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Iron accumulates with age in mammals, and its possible
implications in altering metabolic responses are not fully un-
derstood. Here, we report that both high-iron diet and
advanced age in mice consistently altered gene expression of
many pathways, including those governing the oxidative stress
response and the circadian clock. We used a metabolomic
approach to reveal similarities between metabolic profiles and
the daily oscillation of clock genes in old and iron-overloaded
mouse livers. In addition, we show that phlebotomy decreased
iron accumulation in old mice, partially restoring the metabolic
patterns and amplitudes of the oscillatory expression of clock
genes Per1 and Per2. We further identified that the transcrip-
tional regulation of iron occurred through a reduction in AMP-
modulated methylation of histone H3K9 in the Per1 and H3K4
in the Per2 promoters, respectively. Taken together, our results
indicate that iron accumulation with age can affect metabolic
patterns and the circadian clock.

Iron is a vital trace element for most organisms, and it
functions in numerous physiological processes. In mammalian
cells, iron is an essential substrate for the biosynthesis of heme
and sulfur–iron cluster proteins (1). Iron deficiency could lead
to disorders including but not limited to anemia (2), and
excess iron is damaging since iron is highly reactive and able to
generate reactive oxygen species (ROS), which promote per-
oxidation and oxidative stress (3). Aberrant iron accumulation
is frequently observed in chronic liver diseases, such as alco-
holic liver disease, nonalcoholic fatty liver disease, and stea-
tohepatitis (4). Iron overload has been implicated for
enhancing age-related diseases, such as developing diabetes,
inducing tumorigenesis, and accelerating cancer progression
(5–8).

Iron homeostasis is commonly considered regulated by iron
absorption since it is traditionally thought that there are no
mechanisms of iron excretion. However, recent work has
challenged this notion. Mercadante et al. (9) reported that
transferrin (Tf) treatment increased iron excretion through
gastrointestine in Tf-deficient iron-overload mice. And under
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the condition of dietary iron overload, excess iron could be
partly excreted through bile (10). Although iron excretion is
significantly elevated, it is still not enough to reverse iron
overload completely in both cases. In addition, there are also
very small quantities eliminated via urine, sweating, and
shedding of epidermal cells (11). Iron absorption is mainly
from the proximal duodenum (12). Non-heme iron is trans-
ported into enterocytes by divalent metal transporter 1 after
being reduced to Fe2+ (12, 13). However, the mechanisms for
intestinal heme iron import are largely unknown. While the
folate transporter, heme carrier protein 1, has previously been
implicated as a low-affinity heme uptake system, its physio-
logical significance in dietary heme import is controversial
(14). Iron absorption is regulated by hepcidin, a key iron-
regulating peptide secreted predominantly by hepatocytes (15).

Iron accumulates during aging, which has been proved by
previous studies (16). Massie et al. (17) demonstrated that
total iron contents in the liver, brain, kidney, and heart were
dramatically higher in aged male C57BL/6J mice compared
with young ones. Sohal et al. (18) revealed an increase of non-
heme iron concentration in the liver, kidney, heart, and brain.
Especially, bleomycin-chelatable iron (redox-active iron) in
the liver was specifically increased with age. In addition,
caloric restriction was reported to alleviate iron accumulation
with age in multiple tissues (19, 20). High-iron diets have been
used to create iron-overload models to investigate the effects
caused by excess iron (21). Oxidative stress occurs in iron
overload, with the decreased antioxidants and the increase in
ROS (21, 22). Aging is related to increases of oxidative stress
in the liver and other tissues (23–25). Increasing oxidative
stress has been implicated with age-related changes in circa-
dian function and sleep quality (26–28). Iron overload has
also frequently induced mice into sleep disturbances and
obvious shifts in the daily rhythms of locomotor activity
(29–31).

In the present study, we demonstrated that iron accumu-
lation is a major cause of age-related changes in metabolic
patterns and circadian clock. We uncovered a mechanism by
which iron reciprocally regulates Per1 and Per2 transcription
through histone demethylation. At last, we presented that
blood donation or phlebotomy is a feasible strategy to prevent
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Iron accumulation and circadian clock
the detrimental effects caused by accumulating iron during
aging.

Results

Age-dependent iron accumulations

We first compared the iron content in serum and livers of
young mice at 8 weeks and old mice at 64 weeks. We found
that serum iron and Tf saturation in old mice were significantly
higher, accompanied by lower unbound iron-binding capacity
with total iron-binding capacity unchanged (Fig. 1A). Dia-
minobenzidine (DAB)-enhanced Prussian blue staining of
livers from old mice showed more extensive stainable iron
compared with that in young mice (Fig. 1B). Quantitative
measurement of iron in the liver confirmed an increase of iron
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Figure 1. Imbalance of iron intake and excretion causes iron accumulation
capacity (TIBC), and unbound iron-binding capacity (UIBC) in young (8 weeks o
B, representative H&E staining and DAB-enhanced Prussian staining of liver sec
iron content in young and old mice. Data are expressed as iron (μg)/liver wet w
levels, Tf saturation, TIBC, and UIBC in control and iron-overload mice. Iron ove
week for 3 weeks. CK, control group; HI, iron-overload group (n = 4). E, represen
control and iron-overload mice (n = 4; the scale bars represent 200 μm). F, liver
(μg)/liver wet weight (g) and iron (mg)/liver dry weight (g), respectively (n = 4).
old male C57BL/6 mice were used to induce iron overload by i.p. injection of
sacrificed 1 week after the last injection. And 64-week-old male mice were us
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accumulation with age (Fig. 1C). The significant increases in
iron accumulation with age were also observed in other organs,
including the heart, kidney, brain, and spleen (Fig. S1). More-
over, excess iron supplement to young mice also led to elevated
serum iron and Tf saturation (Fig. 1D), exhibiting a signifi-
cantly higher accumulation of iron in livers (Fig. 1, E and F)
and other peripheral organs (Fig. S2). These results indicated
that iron was inevitably accumulated in the tissues with age
because of the imbalance of iron intake and excretion.
Iron accumulations change the general profiles of gene
expression

