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Abstract

Objective

Efforts directed at mitigating neurological disability in preterm infants with intraventricular hem-

orrhage (IVH) and post hemorrhagic hydrocephalus (PHH) are limited by a dearth of quantifi-

able metrics capable of predicting long-term outcome. The objective of this study was to

examine the relationships between candidate cerebrospinal fluid (CSF) biomarkers of PHH

and neurodevelopmental outcomes in infants undergoing neurosurgical treatment for PHH.

Study design

Preterm infants with PHH were enrolled across the Hydrocephalus Clinical Research Net-

work. CSF samples were collected at the time of temporizing neurosurgical procedure (n =

98). Amyloid precursor protein (APP), L1CAM, NCAM-1, and total protein (TP) were com-

pared in PHH versus control CSF. Fifty-four of these PHH subjects underwent Bayley

Scales of Infant Development-III (Bayley-III) testing at 15–30 months corrected age. Con-

trolling for false discovery rate (FDR) and adjusting for post-menstrual age (PMA) and IVH

grade, Pearson’s partial correlation coefficients were used to examine relationships

between CSF proteins and Bayley-III composite cognitive, language, and motor scores.
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Results

CSF APP, L1CAM, NCAM-1, and TP were elevated in PHH over control at temporizing sur-

gery. CSF NCAM-1 was associated with Bayley-III motor score (R = -0.422, p = 0.007, FDR

Q = 0.089), with modest relationships noted with cognition (R = -0.335, p = 0.030, FDR Q =

0.182) and language (R = -0.314, p = 0.048, FDR Q = 0.194) scores. No relationships were

observed between CSF APP, L1CAM, or TP and Bayley-III scores. FOHR at the time of tem-

porization did not correlate with Bayley-III scores, though trends were observed with Bayley-

III motor (p = 0.0647 and R = -0.2912) and cognitive scores (p = 0.0506 and R = -0.2966).

Conclusion

CSF NCAM-1 was associated with neurodevelopment in this multi-institutional PHH cohort.

This is the first report relating a specific CSF protein, NCAM-1, to neurodevelopment in

PHH. Future work will further investigate a possible role for NCAM-1 as a biomarker of

PHH-associated neurological disability.

Introduction

Post-hemorrhagic hydrocephalus (PHH) of prematurity is the most common cause of pediat-

ric hydrocephalus in North America [1, 2] and requires complex, lifelong neurosurgical care.

Moreover, PHH carries a substantial risk of neurological disability, with 85% of affected chil-

dren experiencing cognitive deficits and 70% suffering motor deficits [3–5]. Despite these

risks, there is no consensus regarding the treatment of PHH [6]. Investigators in the field con-

tinue to explore management strategies to mitigate neurological disability [7–9], though such

efforts have been limited in large part due to a dearth of quantifiable PHH metrics capable of

predicting post-surgical neurodevelopmental outcomes.

Neurosurgical management strategies for PHH in preterm infants may be broadly consid-

ered as temporizing procedures [ventricular reservoirs (RES), ventriculo-subgaleal shunts

(VSGS)] and permanent procedures [cerebrospinal fluid (CSF) shunts, endoscopic third ven-

triculostomy (ETV) +/- choroid plexus cauterization (CPC)]. There is wide variability in clini-

cal pediatric neurosurgical practice in the timing and use of these procedures, with few Level I

studies [10–17] and most other studies (Level II-III) focusing on surgical parameters rather

than neurodevelopmental outcomes [1, 6]. More recently, there has been increased attention

on neurodevelopment, though findings regarding the role of surgical intervention on out-

comes are mixed [7–9, 18].

Cerebrospinal fluid biomarkers have been shown to accurately reflect real-time pathophysi-

ology in a number of neurological diseases [19–25], including hydrocephalus [26]. While

many CSF proteins have been investigated as candidate biomarkers of PHH [26, 27], a recent

data-driven proteomics approach, based on strength of statistical association and effect size,

implicated the protein mediators of neurodevelopment [28] and ventricular zone biology [29]

amyloid precursor protein (APP), neural cell adhesion molecule 1 (NCAM-1), and L1 cell

adhesion molecule (L1CAM) as candidate CSF biomarkers of neurodevelopment/neural

injury in PHH. Subsequent studies have further supported the relationships of CSF APP,

