for improved image recovery and fast network convergence. By employing innova-
tions such as augmentation and transfer-learning, the proposed method can image complex unseen targets with 
high efficiency. Through simulations and experiments, we validate the superiority of our model by comparing it 
with existing DL16,17 and state-of-the-art compressive sensing algorithms24 used for GI under similar conditions.

Results
Simulations.  The network architecture for DeepGhost is shown in Fig. 1. The idea is to feed the network 
with undersampled (10%, 15%, 2 0%, and 25%) target images (acquired from CGI setup) for clear target recon-
struction. The proposed network is optimized for physical imaging setup by exhaustively testing through numer-
ical simulations. For training and testing, STL-1025 dataset is used, which comprises of 10 classes: monkey, cat, 
dog, deer, car, truck, airplane, bird, horse, and ship. Sample image from each class is shown in Fig. 2.

Comparison with conventional and CS algorithms.  First, the performance of DeepGhost is evaluated 
through comparison with differential ghost imaging (DGI26) and compressive sensing methods24. The Deep-

Figure 1.   DeepGhost network architecture.

Figure 2.   Sample images from 10 classes used for training.
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Ghost model is first trained on STL-10 data set (10,000 images), and then evaluated over a validation dataset 
(1,000 images) which is not seen during training. The same validation dataset is used as target images for DGI 
and CS based methods. In this paper, the sampling ratio ‘S’ is defined as the ratio between Number of measure‑
ments to Image size in pixels. For quantitative comparison, peak signal-to-noise ratio (PSNR) and Structural 
SIMilarity (SSIM)27 metrics are used.

Results and analysis.  For qualitative comparison, an image from the “monkey” class of validation dataset is 
chosen. We evaluate the reconstruction results of DGI, Sparse, total variation (TV), and DeepGhost algorithms 
(see details in “Methods” ****section) for sampling ratios ranging from 0.1 to 0.25. We use Sparse and TV 
algorithms which are well-known high performance algorithms for specifically comparing the reconstruction 
quality. By visual inspection, it can be seen from Fig. 3 that the reconstruction results for TV and DeepGhost 
are almost identical. For a low sampling ratio of 15%, we get a reasonable target reconstruction for complex 
scene using DeepGhost. However, to achieve better results on overall dataset and diverse scenes, we resort to 
S = 0.2–0.25 for practical imaging. At such low sampling rates, both DGI and Sparse (DCT based) algorithms fail 
to reconstruct a clear target.

Comparison with deep learning algorithms.  Furthermore, we design an experiment to validate the 
superior performance of our deep learning network by comparing it with two existing deep learning networks 
used for CGI under similar settings. Specifically, we train the models of16 (GIDL) and17 (DLGI) along with 
DeepGhost on STL-10 dataset at a low sampling ratio of 0.2. For all three networks, we use similar network 
parameters (weights, strides, initializations, activations, learning rate etc.).

Results and analysis.  The PSNR over the test set (1,000 images) is computed during training and plotted 
against training epochs, shown in Fig. 4a. The PSNR for the reconstructed image is calculated with respect to its 

Figure 3.   Qualitative comparison of reconstructions from different algorithms.

Figure 4.   Performance comparison (for GIDL, DLGI, and DeepGhost) (a) on test set during training, (b) 
qualitative and quantitative comparison of reconstructions.
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ground truth counterpart. It can be seen from Fig. 4a that it is very challenging for the GIDL network to recover 
image details from an under sampled image, achieving low PSNR values throughout its training. This is easy to 
understand because fully-connected neural networks are not ideal for image analysis. Although they can per-
form well on simple (e.g., digits) dataset, it is difficult for them to achieve satisfactory performance on complex 
images. Moreover, the training time for the GIDL network is very long compared to DeepGhost due to its fully 
connected structure. Compared to GIDL, the DLGI employs a better network based on convolutional layers. 
However, from Fig. 4a, it can be seen that DeepGhost also outperforms DLGI in terms of image reconstruction 
quality with high PSNR values achieved within a few epochs.

It is important to highlight that the training convergence for DeepGhost is faster compared to both DLGI 
and GIDL networks. This points toward the fact that simply using deep networks for image reconstruction may 
not lead to a satisfactory performance. Since DeepGhost uses skip connections along with deep architecture, it 
can achieve better results with fast convergence. Keeping in view the long convergence times of other models 
compared to DeepGhost, we carry out comparison testing at a high learning rate (lr = 0.001). It can be seen from 
Fig. 4a that DeepGhost has a chirpy PSNR response after ~ 10 epochs. This is because our network converges 
faster at a high learning rate compared to DLGI and GIDL networks and then goes into overfitting mode. There-
fore, we choose a lower learning rate (lr = 0.0001) for DeepGhost training. To further investigate performance 
differences between these networks, a qualitative comparison is presented in Fig. 4b.