To analyze the physiological association between iron
accumulation and aging, RNA-Seq was performed to analyze
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Iron accumulation and circadian clock
all poly A-containing transcripts in the livers of old mice and
iron-overload mice. Using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database, the significantly enriched
pathways were identified. Mapping of annotated differentially
expressed genes (DEGs) to KEGG pathways revealed 947
DEGs and 666 DEGs of 34 pathways in the livers of iron-
overload group (Fig. 2A, left) and old group (Fig. 2A, right),
respectively. The 34 KEGG pathways were disturbed in both
groups, implying that the transcription changes in iron-
overload group have some degree of similarity to those seen
in old group. The 450 genes that are markedly altered in the
old group overlapped with those in the iron-overload group
(Fig. 2B, top). The Venn diagram revealed 88 upregulated
genes and 182 downregulated genes that were commonly
modulated in both groups (Fig. 2B, bottom). A heatmap of the
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Figure 2. RNA-Seq analysis of old and iron-overload mice. A, distribution of
induced by iron dextran, respectively. The bar chart showed the numbers of
overload group; OLD, old group (n = 3). B, Venn diagram illustrating the extent
group. The 450 genes regulated in the iron-overload mice significantly overlap
genes or downregulated genes among the overlapped 450 genes was shown (
overload mice. D, KEGG significant enrichment analysis for the aging pathway.
downregulated DEGs and upregulated DEGs in HI group compared with CK
mapped with downregulated DEGs and upregulated DEGs in OLD group com
related to oxidative stress between HI and OLD groups. E, real-time PCR analys
overload mice. CK, control group; HI, iron-overload group; OLD, old group; Y
**p < 0.01, n = 5). Four-week-old male C57BL/6 mice were used to induce iron
3 weeks, and mice were sacrificed 1 week after the last injection. And 64-wee
Genes and Genomes.
450 genes with significant regulatory functions was con-
structed (Fig. 2C). Pearson r analysis showed that there was a
strong correlation between biological repeats in each group.
On the DEGs of aging pathway, the top 20 altered pathways in
upregulated and downregulated genes were shown in
Figure 2D. Most of the changed genes related to metabolic
regulation and oxidative stress were consistently changed in
both groups. Real-time RT–PCR analysis confirmed that
increased Maoa, Gpx3, Gadd45a, Plk2, Dapk2, and Cd36, and
decreased Prdx5, Gpx1, Gstm2, Gstp1, Ulk2, and Gsto1 in old
and iron-overload groups (Fig. 2E), and these target genes with
meaningfully changed expression, were concerned with
oxidative stress. Together, these results revealed a possibility
that age-increased oxidative stress is partially contributed by
the iron accumulation with age.
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Iron accumulations shift metabolic patterns

To characterize the metabolic changes of iron-related ag-
ing, we acquired 1H NMR-based metabonomics analysis on
old mice and iron-overload mice. As a metabolic profiling
technique, metabonomics analysis allowed us to acquire the
small-molecule metabolite profiles and analyze the differ-
ences in the metabolic profiles between groups. The orthog-
onal partial least squares discriminant analysis (OPLS-DA)
score plots of control and old groups were distinct (Fig. 3A,
left), and a clear separation was observed between control
group and iron-overload groups as well (Fig. 3B, left). The
corresponding loading plots displayed similar patterns
(Fig. 3A, right; Fig. 3B, right). The identified metabolites from
the NMR data of all groups were shown as a heatmap in
Figures 3C, S3, and Table S1. The metabolite changes in iron-
overload group were highly similar to that observed in old
group. The identified metabolites data were subject to
pathway enrichment analysis, and many pathways were
consistently altered in both groups, including glutathione,
porphyrin and chlorophyll metabolism, glyoxylate and
dicarboxylate metabolism, pantothenate and CoA biosyn-
thesis, and others (Fig. 3D). OPLS-DA models were validated
by permutation tests repeated 200 times for confirming the
reliability (Fig. 3, E and F). In the principal component
analysis score plot, old group and iron-overload group were
both well separated from control group, whereas the old
group overlapped with iron-overload group (Fig. 3G), sug-
gesting similar metabolic changes in both groups. The scree
plot showed the variance of the first five principal compo-
nents (Fig. 3H), and it demonstrated that principal compo-
nent 1 and principal component 2 were the most important
ones as shown in Figure 3G. Next, hematology and
biochemistry parameters related to oxidative stress and liver
physiology were assessed. Both old and iron-overload groups
showed noticeable increments in serum levels of aspartate
aminotransaminase and alanine aminotransferase, hepatic
malondialdehyde, accompanied by reduced antioxidant
enzyme activities of superoxide dismutase, catalase (CAT),
and GSH levels (Fig. 3I). These results further confirmed that
age-related oxidative stress associates with iron accumula-
tions with age.
Iron accumulations reset circadian clock

We also noted that environment adaptation pathway was
obviously altered by pathway enrichment analysis in old and
iron-overload groups, and circadian entrainment was one of
the significantly disturbed pathways (Fig. 4A). To further
confirm the results from RNA-Seq, we performed real-time
RT–PCR analysis for clock genes in the livers of old and
iron-overload mice. The mesor, amplitude, and acrophase of
each fitting curve are listed in Tables S2 and S3. Unexpectedly,
the alteration of core clock genes displayed broad similarity in
old and iron-overload livers (Fig. 4, B–M). Specifically, a
reciprocal change of Per1 and Per2 was observed in both
groups, with elevated Per1 expression and lowered Per2
expression in both groups. These results implied that iron
4 J. Biol. Chem. (2022) 298(6) 101968
overload could contribute to the age-dependent shift in
circadian function.

