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Abstract: Fullerene-based materials including C60 and doped C60 have previously been proposed as
anodes for lithium ion batteries. It was also shown earlier that n- and p-doping of small molecules
can substantially increase voltages and specific capacities. Here, we study ab initio the attachment of
multiple lithium atoms to C60, nitrogen-doped C60 (n-type), and boron doped C60 (p-type). We relate
the observed attachment energies (which determine the voltage) to changes in the electronic structure
induced by Li attachment and by doping. We compare results with a GGA (generalized gradient
approximation) functional and a hybrid functional and show that while they agree semi-quantitatively
with respect to the expected voltages, there are qualitative differences in the electronic structure.
We show that, contrary to small molecules, single atom n- and p-doping will not lead to practically
useful modulation of the voltage–capacity curve beyond the initial stages of lithiation.
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1. Introduction

Fullerene-based materials have been explored for use as active electrode materials for Li and Na
ion batteries in several works [1–5]. Cyclic voltammetry of C60 in solution identified well-resolved
peaks at −1.07, −1.43, and −1.92 V vs. Fc/Fc+ in [6] (about 2.4, 2.1, and 1.6 V, respectively, vs. Li/Li+).
In [7], reduction peaks for thin film C60 were reported around −0.5, −1.0, −1.7, and −2.2 V vs. Fc/Fc+.
In [8], an expanded measurement window was used and reduction potentials (E1/2 values) relative
to Fc/Fc+ were measured in solution at −0.98, −1.37, −1.87, −2.35, −2.85, and -3.26 V (about 2.4, 2.1,
1.6, 1.1, 0.6, and 0.2 V, respectively, vs. Li/Li+). When C60 is used as an active electrode material,
voltammograms recorded during lithiation show a large sloping plateau in the 0.7 V area and short
plateaus around 1.5, 1.9 and 2.3 V vs. Li/Li+ [2]. Experiments indicate a maximum specific capacity
reaching 400 mAh/g, corresponding to insertion of 10 to 12 Li atoms per molecule [2]. The broad plateau
in the 0.7 V area extends from Li3C60 to Li10C60 (corresponding to a specific capacity of 372 mAh/g)
and Li12C60 is reached at about 0.1 V [2]. Formation of Li10C60 corresponds to C60 accepting 10 valence
electrons from the Li atoms into its lowest unoccupied molecular orbitals. In this configuration, similar
to other known complexes like K10C60 [9], all 10 attached Li should be fully ionized.

The voltages observed with C60 imply its possible use as an anode. In the anode application,
one desires either a voltage close to 0 vs. Li/Li+ (while remaining sufficiently positive to avoid
plating) or a voltage just above about 1.3 V which would avoid reduction of common carbonate based
electrolytes and thus enable high-rate operation unhampered by the SEI (solid-electrolyte interphase)
and plating/dendrites [10–12]. The main plateau of a C60 electrode at around 0.7 V does not ideally
achieve either of these purposes for a Li ion battery. It is possible to modulate the voltage–capacity
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curve by chemical modification including functionalization and doping. Functionalized and doped C60

based materials have been explored in experimental and modelling works for use in Li ion batteries.
Examples are Ag-doped/functionalized fullerenol [13] or substitutional nitrogen-doped C59N and
functionalized C59N [14].