From Fig. 4b, it can be seen that the GIDL network fails to reconstruct complex targets because of its fully 
connected architecture. Therefore, this kind of network is not suitable for dynamic CGI. Similarly, the DLGI 
network, by using shallow convolutional structure, roughly estimates the target, failing to provide a clear recon-
struction. In contrast, DeepGhost provides much better reconstructions for complex diverse targets. This superior 
performance of DeepGhost can be attributed to its denoising autoencoder structure with skip connections, which 
achieves deep architecture with low computational time. The inclination towards using simple architecture, shal-
low network (to reduce computational time), and validating model on limited data results in poor performance 
of DLGI and GIDL.

For evaluating noise robustness, the performance of DeepGhost is compared with DLGI (which gives slightly 
better reconstruction than GIDL). In this experiment, the detection fluctuations are simulated by adding noise 
(using awgn() function in Matlab) to measurement data (intensity values), resulting in different SNRs. The 
reconstruction results for the ‘bird’ image at S = 0.2 are shown in Fig. 5. From qualitative comparison in Fig. 5, 
it can be seen that the DLGI network fails to combat noise with poor reconstruction quality at different SNRs. 
This indicates that the convolutional layers (of DLGI) with no mechanism to suppress noise fail to recover a 
clean target. On the other hand, the DeepGhost network based on denoising autoencoder architecture, learns to 
suppress noise using compressing/decompressing stages, recovering clean targets at different SNRs. This noise 
suppression is further aided by skip connections, which provide high frequency information across different lay-
ers, to recover fine details which are lost during noise suppression. From overall comparison, it can be concluded 
that the DeepGhost model is more suitable for practical CGI compared to existing networks. The reconstruction 
results for DeepGhost at different sampling ratios are shown in Fig. 6.

Physical experiments.  The experimental arrangement of CGI setup is shown in Fig. 7. A series of random 
binary patterns is projected using a custom-made projection system. Light from the source LED is modulated by 
a TI DLP6500 DMD. A projection lens with focusing dial is used to project sharp patterns on the target plane. 
Target scenes are printed on an A4-sized white paper (using a regular printer). The target is placed at a distance 
of 500 mm from the plane of projection and detection. Light back-reflected from the scene is collimated on the 
photodetector (Thorlabs; 21 mm2 active area) by a 5 mm imaging lens. Intensity measurements captured by the 
photodetector are digitized by a 16-bit data acquisition (DAQ) card (Sampling at 2 MS/s). A customized soft-
ware is used to project patterns and acquire intensity values (using a synchronous trigger) for computation. The 
rudimentary image reconstructed by the software is passed down to DeepGhost for clean undersampled recon-
struction. The data collection and preparation (of experimental and synthetic data) for training takes a week.

Experiment‑1 results.  In the first experiment, we directly apply the DeepGhost model trained on simulation 
dataset to reconstruct target images acquired from random image datasets (airplane and dog image28, standard 
mandrill test image, and our university logo). It is observed that the application of simulation-trained model 

Figure 5.   Qualitative comparison of DeepGhost with DLGI for noise robustness (at different noise levels, 
S = 0.2).
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under physical conditions (e.g., noise, target reflectivity) demands undersampled input to be reconstructed at 
S = 0.4. Therefore, we capture input images at 40% sampling rate with respect to clear target reconstruction 
through our CGI (DGI) setup in this case. Figure 8(a,c: good case, b,d: worst case) shows the reconstructed 
images with corresponding PSNR and SSIM values. From Fig. 8, it can be seen that the network is able to recon-
struct random images from different classes. However, the network is unable to correctly reconstruct all random 
targets with clarity because of limited data training and knowledge of physical imaging environment. In fact, it 

Figure 6.   Simulation based image reconstruction using DeepGhost for different sampling ratios.

Figure 7.   DeepGhost experimental setup.