Phlebotomy partially restored the oscillation amplitudes of
Per1 and Per2

To demonstrate that age-related iron accumulation was a
key regulator in metabolism and circadian function, phlebot-
omy was applied to reduce iron stores, which is one of the
most widely used methods to decrease systemic iron levels.
Expectedly, serum iron and Tf saturation were decreased after
phlebotomy (Fig. 5, A–D). Liver iron content was also reduced
(Fig. 5E). H&E staining revealed nearly no morphological
changes of the livers in phlebotomy groups. Nevertheless,
DAB-enhanced Prussian blue staining demonstrated a
decrease of iron accumulation in the livers after phlebotomy
(Fig. 5F). The activities of superoxide dismutase and CAT were
elevated by phlebotomy as well as GSH levels, and malon-
dialdehyde levels were decreased (Fig. 5G). The 1H NMR-
based metabolome analysis confirmed that phlebotomy
caused a significant recovery in the metabolic profiling. As
shown in Figure 5,H and I, the metabolic profiles of young
mice and old mice with phlebotomy were both well separated
from that of old mice and close to each other. The corre-
sponding loading plots and the alterations in identified me-
tabolites also revealed high similarity between the metabolic
profiles of young and old mice with phlebotomy (Fig. S6 and
Table S4). The OPLS-DA models were validated with per-
mutation tests (200 times) to confirm the reliability (Fig. 5J).
The identified metabolites from the NMR data of all groups
were shown as a heatmap in Figure 5K. Moreover, the mRNA
expressions of antioxidant enzymes including SOD1, SOD2,
Gpx1, and CAT were increased by phlebotomy in a dose-
dependent manner (Fig. 5L). The oscillation amplitude of
clock genes Per1 and Per2 was partially restored by phlebot-
omy (Fig. 5M). These results indicated that phlebotomy in old
mice eliminated iron accumulation, restoring metabolic pro-
files and the clock function.

Iron accumulations increase intracellular ROS and AMP
release in red blood cells

To show that iron directly functioned on Per1 and Per2
transcription, a luciferase reporter assay was used to examine
the effects of iron on Per1 and Per2 transcription in vitro.
Contrary to the assumption, iron with different concentrations
did not significantly affect Per1 and Per2 transcription in
cultural cells (Fig. 6A). However, mice that received i.v. in-
jection with iron showed an increase of Per1 expression and a
decrease of Per2 in livers, respectively, and the effect was in a
time-dependent and dose-dependent manner (Fig. 6B). The
aforementioned observations could be explained by a blood
signal that acts as a modulator of Per1 and Per2 expression
during iron injection, and iron is not the direct regulator. We
reasoned that the putative regulator when injected into mice
should induce changes of Per1 and Per2 expression instead of
iron. The putative regulator could either be a peptide or an
organic molecule, and we initially chose to analyze the latter
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Figure 4. The similar variation of circadian gene expression in livers of old and iron-overload mice. A, KEGG significant enrichment analysis for the
environment adaptation pathway. Top 20 altered pathways mapped with downregulated DEGs and upregulated DEGs in iron-overload mice (left). Top 20
altered pathways mapped with downregulated DEGs and upregulated DEGs in old mice. CK, control group; HI, iron overload group; OLD, old group (right).
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and Genomes.
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possibility. Plasma extracts obtained from mice with iron in-
jection were analyzed with reverse-phase HPLC. The results
revealed that iron injection caused an elevation of plasma
AMP, and this effect was dose dependent (Fig. 6, G and H, left).
An increased plasma AMP was also observed in old mice, and
phlebotomy in old mice alleviated the elevation of plasma
AMP (Fig. 6H, right). In isolated red blood cells (RBCs) and
cumulative (top) variance explained by the principal components, respectively.
mice. SOD activities, CAT activities, MDA levels, and GSH levels in livers, and se
injection of iron dextran (5 mg/mouse/day) twice a week for 3 weeks, and 64-w
means ± SD (*p < 0.05, **p < 0.01, n = 5). Four-week-old male C57BL/6
(5 mg/mouse/day) twice a week for 3 weeks, and mice were sacrificed 1 week
group. ALT, alanine aminotransferase; AST, aspartate aminotransaminase; CAT
OPLS-DA, orthogonal partial least squares discriminant analysis; PCA, principa
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their lysates, iron significantly increased the total ROS levels
(Fig. 6, C–E) with different levels. Iron-elevated ROS could
induce hemolysis (Fig. 6F), which inevitably caused the release
of intracellular nucleotides including AMP. To demonstrate
that AMP is a regulator, we injected chemically synthesized
AMP into mice to investigate whether clock gene expression
was affected in the liver. Using quantitative RT–PCR analysis,
I, liver oxidative stress and liver injury levels in livers of iron-overload and old
rum AST and ALT levels were determined. Iron overload was induced by i.p.
eek-old male mice were used for the old group. All data are expressed as the
mice were used to induce iron overload by i.p. injection of iron dextran
after the last injection. And 64-week-old male mice were used for the old

, catalase; HI, iron-overload group; MDA, malondialdehyde; OLD, old group;
l component analysis; SOD, superoxide dismutase.



020 -20
T score [1] (15.7%)

0
40

-4
0

O
rt

h o
 T

 s
co

re
 [1

]
( 9

.1
%

)

PH 0
PH 0.2

020 -20
T score [1] (16.8%)

0
40

-4
0

O
rt

ho
 T

 s
c o

r e
 [1

]
(1

0.
1%

)

PH 0
YNG

A

F

H

L

100

50

0

SO
D

 
(U

/m
g 

pr
ot

)

0 0.1 0.2
PH (mL)

2

1

0

M
D

A
 (n

m
ol

/m
g 

pr
ot

)

0 0.1 0.2
PH (mL)

30

10
0

20

C
A

T 
(U

/m
g 

pr
ot

)

0 0.1 0.2
PH (mL)

30

15

0

G
SH

 
(n

m
ol

/m
g  

p r
o t

)

0 0.1 0.2
PH (mL)

G
px

1 
m

R
N

A

0

2

4

0 0.1 0.2
PH (mL)

SO
D

1 
m

R
N

A

0

1

2

0 0.1 0.2
PH (mL)

SO
D

2 
m

R
N

A

0

1

2

0 0.1 0.2
PH (mL)

C
A

T 
m

R
N

A

0

2

4

0 0.1 0.2
PH (mL)

B C D E

G

K

M

H
E

PB
+D

A
B

PH 0 PH 0.1 (mL) PH 0.2 (mL)

0
30
60

Pe
r1

 m
R

N
A

0 12 24
Zeitgeber time / h

0 12 24
Zeitgeber time / h

0

40

80

Pe
r2

 m
R

N
APH 0

PH 0.2
PH 0
PH 0.2

200

100

0Se
ru

m
 ir

on
 (μ

g /
dL

)