Doping of the active electrode material is a powerful technique to modulate the interaction energy
of a semiconductor host with the active cation [15]. In inorganic materials such as monoelemental
semiconductors, the initial stage of lithiation, sodiation, magnesiation etc. involves donation of the
valence electron(s) to the conduction band of the host [16–25]; in oxides, the valence electron can
occupy a state in the conduction band [26–31]. These are relatively high-energy states; p-doping can
be used to create unoccupied states near the top of the valence band which can be occupied by the
valence electron of the alkali atom and thereby strengthen the binding via the bandstructure part of
the total energy, which can either increase the voltage or induce electrochemical activity in materials
which are inactive in undoped state [15,16]. n-Doping, on the other hand, is not expected to improve
the voltage in inorganic solids [15]. This is ultimately related to small reorganization energies of such
materials. Many organic electrode materials [32] are semiconductors, and the strategy of p-doping is
fully applicable to them; in [33], we computed that p-doping can lead to strengthening of the binding
energy on the order of 2 eV (corresponding to a voltage increase on the order of 2 V) when using
typical organic small molecule building blocks. With organic molecules, in contrast to inorganic solid
semiconductors, n-doping was also shown to lead to stronger binding. This was related in [33] to strain
effects. Here, we will show that in molecules, stronger binding (higher voltages) induced by n-doping
can also be understood from the bandstructure perspective (in the following, we will liberally use
“bandstructure” as set language even when talking about molecules). Substitutions not amounting
to doping (where the number of valence electrons does not change) can also be used to strengthen
interaction with the active cation; for example, we showed that replacing a -CH- group with N in
disodium terephthalate [34,35] to result in disodium pyridine dicarboxylate leads to increased voltage
for first Na attachment per formula unit, in agreement with experiment [36,37]. This was related to a
bond formation between Na and N.

In small-molecule systems, the theoretical capacity is typically reached with a small number of Li
or Na attached per formula unit. Specifically in materials operating by the insertion and reduction
mechanism, the specific capacity is typically reached with two Li or Na per molecule, corresponding
to full occupancy of the molecular LUMO (lowest unoccupied molecular orbital), for example in
dicarboxylates and tetracyanides [10,36,38]. In this case, an increase of the voltage for first Li, Na
attachment is practically relevant, as it significantly modifies the voltage–capacity curve, at least up
to a half of the theoretical capacity. For example, a voltage–capacity curve with two plateaus was
obtained in [36] which decreased segregation into the fully sodiated state and improved cycle rate
and life. In inorganic hosts, to induce practically relevant improvement in the voltage–capacity curve,
a high dopant concentration is needed, to the tune of several at%, which is experimentally feasible for
some materials [17,39]. One may therefore question whether a single dopant can substantially change
the voltage–capacity curve of C60 [14] considering that the final state of charge involves at least 10 Li
atoms per molecule.

Density functional theory (DFT) models are able to describe experimental voltage–capacity
curves with semi-quantitative accuracy [40]. Good match with experiment can be achieved when the
voltage–capacity curve is due to the active material itself rather than morphological effects, impurities,
etc. Typically, this requires periodic solid-state calculations, which limits the range of practically
applicable approximations. Specifically, it is more difficult and CPU-costly to use hybrid functionals,
and GGA (generalized gradient approximation) functionals remain the most widely used in this
application. This, even though the charge transfer nature of the Li–host material interactions makes
desirable the inclusion of exact exchange. Molecular or oligomeric models can be used for organic
materials [32]. For materials operating by oxidation, molecular/oligomeric models are sometimes able
to predict the voltage capacity curve [41]. For materials operating by insertion/reduction, we observed
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in a series of studies that the qualitative features of the measured voltage–capacity curve, including
its shape and any effects of doping are well reproduced in a molecular model, while the absolute
magnitude of the voltage is underestimated on the order of 1 V due to the neglect of aggregate
state effects [10,34–38,42]. Another disadvantage of a molecular model is artificial persistence of the
voltage–capacity curve beyond the theoretical capacity [34,37,42]; in the present work, we are, however,
able to circumvent this issue (see Section 2). A significant advantage of a molecular model is ease of
application of a hybrid functional (and of wavefunction based methods, as needed) and of comparison
between different computational approaches [41–44]. This is also the route taken in this work. A recent
DFT based work on N-doped C60 that suggested voltage increase by N doping also used a molecular
model with a hybrid functional [14].