Figure 8.   Reconstructions by simulation-trained model on diverse images at S = 0.4. (a) SSIM = 0.5521, 
PSNR = 17.20 dB, (b) SSIM = 0.4812, PSNR = 13.22 dB, (c) SSIM = 0.6014, PSNR = 19.91 dB, (d) SSIM = 0.4613, 
PSNR = 14.56 dB.
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is very challenging to optimize a DL model for CGI directly through simulation data for reconstructing diverse 
random scenes. To counter this problem, we apply augmentation and transfer-learning in our experiments.

Experiment‑2 results.  In the second experiment, the proposed network is trained on undersampled images 
acquired from the CGI setup (through DGI for different targets), with ground truth counterparts set as training 
output. To increase limited data acquired from physical setup, we apply data-augmentation technique (using 
Keras’s DataGenerator module; by applying translation, rotation, and adding noise in the images). Even though, 
the data can be increased through augmentation, it is still prone to overfitting. Therefore, we further use transfer-
learning to make the network highly-scalable. Transfer-learning is used to provide prior-knowledge from the 
large dataset (obtained during training) to the smaller augmented dataset to perfect imaging under physical 
conditions. The results for ‘mandrill’ test image are presented in Fig.  9. It can be seen that the results from 
experiment-2 (Fig. 9) are very clear compared to the result (Fig. 8b) from simulation based model. The results 
on validation dataset are understandably consistent, shown in Fig. 10. Overall, it is observed that simple targets 
with plain background are easily reconstructed at S = 0.2.

However, for some complex targets (e.g., Fig. 10a,d), better image quality is achieved at a slightly higher sam-
pling ratio (Fig. 11). This is due to (1) practical system noise that can blur reconstructed images by corrupting 
feature extraction and/or (2) complex image features of random unseen images. The overall results indicate that 
the reconstruction quality with 20% sampling rate using binary random patterns based CGI is very promising. 

Figure 9.   Results for experiment-2 on ‘mandrill’ test set image (as unseen target).

Figure 10.   Validation set image reconstruction. (a) SSIM = 0.5214, PSNR = 17.62 dB, (b) SSIM = 0.6518, 
PSNR = 18.77 dB, (c) SSIM = 0.6913, PSNR = 18.79 dB, (d) SSIM = 0.4645, PSNR = 15.12 dB.

Figure 11.   Improving image quality by increasing sampling ratio (S = 0.2, 0.25, and 0.3).
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Although the network can produce better quality reconstructions at higher sampling ratios, it can further be 
trained on more data to achieve high-quality and reliability at lower sampling rates.

Imaging time.  To quantify imaging time, different values of time for the DeepGhost model are presented 
in Table 1. The imaging time is based on reconstructing 96 × 96 images at ~ 20 kHz modulation rate. The total 
imaging time (IT) is equal to data acquisition time (IAQ) + reconstruction time (IR). The reconstruction time 
(IR) is the combined time of DGI (undersampled reconstruction) + DCAN processing. The reconstruction time 
remains the same for different sampling ratios, which is an attractive feature of DL based model. It can be seen 
from Table 1 that DeepGhost can achieve real-time frame rates (fps) compared to conventional methods with 
high reconstruction overhead only.

Methods
Principles and methods of CGI.  In computational ghost imaging, a target scene O(x, y) is reconstructed 
by correlating a series of modulation patterns Pi(x, y) with intensity measurements Si at the bucket detector. The 
target scene can be reconstructed by29:

where Si is the ith measurement, Piis the ith modulation pattern, and the ensemble average for N iterations is 
given by: �ti� = 1

N

∑N
i=1 ti . To reconstruct high quality image, a large number of measurements are required.

To improve the performance of correlation based GI, DGI has been proposed26. Figure 3 shows images recon-
structed using DGI defined by Eq. (2), where, Ri is the reference signal. It is evident that even with these methods, 
GI still requires a large number of measurements (long imaging time) to produce quality image.

To reduce reconstruction time for CGI, compressive sensing methods have been applied to ghost 
imaging11,30,31. The CS theory allows an object (target scene) O(x, y) to be reconstructed from a set of undersam-
pled measurements S, assuming that object is sparse within a fixed basis. For evaluation, we process our GI data 
with two commonly used priors for natural images: the sparse prior and the total variation (TV) regularization 
prior. The sparse representation prior32 considers natural image to be represented by an orthogonal basis (dis-
crete cosine transform) transform matrix D and coefficient vector c. The reconstruction for CGI is achieved by 
minimizing the following function:

where y is the Lagrange multiplier and µ is the balancing parameter. The above l1-minimization problem can be 
solved by using augmented lagrange multiplier (ALM) method33. The TV regularization prior is related to the 
gradient of an image. If G is the gradient matrix of an image, the TV regularization prior based reconstruction 
is given by solving the following minimization:

DeepGhost.  The proposed deep convolutional autoencoder architecture is shown in Fig. 1. The network 
employs convolutional layers with trainable filters for extracting features and filtering corruptions from the 
image. The encoding stages use 32, 64, and 128 (Conv2D) filters for scaling down the data. The compressed data 
is grouped at an “intermediate” layer with 256 conv-filters. The decoding stages use 128, 64, and 32 filters for 
reconstructing the encoded image. The output is reconstructed using a single conv-filter at the end. To visualize 
data processing at each layer, the feature maps for an unseen target (pepper test image) through the network 
pipeline are shown in Fig. 12. To prevent network operation in saturated or dead regions of activation, the net-
work is initialized with Xavier initialization34. After every convolutional layer, batch normalization layer35 is used 
to achieve training efficiency. The data along the pipeline is scaled into different dimensions using max-pooling 
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Table 1.   Time breakdown for practical imaging.

METHOD # of projections IA (s) IR(s) IT (s) fps

Sparse – – 32.61 – –

TV – – 18.63 – –

DEEPGHOST 15% 1,382 0.069 0.13 0.199 5

DEEPGHOST 20% 1843 0.092 0.13 0.222 4

DEEPGHOST 25% 2,304 0.115 0.13 0.245 4
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and Up-sampling operations. To counter data over-fitting, Gaussian noise layers are used to apply regularization 
through additive Gaussian noise in the hidden layers. The image reconstruction quality is improved by train-
ing the network with noisy data traversed via skip connections between similar scale stages. The nonlinearity 
between layers is created using a nonlinear activation (ReLU).

In general, the autoencoder serves the purpose of image denoising. If O(x, y) is assumed to be the target, then 
the target imaged by CGI using undersampled measurements is a corrupted version of the target g

(

O
(

x, y
))

+ n 
added with noise, represented by Õ

(

x, y
)

 . The inverse problem of recovering the original image from an under-
sampled image is solved by applying DL. Through training, the network learns an end-to-end mapping from 
Õ
(

x, y
)

to O
(

x, y
)

 . For the reconstructed target Ô
(

x, y
)

 , the network is trained on a set S = {DGI undersampled, Ground 
truth }, to minimize the loss function expressed as:

The network is fed with an undersampled ghost image reconstructed from CGI data using iterative DGI 
algorithm (Eq. (2). For further time reduction and fast reconstruction, a compressive sensing algorithm can 
also be used to preprocess CGI data17. The network parameters are updated using Adaptive moment estima-
tion optimization36 with standard back propagation on mini-batch(es)S

−
 . The learning rate for each layer = 10–4. 

The proposed network is trained on gray-scaled STL-1025 96 × 96 images. All images are preprocessed using 
standard normalization procedure. The training set has 10,000 images, whereas both test and validation image 
sets have 1,000 images each. The network is implemented with Keras (TensorFlow support) on an Intel i7 CPU 
with 32 GB memory.

Conclusion
In this paper, we demonstrate a DL based imaging framework to improve the performance of random-pattern 
based CGI. DL can learn features from a large dataset and is more flexible compared to CS optimization tech-
niques based on fixed priors and rigid calculations. The proposed method is capable of reconstructing good-
quality 96 × 96 target with 80% compression at 4-5 Hz frame rates. Optimizing random-pattern based CGI for 
real-time application is very challenging because of its long reconstruction time. Even if the reconstruction 
time is reduced by means of undersampling, the reconstruction quality of undersampled CGI (through CS or 
DL) for diverse unseen targets is poor. The main objective in this paper is to reconstruct diverse unseen targets 
with accuracy. By importing prior knowledge from a large dataset, and training a network on physical data, 
this objective is achieved. The core component of our imaging framework is the DCAN. The network uses an 
encoding–decoding architecture combined with skip connections to reconstruct good quality image from an 
undersampled input. Deep learning combined with GI is a good choice in order to avoid complex methods that 
fail to reap the benefits of GI i.e., reduced cost and simplicity. By further training our algorithm on a larger dataset 
(more classes), we can enhance its feature learning ability, which would increase reconstruction reliability and 
quality. Experimental results show that the proposed method achieves better performance than compressive 
sensing and existing deep learning methods used for computational ghost imaging.
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