0 0.1 0.2
PH (mL)

Tf
 s

at
ur

at
io

n 
(%

)

100

50

0
0 0.1 0.2
PH (mL)

400

200

0TI
B

C
 (μ

g/
dL

)

0 0.1 0.2
PH (mL)

U
IB

C
 (μ

g/
dL

) 200

100

0
0 0.1 0.2
PH (mL)

0.2

0

0.4

Li
ve

r i
ro

n 
c o

nt
en

t
(m

g/
g  

dr
y 

w
e i

gh
t)

0 0.1 0.2
PH (mL)

90

ATP

Maltose
Valine
Isoleucine
Leucine

Uridine
Acetate
Fumarate
Tyrosine
NAD+
Histamine
Succinate
Methionine
Taurine
Glutamine
Betaine
Sarcosine
Nicotinurate
Inosine
Creatine
Glutathione
Alanine
Glutamate
Lactate
AMP
Glucose
Glycine
UDP-glucuronate
ADP

3

2

1

0

-1

-2

-3

PH 0 YNG PH 0.2

0 20-20

0

-1

-2

2

R
2 

an
d 

Q
2 

corr(Y, Yperm)
0 20-20

PC2 (13.3%)

0
40

-4
0

PC
1 

(1
1.

1%
) YNG

PH 0
PH 0.2

0 20-20
corr(Y, Yperm)

0

-1

-2

2

R
2 

an
d 

Q
2 

I J

Figure 5. Phlebotomy partially restores metabolic profiles and the oscillation amplitudes of Per1 and Per2 in livers of old mice. A, serum iron, (B) Tf
saturation, (C) TIBC, and (D) UIBC in old mice with phlebotomy. Phlebotomy was performed by 100 μl or 200 μl of bloodletting via cheek puncture. Mice
were sacrificed 2 weeks after phlebotomy. PH, phlebotomy (n = 5). E, liver iron content in old mice with phlebotomy. Data were expressed as iron (mg)/liver
dry weight (g) (n = 5). F, representative H&E staining and DAB-enhanced Prussian staining of liver sections of old mice with phlebotomy (n = 5; the scale
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we could detect an increased Per1mRNA and a decreased Per2
mRNA by AMP (Fig. 6I). Thus, these studies showed that
AMP is a potential modulator by which iron regulates the
expression of circadian genes.

A reciprocal regulation of Per1 and Per2 transcription
through AMP

The extracellular nucleotidase converts AMP to adenosine
in the plasma. Therefore, the most likely intracellular action of
AMP would be via the adenosine receptors and transporter
pathways. We injected adenosine into mice, and it also
induced reciprocal changes of Per1 and Per2 expression (Fig. 7,
A and B). Then we used NIH3T3 cells to explore the regula-
tion effects of AMP. Theophylline, a nonspecific adenosine
receptor antagonist, did not affect the AMP-induced changes
of Per1 and Per2 expression (Fig. 7, C and D). An adenosine
transporter inhibitor dipyridamole significantly inhibited the
effect of AMP on Per1 and Per2 transcription (Fig. 7, C and D),
indicating that the intracellular action of AMP is likely medi-
ated through the adenosine transporter pathways. Moreover,
AMP resulted in a significant decrease in the SAM/SAH ratio,
a known cellular methylation potential (Fig. 7E). To further
investigate whether cellular methylation potential is involved
in the regulation of Per1 and Per2, we used methylation acti-
vator SAM and methylation inhibitor cycloleucine to observe
the effects on Per1 and Per2 transcription. While cycloleucine
induced reciprocal changes of Per1 and Per2 transcription
(Fig. 7F), the addition of SAM blocked the action of AMP
(Fig. 7G). These results strongly suggest the axis of iron–ROS–
AMP–methylation modulates clock gene expression. Then
immunofluorescence analysis showed that AMP led to
decreasing global H3K4me3 and H3K9me2 in a dose-
dependent manner (Fig. 7,H and I), and the result was
confirmed by Western blotting (Fig. 7J). Chromatin immu-
noprecipitation (ChIP) analysis revealed that AMP markedly
decreased the abundance of H3K9me2 in the Per1 promoter
and did not affect H3K4me3 abundance. On the contrary,
AMP decreased H3K4me3 abundance in Per2 promoter with
H3K9me2 abundance unchanged (Fig. 7, K and L). Similarly,
we observed an elevated plasma level of AMP and a reciprocal
change of histone methylation pattern in Per1 and Per2 pro-
moters of old and iron-overload mice (Figs. S4 and S5).
Together, our studies have identified that AMP is a signaling
molecule that can regulate circadian function in response to
disturbed iron homeostasis in old mice.

Discussion

Iron is one of the most abundant mineral elements in
mammals and is obligatory for various essential metabolisms,
the spectra from livers of the old mice compared with young mice (left) and
permutation test of OPLS-DA models for old mice compared with young mi
K, heatmap visualization for liver samples of old mice with or without 0.2 ml ph
genes encompassing SOD1, SOD2, Gpx1, and CAT (n = 5). M, effect of phleb
represent experimental response curves; dashed lines indicate fit cosine curves
catalase; DAB, diaminobenzidine; MDA, malondialdehyde; OPLS-DA, orthogo
analysis; SOD, superoxide dismutase; TIBC, total iron-binding capacity; Tf, tran
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including oxygen transport, and oxidative phosphorylation
(32). Both iron deficiency and overload are associated with
abnormal oxidative stress and elevated risks for diseases
(33–36). Although a complex mechanism of regulating iron
uptake has been evolved (37), mammals possess limited routes
for iron excretion. In our present study, we highlighted that
iron was inevitably accumulated in mouse tissues with age;
iron accumulation with age resets metabolic patterns and the
circadian clock in old mice.

It has not caused enough attentions that iron accumulation
with age and possible implications for metabolic responses,
because the concept of iron as an important essential nutrient,
has been well known from the scientists to the public. Indeed,
iron plays a decisive role in the growth and development of
infants (38). Children who do not meet their iron needs via
foods should receive a daily iron supplement (39). On the other
hand, iron overload is also harmful to health (40, 41). Aging is
accompanied by accumulated oxidative stress, which is thought
to be one of the hallmarks of aging process (42). The oxidation
products, such as protein carbonyls, 4-hydroxynonenal, and
8-hydroxy-2-deoxyguanosine, increase with age (43). Iron is an
excellent catalyst that catalyzes free radical reactions for pro-
ducing ROS (3). Young iron-overload mice showed a similar
pattern to aging mice in the changing trend of metabolites.
Thus, it is reasonable that iron accumulation should
contribute, at least in part, to reprogram metabolic patterns
during aging.