In this work, we perform an ab initio study of Li attachment to C60, N-doped C60, and B-doped
C60, the last two chosen as examples of substitutional n- and p-doping, respectively. We study whether
doping can be used to modulate in a practically significant way the voltage–capacity curve of C60.
We focus on the mechanistic understanding of Lin–C60 interaction, derived from the electronic structure;
we therefore work with a molecular model which is expected to underestimate the magnitude of the
voltage but preserve the shape of the voltage–capacity curve [36,37] and correctly predict the effects
due to doping [15,32]. This model allows us to compare the results obtained with a GGA functional
and a hybrid functional and thereby assess whether a GGA functional—still most practical for solid
state modelling—correctly describes properties of this system such as bandstructure changes during
Li attachment and the voltage–capacity curve. In contrast to the model of [14] which computed the
reduction potential and therefore provided a preview into the effects of doping and functionalization
on the open-circuit voltage, i.e., the initial part of the voltage–capacity curve (which, from what is
known about its shape for C60 [2], is not much practically relevant), we consider the effects of doping on
the entire curve and show that, contrary to small molecules, single atom n- and p-doping will not lead
to practically relevant modulation of the voltage–capacity curve beyond the initial stages of lithiation.

2. Methods

Density functional theory calculations were performed in Gaussian 09 [45] using the B3LYP [46]
and PBE (Perdew–Burke–Ernzerhof) [47] exchange correlation functionals. As mentioned in Section 1,
a comparison between the two is useful, as GGA functionals, and specifically PBE, continue to be most
widely used in solid state modeling, including modeling of battery electrode materials [40]. PBE is
an ab initio functional that expresses the exchange-correlation energy as a functional of the electron
density and its gradient. While practical and widely used, it famously underestimates the bandgap and
suffers from delocalization errors. B3LYP is a hybrid functional widely used in molecular simulations
which includes an empirically determined fraction of exact exchange as well as empirical weights for
other components of the energy. It much more accurately reproduces bandstructures and electronic
state localization but is also much more CPU costly, especially in solid state calculations. That is
why it is important to compare these two types of functionals for a system where both are feasible,
as is done here in a molecular model, to assess if PBE is apt to reproduce voltages and mechanism of
Li attachment.

The 6–31+g(d,p) basis set was used. Spin polarization was used for systems with odd numbers
of electrons. Tight convergence criteria were used for structure optimization. Initial C59N, C59B
structures were obtained by replacing one C atom with an N or B atom, respectively. Bader charges
were computed with the Bader analysis program [48]. Partial densities of states (PDOS) were produced
with the GaussSum program [49], and visualizations with VESTA [50]. Bond formation was identified
by using charge density differences, ∆ρ = ρLi−sys −

(
ρLi + ρsys

)
, where sys is one of C60/C59N/C59B, and

electron densities ρ for Li and sys are computed at the geometries of Li–sys. Formation energies Ef of
complexes Lin–C60/C59N/C59B were computed as:

E f = EnLi−sys − nELibcc − Esys, (1)
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where EnLi−sys is the energy of the complex Lin–C60/C59N/C59B and ELibcc is an estimate of the energy of
one Li atom in a bcc (body-centered cubic) structure, which is computed as ELibcc = Eatom – Ecoh, where
Eatom is the energy of a Li atom computed in Gaussian 09 and Ecoh is the cohesive energy of bcc Li taken
as 1.63 eV/atom [51,52]. Voltage–capacity curves were computed from piece-wise voltages V between
Li fractions n1 and n2 as [40]:

V = −
En2Li−sys − En1Li−sys − (n2 − n1)ELibcc

n2 − n1
, (2)

where n1 and n2 correspond to inflection points on the convex hull built from the dependence Ef(n).
Multiple Li configurations (attachment sites) were tried, and the lowest formation energies were used
to build the convex hull and to compute V.

As discussed in Section 1, the absence of aggregate state effects in a molecular model not only
causes a shift of the voltage–capacity curve as a whole but also makes it less obvious at what state of
charge the maximum capacity would be reached. We used the extent of Li ionization—more specifically
an abrupt change of its degree—as an indicator of the maximum capacity expected in an experiment.
Indeed, we noted in our previous comparative studies of molecular and solid materials that while in
molecular calculations the capacity persists beyond that computed in solid state (and that observed
experimentally), those states of charge correspond to a markedly lower degree of Li ionization and to
occupancy of Li-centred states [10,38,42].