Aging is related to circadian rhythm disturbances,
including irregular sleep–wake circadian disorder and
advanced sleep phase syndrome (44). Iron accumulation must
play a key role in aging-related shifts of circadian function,
because iron supplement to young mice yields indistin-
guishable alterations of daily circadian gene expression from
old mice. Especially, a reciprocal shift of the amplitude of
Per1 and Per2 expression occurs in these mice. Per1 and Per2
are the core components of circadian clock pacemakers,
which act as transcriptional repressors in the main tran-
scriptional/translational feedback loop (45). The oscillation of
hormone levels is weakened in old animals, indicating
impaired circadian rhythms during aging (46–48). Aging is
often accompanied by increased prevalence of sleep distur-
bances, and it has been estimated that about 50% of elderly
people complain about poor sleep quality (49, 50). Sleep
disturbances have been frequently seen in iron overload–
related diseases (29, 30). Mice overloaded with iron exhibit
disturbed locomotor activity rhythms (31). There have been
some studies aiming to connect iron metabolism and circa-
dian rhythms. Dietary iron was reported to affect circadian
glucose production via heme synthesis (51). Heme modulates
Per1 and Per2 expression in the liver of mice (52) and
old mice with 0.2 ml phlebotomy (right), respectively (n = 6). J, a 200 times
ce (left) and old mice with 0.2 ml phlebotomy (right), respectively (n = 6).
lebotomy (n = 6). L, effect of phlebotomy on the mRNA levels of antioxidant
otomy on the diurnal oscillation of Per1 and Per2 mRNA levels. Solid lines
(n = 4). All data are expressed as the means ± SD, *p < 0.05, **p < 0.01. CAT,
nal partial least squares discriminant analysis; PCA, principal component
sferrin; UIBC, unbound iron-binding capacity.
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Figure 6. Iron induces the elevation of intracellular ROS and the release of AMP in RBCs. A, real-time bioluminescence recording of Per1 (left) and Per2
(right) oscillation in response to FeSO4 at two different doses (10 and 20 μM) using Per1:Luc and Per2:Luc in NIH3T3 fibroblasts, respectively. FeSO4
treatment did not have a significant change on Per1 and Per2 transcription (n = 3 each in triplicates). B, FeSO4 caused a time-dependent and dose-
dependent increase in Per1 mRNA expression and decrease in Per2 mRNA expression in livers of mice. Mice were intravenously injected with iron
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regulates circadian cycle via functioning as a cofactor of clock
genes, including NPAS2, PER2, CLOCK, and REV-ERB α/β
(53, 54). The circadian regulation of iron in age may not act
through heme because hepatic heme level is not increased
during aging (55). In the present study, we discovered the
consistent changes of six clock genes in the liver of old and
iron-overload mice. All these suggest that iron accumulation
may be a driven factor in inducing circadian and sleep dis-
turbances in the old.

Monthly iron loss by menstruation may delay iron accu-
mulation in premenopausal females. Body iron stores increase
with age in males, whereas body iron stores in females increase
substantially after menopause, and the average body iron
stores in males are significantly higher than that in females
(56). The incidence of heart disease in men and post-
menopausal women is greater compared with that in pre-
menopausal women, which has been attributed to higher iron
stores (57). Phlebotomy is one of the most widely used
methods to decrease systemic iron levels (58). Therefore, blood
donation or phlebotomy is a feasible strategy to remove excess
iron. Some studies have demonstrated that lowering iron
stores by blood donation or phlebotomy can improve insulin
resistance (59, 60). Blood donation has been associated with
health benefits, including decreased mortality, decreased risk
of myocardial infarction, and improved physical health in old
donors and mental health in young donors (61–64). Blood
donation is reported to decrease oxidative stress and increase
the activity of antioxidant enzymes (65, 66). Thus, it is pretty
easy to understand that phlebotomy declines iron accumula-
tion, reversing metabolic patterns and restoring the circadian
rhythms in old mice.

We have known that histone methylation is involved in the
regulation of gene expression. H3K4me3 and H3K9me2 are
common marks for transcriptional activating and silencing,
respectively (67). In iron-overload or old mice, AMP resulted
in elevating intracellular adenosine levels and reducing
SAM/SAH ratio. Decreased SAM/SAH ratio led to decrease in
global levels of histone H3K4me3 and H3K9me2. The
decreased H3K4me3 and H3K9me2 have been found in old
flies (68, 69). Intriguingly, AMP induced specific reduction of
H3K9me2 levels in Per1 promoters and H3K4me3 levels in
Per2 promoters. The plasma AMP can be converted to aden-
osine by CD73 (70), which is reported to be elevated in the
aged heart and brain (71, 72). The release of adenosine is also
significantly increased in aging human fibroblasts (73). Aging
is associated with persistent inflammatory status (74, 75), ATP
release increases under inflammatory conditions (76), which
PBS with or without 20 μM FeSO4 at 37 �C for 20 min (n = 3 each in triplicates
RBCs incubated in PBS with or without 20 μM FeSO4 at 37 �C for 20 min by a fl

dose-dependent hemolysis in whole blood. Whole blood was incubated with o
the supernatant was measured at 540 nm. Hemolysis is expressed as in abso
profiles of nucleotides from the extracts of plasma from mice intravenously inj
after FeSO4 administration to collect blood samples (n = 5). H, left, quantifica
plasma AMP in young (8 weeks old) and old (64 weeks old) mice with or witho
phlebotomy group; YNG, young mice group. Mice were sacrificed 2 weeks afte
YNG group. *p < 0.05; **p < 0.01; # indicates significant difference compared
Per1 mRNA expression and decreased Per2 mRNA expression. Mice were i.p. in
mRNA expression, respectively. Mice were sacrificed 1 h after AMP administrat
body weight; RBC, red blood cell; ROS, reactive oxygen species
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may contribute to the increment in AMP and adenosine levels
during aging process. Then we proposed a hypothesis that the
specific regulation of AMP is because of different nucleosome
structures in Per1 and Per2 promoters. As shown in Figure 7K,
DNA in promoters wraps around a histone octamer in a left-
handed way, forming a stable nucleosome structure. In the
Per1 promoter, the H3K4 lysine residues are proposed to
locate inside the nucleosome, whereas the H3K9 lysine resi-
dues are extended outward. On the contrary, the H3K9 lysine
residues are proposed to locate inside the Per2 promoter,
whereas the H3K4 lysine residues are splayed outward. The
methylation of exposed lysine residues is able to be affected by
cellular methylation potential, but the lysine residues located
inside the nucleosomes can hardly be modified. Finally, iron is
a hard metal used to make many types of cooking utensils, and
almost all food and drinking items contain more or less
amount of iron. For people after middle age, it is time to
choose to reduce iron intake and reasonably donate their
blood for their health.

Experimental procedures

Animals

Four-week-old and 60-week-old male C57BL/6 mice were
purchased from the Laboratory Animal Center at Yangzhou
University. All mice were housed in a standard animal facility
under a 12 h/12 h light/dark cycle with free access to food and
water. Mice were allowed to acclimate for at least 1 week after
arrival before experimentation. All procedures were approved
by the Animal Care and Use Committee at Nanjing University
of Science and Technology (ACUC-NUST-20180313).

Establishment of the mouse models

Iron-overload mice models were established by intraperi-
toneal injection of iron dextran or feeding with a high-iron
diet. Iron dextran (5 mg/mouse/day) in 100 μl PBS was
injected intraperitoneally twice a week for 3 weeks to induce
iron overload, as previously described (77). Alternatively, mice
were fed a 2.5% carbonyl iron-supplemented diet for 2 weeks
as previously described (78). About 2.5% carbonyl iron–
supplemented diet was prepared as described previously (79).
Briefly, carbonyl iron was mixed with powdered standard diet
(Jiangsu Xietong Pharmaceutical Bio-engineering Co, Ltd) in a
ratio of 2.5% (w/w) and then made into pellets and dried. For
phlebotomy, 64-week-old male C57BL/6 mice were bled by
100 and 200 μl of blood via cheek puncture. Mice were
sacrificed 2 weeks after phlebotomy.
; the scale bars represent 20 μm). E, quantification of ROS levels in lysates of
uorescence spectrophotometer (n = 5 each in triplicates). F, FeSO4 induced
r without FeSO4 (10, 20, or 50 μM) at 37 �C for 20 min, and the absorbance of
rbance values at 540 nm (n = 3 each in triplicates). G, representative HPLC
ected with FeSO4 in doses of 20 or 40 μmol/kg bw. Mice were sacrificed 2 h
tion of plasma AMP after FeSO4 treatment (n = 5). Right, HPLC analysis of
ut 0.2 ml phlebotomy. OLD, old mice group; OLD + PH, old mice with 0.2 ml
r blood donation. Asterisk indicates significant difference compared with the
with the OLD group. #p < 0.05; ##p < 0.01 (n = 6). I, AMP caused increased
jected with AMP (0.5 μmol/g bw) at ZT1 and ZT13 to analyze Per1 and Per2
ion (n = 4). All data are expressed as mean ± SD, *p < 0.05, **p < 0.01. bw,



Figure 7. AMP reciprocally regulates Per1 and Per2 transcription. A, quantitative RT–PCR analysis of Per1 mRNA in mice treated with adenosine. Mice
were i.p. injected with adenosine (Ado, 0.2 μmol/g bw) at ZT1 to analyze Per1 mRNA expression. Saline served as the control. Mice were sacrificed 1 h after
adenosine administration (n = 4). B, quantitative RT–PCR analysis of Per2mRNA in mice treated with adenosine. Mice were i.p. injected with adenosine (Ado,
0.2 μmol/g bw) at ZT13 to analyze Per2 mRNA expression. Saline served as the control. Mice were sacrificed 1 h after adenosine administration (n = 4).
C, quantitative RT–PCR analysis of Per1 mRNA in NIH3T3 cells treated with theophylline (TPL, 100 μM), dipyridamole (DIP, 0.1 μM), plus AMP (0.5 mM) for
24 h, respectively (n = 4 each in triplicates). D, quantitative RT–PCR analysis of Per2 mRNA in NIH3T3 cells treated with TPL (100 μM), DIP (0.1 μM), plus AMP
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Iron studies for serum and tissues

Serum iron, Tf saturation, total iron-binding capacity, and
unbound iron-binding capacity were determined using
commercially available assay kits (Nanjing Jincheng Bioengi-
neering Institute). Tissue iron levels were determined as pre-
viously described (80). Tissue samples were dried at 106 �C
overnight to constant mass and weighed again. Dried samples
were ashed in the oven at 500 �C for 17 h and then fully sol-
ubilized in 6 M HCl. And the final solution was adjusted with
demineralized water to a final HCl concentration of 1.2 M.
Iron concentration of the samples was determined by flame
atomic absorption spectrometry (Varian SpectrAA 250 Plus;
Varian).
Treatment of AMP, adenosine, and FeSO4

AMP and adenosine (Sigma) were dissolved in saline and
administered to mice by intraperitoneal injection in a dose of
0.5 μmol/g and 0.2 μmol/g body weight (bw), respectively. To
investigate dose-dependent and time-dependent changes of
Per1 and Per2 mRNA expression after iron treatment, mice
were injected intravenously with FeSO4 in the doses of 10, 20,
and 40 μmol/kg bw for 16 h and were injected with 40 μmol/
kg bw of FeOS4 and sacrificed at 4, 8, and 16 h. To investigate
the effects of iron on plasma nucleotides, mice were intra-
venously injected with FeSO4 in doses of 20 and 40 μmol/kg
bw. Mice were sacrificed 2 h after FeSO4 administration.
Saline served as a control for all experiments described
previously.
HPLC analysis for nucleotides