3. Results

3.1. Bandstructure of Li–C60/C59N/C59B Complexes

Energies of relevant molecular orbitals of C60, C59N, C59B and their complexes with Li are shown
in Figure 1. We noted that the orbital corresponding to the valence electron of a free Li atom is
E(Li) = −3.65 eV with B3LYP and –3.22 with PBE, i.e., higher than the LUMO of C60 by 0.03 eV with
B3LYP and by 0.99 eV with PBE. For spin-polarized systems, both spin channels are shown. Li
donates its valence electron to the LUMO of C60 (see Figure 2). While PBE results in an artificially
contracted HOMO (highest occupied molecule orbital)–LUMO gap, this phenomenon of Li ionization is
qualitatively similar with both functionals. Upon charge donation, the resulting SOMO (single occupied
molecular orbital) is stabilized vs. the original LUMO by 0.73 eV with B3LYP but is destabilized by
0.05 eV with PBE; as a result the band energy of this electron is different by only 0.25 eV between the
functionals, while with both functionals, the C60’s HOMO is destabilized by a similar amount (about
0.35 eV). The stabilization of the band energy of Li valence electron upon donation also differs by only
0.2 eV between the functionals (and is stronger with PBE). This helps explain the relatively small (given
major quantitative and qualitative differences in bandstructure) difference in voltages computed with
the two functionals (on the order of 0.2 V, vide infra).

The effect of the substitutional N dopant is to introduce an occupied state (SOMO) in the gap in one
spin channel. The SUMO (single unoccupied molecular orbital) of the other spin channel is occupied by
the Li valence electron upon Li attachment and stabilized by 1.2 eV, from –3.91 eV to –5.11 eV (forming
the HOMO of the complex shown in Figure 2) with B3LYP, but is destabilized by 0.15 eV, from −4.44 eV
to −4.29 eV, with PBE. The bandstructure energy of the valence electron of Li is therefore stabilized
by 1.46 and 1.07 eV upon attachment to C60 with B3LYP and PBE, respectively. The destabilization
of the molecular HOMO (HOMO-1 of the complex) is of similar magnitude with both functionals.
The bandstructure argument implies a stronger effect of the doping on the open-circuit voltage with
B3LYP; this is indeed confirmed by the computed voltage–capacity curve below, although to a smaller
degree than suggested by the bandstructure. However, in this case the bandstructure argument is less
directly applicable than in the case of pristine C60; the bond Li–C59N is less ionic, and we could observe
covalent bond formation between Li and N, as shown in Figure 2. This is similar to Na–N covalent
bond formation previously observed in disodium pyridine dicarboxylate [36,37]. A critical difference
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between B3LYP and PBE in this case is due to the fact that Li attachment in this model corresponds to
going from a state with two unpaired electrons on each component (well-separated Li and C59N) with
negligible exchange energy to a singlet state of C59N stabilized by contributions from exact exchange
in the case of B3LYP but not PBE. We therefore expected a stronger open-circuit voltage increase with
B3LYP than with PBE, which is indeed what we compute below with Equation (2).
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Figure 1. Energies of selected molecular orbitals (MOs) of C60, C59N, C59B and corresponding molecules
with one Li attachment computed with B3LYP and PBE functionals. The filled symbols denote occupied
MOs and the empty ones unoccupied MOs. For open-shell cases, both alpha (left) and beta (right) spin
channel MOs are shown.
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Figure 2. Highest occupied molecule orbital (HOMO), lowest unoccupied molecular orbital (LUMO)
of C60 and the orbital occupied by the Li valence electron in Li–C60, Li–C59N, and Li–C59B, as well
as charge density difference map ∆ρ showing bond formation between Li and N dopant. Results of
B3LYP calculations are shown, those with PBE are visually similar. Isosurface values are 0.02 e1/2/Å3 for
orbitals and 0.005 e1/2/Å3 for the charge density difference map. The atomic color scheme is C—brown,
N—grey, B—green, Li—light green.
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In the case of boron doping, substitutional B leads to the appearance of an unoccupied state in
the gap and of a SOMO derived from a half-occupied C60 HOMO. Upon Li attachment, this state is
strongly stabilized forming a doubly occupied C60 HOMO-like orbital. Valence electron of Li thus
occupies a state by 2.17 eV lower vs. isolated atom with B3LYP and by 2.11 eV lower with PBE. The
effects of B doping on the open-circuit voltage are expected to be strong and of similar magnitude with
both functionals, by the valence bandstructure argument. We indeed find below that they were strong
and similar albeit smaller than 2 V due to electron correlation and other effects. The different effect
of the hybrid vs. GGA functional here is explained by the fact that with n-doping by nitrogen, the
energy of the orbital occupied by the Li valence electron is in the gap and much above the C60 HOMO
and could be stabilized by exact exchange contributions, while with p-doping by boron, it is near C60