Blood samples (heparin sodium anticoagulation) were
immediately centrifuged at 5000g for 5 min at 4 �C. Nucleo-
tides were extracted from the plasma using 0.4 N perchloric
acid solution and analyzed by HPLC (81). Extracts were
separated and quantified using reverse-phase HPLC (Waters
1525 System; Millipore) on a reversed-phase C18 column as
described previously (81–83). SAM and SAH were extracted
from cold PBS-washed cell monolayers or frozen liver samples
using 0.4 N perchloric acid (84). SAM and SAH were
measured by a reverse-phase HPLC according to the proced-
ure previously described (85). Standards were used to identify
(0.5 mM) for 24 h, respectively (n = 4 each in triplicates). E, HPLC analysis of SAM
triplicates). F, quantitative RT–PCR analysis of Per1 and Per2mRNA in NIH3T3 cel
triplicates). G, quantitative RT–PCR analysis of Per1 and Per2 mRNA in NIH3T3
triplicates). H, representative fluorescence images showing that AMP decrease
H3K9me2 were visualized by immunofluorescence with specific antibodies (red
1 mM AMP for 24 h. Saline served as the control (n = 3 each in triplicates; the
H3K4me3 (top) and H3K9me2 (bottom) in H (n = 3 each in triplicates). J, Wester
AMP. NIH3T3 cells were treated with 0.5 mM or 1 mM AMP for 24 h. Saline serve
against trimethyl-Histone H3 Lys4 (H3K4me3) or dimethyl-Histone H3 Lys9 (H3
IgG, and H3 serve as controls. The representative images showed that the leve
Per2 promoter region were decreased after AMP (0.5 mM) treatment. Mice were
quantification of the enrichment in H3K4me3 and H3K9me2 with quantitative
primers for the promoters of the Per1 and Per2 genes (n = 3 each in triplicat
mulating iron regulates Per1 and Per2 transcription during aging. Elevated seru
adenosine by CD73. Adenosine is transported into hepatocyte and reduces SAM
showing the H3K9 residues are exposed outside the nucleosome with H3K4 res
outside the nucleosome with H3K9 residues buried inside in the Per2 promote
weight; ChIP, chromatin immunoprecipitation; DAPI, 40 ,6-diamidino-2-phenylin
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the peaks and make the calibration curves. Quantification was
based on the peak areas. SAM was from Solarbio. AMP and
SAH were from Sigma. The HPLC chromatogram of AMP
standard detected at 260 nm with maximum absorption
wavelength at 257.9 nm is provided in Fig. S7.

Determination of intracellular ROS contents in RBCs and
hemolysis assay

RBCs were purified as previously described (86). The puri-
fied RBCs (�106 RBCs/ml) were incubated with 2’-7’dichlor-
ofluorescin diacetate (0.4 mM final concentration) at 37 �C for
15 min. After being washed twice, the RBCs were then incu-
bated in PBS at 37 �C with or without FeSO4 (20 μM) for
20 min. After incubation, the intracellular ROS contents in
RBCs were quantified by flow cytometry as described previ-
ously (87–89). Also, the ROS levels were visualized by fluo-
rescence microscopy, and the ROS levels in RBC lysates were
quantified by a fluorescent spectrophotometer. Hemolysis in
whole blood was evaluated spectrophotometrically at 540 nm
of the supernatant after a 20 min incubation with or without
FeSO4 (20 μM) for 20 min at 37 �C, as described previously
(90).

Cell culture

NIH3T3 cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum
(FBS; Gibco) and penicillin/streptomycin (10 μl/ml of medium;
Gibco) at 37 �C in 5% (v/v) CO2. Serum shock was performed
for synchronization as previously described (91). Briefly, after
cells were grown to confluency in 6-well plates, the medium
was exchanged by 50% horse serum (Gibco) in DMEM; after
2 h (t = 0), the medium was removed and replaced with fresh
0.5% FBS-containing medium. To investigate the effects
mediated by adenosine, cells were then treated with various
concentrations of the compounds to be analyzed for 24 h:
vehicle, AMP (0.5 mM) alone, AMP (0.5 mM) plus dipyr-
idamole (0.1 μM), or theophylline (100 μM). To analyze the
effects of cellular methylation potential, cells were treated with
20 mM cycloleucine for 24 h to inhibit methylation, and cells
were also treated with AMP (0.5 mM) for 24 h with or without
2 mM SAM after synchronization. At indicated time, cells
were harvested for total RNA extraction.
and SAH in NIH3T3 cells treated with AMP (0.5 mM) for 24 h (n = 4 each in
ls treated with cycloleucine (CYC, 20 mM) for 24 h, respectively (n = 4 each in
cells treated with SAM (2 mM) plus AMP (0.5 mM) for 24 h (n = 4 each in
d global H3K4me3 and H3K9me2 levels in NIH3T3 cells. The H3K4me3 and
). Nuclei were stained with DAPI. NIH3T3 cells were treated with 0.5 mM or
scale bars represent 20 μm). I, immunofluorescence signal quantification of
n blot analysis of H3K4me3 and H3K9me2 levels in NIH3T3 cells treated with
d as the control (n = 3 each in triplicates). K, ChIP analysis using the antibody
K9me2), followed by PCR with primers amplifying the Per1 and Per2. Input,
l of H3K9me2 at the Per1 promoter region and the level of H3K4me3 at the
sacrificed 1 h after AMP administration at ZT13 (n = 3 each in triplicates). L,
RT–PCR analysis. Input-DNA and ChIP-DNA samples were quantified using

es). M, schematic representation of the proposed mechanism of how accu-
m iron induces AMP release from RBCs, and increased AMP is converted to
to SAH ratio, thus decreasing the global histone methylation. A hypothesis

idues buried inside in the Per1 promoter; and the H3K4 residues are exposed
r. All data are expressed as the means ± SD, *p < 0.05, **p < 0.01. bw, body
dole; IgG, immunoglobulin G; RBC, red blood cell.
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Real-time luciferase reporter assays

Luciferase reporter assays were conducted as previously
described (92). The Per1-dLuc and Per2-dLuc reporter plas-
mids were generated by cloning the mouse Per1-promoter
(−1803 to + 40) or mouse Per2 promoter (−1670 to +53) into
pGL3-dLuc, respectively (93). Then 2 μg of each reporter
plasmid was transfected into NIH3T3 cells (35 mm dish) using
HilyMax (DOJINDO Laboratories), respectively. The cells
were stimulated with 100 nm dexamethasone (Sigma–Aldrich)
for 2 h in serum-free DMEM, and then the medium was
replaced with fresh DMEM containing 100 μM luciferin
(Wako Pure Chemical Industries), 25 mm Hepes (pH 7.2), 10%
FBS, and with or without 10 or 20 μM FeSO4. Bioluminescence
was recorded and integrated for 1 min at intervals of 10 min
using the LumiCycle (Actimetrics). The cells were cultured in
a luminometer for 3 days to evaluate bioluminescence.