HOMO with a relatively high density of states (HOMO to HOMO-4 of C60 have similar energies shown
as one merged bar in Figure 1) and likely cannot be stabilized further than the top of the valence band
due to electron correlation effects.

3.2. Formation Energies and Voltage–Capacity Curves

The formation energies of the lowest energy Lin–C60/C59N/C59B complexes are shown in Figure 3.
The corresponding voltage–capacity curves are shown in Figure 4. The curves are down-shifted
vs. experiment [2] on the order of 1 V due to the neglect of effects due to molecular packing in a
solid [10,36–38,42]. Of course, any measured voltage plateaus and CV peaks may also be sloped and
smeared due to the effect of other cell components, such as resistance. We focus on the comparison
of doped and undoped cases. For undoped C60, B3LYP predicts an almost flat curve (plateaus at
−0.19 V up to Li4C60 and −0.22 V thereafter) at around −0.2 V up to Li12C60. PBE predicts a plateau
near 0 up to Li3C60 followed by a plateau at −0.13 V up to Li12C60, suggesting a theoretical capacity of
446 mAh/g. The two functionals, in spite of resulting in significantly different electronic structures, end
up predicting voltage–capacity curves differing only on the order of 0.1 V. This is rationalized in the
proceeding section.
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Ef for each concentration are plotted. The line connects the stable phases (filled points) during Li
attachment, forming a convex hull.
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Figure 4. Voltage–capacity curves estimated for lithium attachment to molecular C60, C59N and C59B
computed with B3LYP (a) and PBE (b) functionals.

The final state of charge with n = 12 is in decent agreement with the experiments of [2]. The
computed curve for C60 shows a drastic drop after that point which corresponds to a sudden change in
the degree of ionization of Li. We use the degree of ionization to call the final state of charge expected
in an experiment. Table 1 lists Bader charges on Li in Lin–C60/C59N/C59B. For attachment up to a dozen
Li per C60, all Li atoms are practically fully ionized, with Bader charges on the order of 0.9 |e| for all
Li. Beyond n = 12, some Li atoms show a markedly lower degree of ionization, this point correspond
to a down-step in the voltage–capacity curve in Figure 4. This behavior is similar with B3LYP and
PBE. This is therefore the computed final state of charge. With N doping, the drop in the degree of
ionization starts a little earlier and with B doping a little later, as is expected with an electron rich
n-doped system and an electron-deficient p-doped system, respectively. Equation (2) predicts a similar
theoretical capacity for C59N as for C60 but a slightly larger capacity for C59B (Figure 4).
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Table 1. Bader charges on Li atoms for attachment of different numbers of Li atoms to C60, C59N, and
C59B computed with B3LYP and PBE functionals. Average charge per Li is given when the charges are
similar among Li atoms, and the charge of the last Li attached is shown after “/” when it is significantly
different from the average of charges of all other Li atoms.

Bader
Charge, |e|

B3LYP PBE

C60 C59N C59B C60 C59N C59B

1 Li 0.91 0.90 0.90 0.90 0.90 0.90
2 Li 0.90 0.90 0.90 0.90 0.90 0.89
3 Li 0.90 0.89 0.89 0.90 0.90 0.89
... ... ... ... ... ... ...