RNA extraction and quantitative real-time PCR

Total RNA was extracted from livers and cells with Karrol
reagent (Karroten) according to the manufacturer’s in-
structions. RT reaction was carried out by reverse transcript
kit (Karroten) according to the manufacturer’s protocol. Real-
time PCR was performed with the SYBR Green PCR Kit
(Karroten) using an ABI 7300plus Detection System (Applied
Biosystems). The results were normalized to β-actin. The se-
quences of all primers are listed in Table S5.

RNA-Seq and analysis

Purified total RNA from the liver was used for RNA-Seq
preparation. The complementary DNA library construction
and sequencing were performed by Beijing Genomics Institute
using a BGISEQ-500 platform. High-quality reads were aligned
to the mouse reference genome using Bowtie2 (http://bowtie-
bio.sourceforge.net/bowtie2/index.shtml). The expression
levels for each gene were calculated and normalized to frag-
ments per kilobase of exon model per million mapped reads.

Histologic examination

A histologic examination was performed according to the
method described previously (94, 95). Briefly, liver tissue was
fixed with 4% paraformaldehyde in PBS overnight. The tissues
were then transferred to 70% ethanol and embedded in
paraffin. Samples were cut into 5 μm sections and stained with
H&E. Ferric iron was visualized with DAB-enhanced Prussian
Blue staining. Briefly, deparaffinized and rehydrated tissue
sections (5 μm) were incubated at 37 �C for 1 h in 7% potas-
sium ferrocyanide with aqueous hydrochloric acid (3%) and
subsequently incubated in 0.75 mg/ml DAB and 0.015% H2O2

for 5 to 10 min.

1H NMR sample preparation and NMR spectroscopy

Metabolites were extracted from livers in YNG (young
group), OLD (old group), and HI (iron-overload group)
following previously reported protocols (96). Briefly, approxi-
mately 200 mg of liver samples were homogenized in 2 ml
ice-cold acetonitrile/water (1:1 v/v) buffer. After centrifugation
(12,000g, 4 �C) for 10 min, the supernatant was collected into
glass vials. Then most acetonitrile in the supernatant was
removed using a gentle stream of nitrogen. Next, the aqueous
residues were freeze-dried and stored at −80 �C until further
analysis. For NMR analysis, the lyophilized samples were
reconstituted in 600 μl heavy water phosphate buffer (0.2 M,
pH 7.4) containing 0.05% trimethylsilylpropanoic acid as a
chemical shift reference. NMR spectra were recorded on a
Bruker AVANCE III 500 MHz NMR spectrometer at 298 K.

Spectra processing and data analysis

The 1H NMR spectra were manually phased, baseline cor-
rected, and referenced to trimethylsilylpropanoic acid using
Bruker TOPSPIN 3.0 software. And MestReC (version 3.7.4:
Mestrelab Research SL) was used to export 1H NMR spectra to
ASCII files before importing them into R software (http://cran.
r-project.org/) to analyze data. After peak alignment, the water
signals and affected regions from 4.7 to 5.1 ppm were dis-
carded. The remaining spectra were mean-centered and
Pareto-scaled to facilitate multivariate analysis. A supervised
OPLS-DA was conducted to filter irrelevant systematic signals
and explore the major features between two groups. The score
plots showed the discrimination of categories, and loading
plots indicated significantly altered metabolites that contrib-
uted to the discrimination. The OPLS-DA models were vali-
dated by repeated crossvalidations. Identification of
metabolites was performed using Chenomx NMR Suite soft-
ware (version 7.7; Chenomx) and published articles. Also,
unsupervised principal component analysis was carried out to
compare the differences among all three groups.

ChIP assays

ChIP assays were conducted as described previously (97,
98). Cross-linked chromatin was immunoprecipitated with
5 μg of anti-Histone H3 (Abcam; catalog no.: ab1791), anti–
trimethyl-Histone H3 Lys4 (Abcam; catalog no.: ab8580), anti–
dimethyl-Histone H3 Lys9 (Abcam; catalog no.: ab1220),
respectively, or negative control rabbit immunoglobulin G.
Immunoprecipitated DNA was then purified and used as a
template for PCR analysis. The primer sequences used for PCR
are listed in Table S6.

Immunofluorescence analysis

Immunofluorescence was performed as described previously
(99). Briefly, NIH3T3 cells were washed three times with cold
PBS, fixed with 4% paraformaldehyde for 15 min, and per-
meabilized with 0.25% Triton X-100 (Sigma) for 10 min. Fixed
cells were incubated with primary antibodies anti–trimethyl-
Histone H3 Lys4 (Abcam; catalog no.: ab8580), anti–dimethyl-
Histone H3 Lys9 (Abcam; catalog no.: ab1220), and Alexa
Fluor 568–conjugated secondary antibodies step by step.
Nuclei were stained with 40,6-diamidino-2-phenylindole. Then
the samples were imaged with fluorescence microscopy
(Eclipse Ti2; Nikon) and processed using NIS-Element Version
5.02 software (Nikon, Melville, NY).
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Statistical analysis

Data without indications were presented as means ± SD.
Independent replicates for each data point (n) are identified in
figure legends. Data graphics and statistical analysis were
performed using GraphPad Prism 8 software (GraphPad
Software, Inc). Statistical difference between two groups was
determined by Student’s t test, and comparisons among groups
were performed using ANOVA. A p value of less than 0.05 was
regarded as statistically significant.
Data availability

All data of this study are available in this article and the
supporting information. All source data generated for this
study and relevant information are available from the corre-
sponding author.
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