12 Li 0.86 0.85/0.34 0.86 0.86 0.84/0.45 0.86
14 Li 0.84/0.59 0.85/0.74 0.84/0.62 0.85/0.74

The attachment of multiple Li atoms to C60/C59N/C59B corresponds to occupation of a number of
unoccupied molecular states equal to the number of Li atoms, as can be seen from the PDOS plots
in Figure 5. While for attachment of first Li atoms, there are no significant contributions from Li to
the occupied states, for attachment of multiple Li atoms, such contributions are notable, indicating a
significant degree of hybridization. Most importantly, any effect of doping is limited to the initial stage
of lithiation and had negligible effect on the rest of the voltage–capacity curve responsible for most
of the useful specific capacity. There is a strong increase of the voltage for first Li attachment, on the
order of 1.5 V for boron doping, with both functionals, as expected from the bandstructure. A smaller
increase, on the order of 0.3 V with both functionals, is computed for nitrogen doping. There is a minor
effect for the second attached lithium, and no significant effect on the bulk of the plateau extending to
n = 12.

4. Conclusions

We performed a DFT analysis of storage of multiple Li atoms at C60 and n- and p-doped C60 (C59N
and C59B, respectively). We used a molecular model which allowed us to compare the mechanism of Li
storage, i.e., electronic structure changes induced by lithiation, between a hybrid (B3LYP) and a GGA
(GGA) functional and among C60, C59N, and C59B. While the measured voltage–capacity curve for
undoped C60 is available in the literature [2], we predict the overall shape of the voltage capacity curve
expected in an experiment with C59N and C59B. We predict that a moderate increase in the voltage
with C59N and a strong (>1 V) increase with C59B vs. undoped C60 will be observed for the initial
part of the voltage–capacity curve only. We predict that no significant changes will be observed for
the bulk of the voltage–capacity curve responsible for most of the reversible capacity. We predict a
slight increase of theoretical capacity (on the order of 15%) with B doping. That is, contrary to small
molecules, single atom n- and p-doping of C60 will not lead to practically useful modulation of the
voltage–capacity curve.

We observed differences in the electronic structure changes due to Li attachment between B3LYP
and PBE functionals, and these changes were also different between n- and p-doping. Specifically,
the exact exchange contribution much stabilizes the gap state formed by Li s electron donation to
the SUMO of C59N, while with PBE this state is slightly destabilized, leading to a stronger bump to
the open-circuit voltage with B3LYP. In contrast, with p-doping, the orbital at the top of the valence
band occupied by the Li electron does not benefit from the extra stabilization, leading to a similar in
magnitude bump to the open-circuit voltage with both functionals.

B3LYP and PBE functionals, in spite of resulting in significantly different electronic structures, end
up predicting voltage–capacity curves differing only on the order of 0.1 V. This was rationalized based
on bandstructure changes induced by lithiation. On one hand, this result is good news for solid-state
modeling where PBE functionals remain the most practical solution, even though the charge transfer
nature of the Li–host material interactions makes desirable the inclusion of exact exchange; on the other
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hand, our results also show that this apparent similarity in voltages hides significant (quantitative
and qualitative) differences in electronic structure changes induced by Li attachment. Important
mechanistic details could therefore be missed even with a quantitatively accurate voltage curve.

The presence of the dopant atoms is expected to significantly increase the voltage only up to
states of charge where the number of attached Li is just sufficient to fill the empty states created by
the dopants [1]. We therefore expect that even with fullerenes with a higher heteroatom content such
as C57N3 [53] only a small part of the voltage–capacity curve will be modulated. The present model
considered that C60 and doped C60 molecules would largely preserve their structure and electronic
properties in solid state, which is true for vdW (van der Waals) crystals of molecular fullerenes [54,55].
In the future, however, electrochemically induced dimerization of C60 and dimerization of C59N, which
are known to occur, should also be explored [56,57].Materials 2019, 12, x FOR PEER REVIEW 9 of 12 
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