NCAM-1, and L1CAM to ventricular size and intracranial pressure, surrogates of PHH sever-

ity, and the responsiveness of these CSF biomarkers to neurosurgical treatment [30, 31].
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The objective of the current study was to investigate the associations between the levels of

CSF APP, NCAM-1, and L1CAM at the time of temporizing neurosurgical procedure, ie prior

to PHH treatment, and neurodevelopmental outcome in PHH. To this end, CSF samples and

clinical data were collected from consenting patients at participating Hydrocephalus Clinical

Research Network (HCRN) sites, and CSF APP, NCAM-1, and L1CAM levels were related to

neurodevelopmental outcomes measured using the Bayley Scales of Infant Development-III

(Bayley-III) obtained in these same subjects at 15–30 months corrected age.

Materials and methods

Research subjects

At the inception of the CSF Biomarkers of PHH study, the HCRN comprised 7 centers, all of

which participated in this study: Vanderbilt University/Monroe Carell Jr. Children’s Hospital,

University of Alabama-Birmingham/Children’s of Alabama, University of Utah/Primary Chil-

dren’s Hospital, University of Toronto/The Hospital for Sick Children, Baylor University/

Texas Children’s Hospital, University of Pittsburgh/Children’s Hospital of Pittsburgh, and

Washington University/St. Louis Children’s Hospital. Each site maintained their own institu-

tion-specific Institutional Review Board approval for the study. Additionally, approval from

the Washington University Human Research Protection Office (HRPO) was acquired for the

multicenter CSF repository and the analysis of CSF itself (Washington University (WU)

HRPO #s 201203121). Screening and enrollment of patients at each site was performed by par-

ticipating neurosurgeons and local HCRN coordinators using the following inclusion/exclu-

sion criteria: inclusion criteria: preterm neonates� 34 weeks estimated post-menstrual age

(PMA) with birth weight < 1500 grams, Grade III or IV intraventricular hemorrhage (IVH),

frontal occipital horn ratio (FOHR)�0.50, and>72 hour life expectancy, admitted to an

HCRN Clinical Center prior to surgical intervention for PHH; exclusion criteria: primary care-

giver refusing participation. Written consent was obtained from the parents or guardians of

the children who served as subjects of the study. This study ran in parallel with (though lagged

by 10 months) the HCRN study Shunting Outcomes in Post-Hemorrhagic Hydrocephalus
(SOPHH; HRPO # 201105111) and thus followed standardized SOPHH parameters for PHH

diagnosis and treatment, as previously described [1]. Of note, 11 subjects were enrolled at the

lead site (WU) for the current study prior to the initiation of SOPHH; subject data points and

CSF sample acquisition for these 11 subjects were identical to subjects enrolled through

SOPHH.

Acquisition of biospecimens

CSF was collected in the operating room at time of temporizing neurosurgical procedure

(RES, VSGS, or hybrid RES/VSGS) following a standardized protocol (S1 File). Briefly, CSF

was obtained directly from the ventricular catheter and distributed into screw-top microcen-

trifuge tubes labeled with an HCRN subject ID number for linkage to subject data in the

HCRN Core Data Project. The CSF sample was then immediately transported on ice to a

-80˚C freezer for storage. Every 4–6 months, each site shipped their CSF samples on dry ice to

the HCRN CSF Repository housed at the WU Tissue Procurement Core, where the samples

were stored at -80˚C until experimental analysis. This standardized protocol for CSF sample

acquisition, preparation, processing, shipping, and storage allowed for consistency across

HCRN sites, where clinical and laboratory facilities were not always co-localized. Thus, while

ready accesss to centrifuges was limited at some sites, -80˚C freezers were available at all cen-

ters, allowing freezing of CSF samples immediately on acquisition. This streamlined protocol

also enabled acquisition of CSF samples in the evenings and on weekends, when many such
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cases are performed. Protocol compliance was recorded; two samples were removed from the

analysis due to protocol irregularities. For comparison purposes, 16 CSF samples from age-

matched preterm infants with no known neurological injury were acquired from the WU pedi-

atric CSF repository (HRPO #201203126). The latter samples, considered Controls, were

acquired via lumbar puncture for sepsis evaluation where the cultures remained negative.

CSF protein measurements

Commercially available Enzyme-Linked ImmunoSorbent Assays (ELISAs) were used to mea-

sure the concentration of CSF APP, NCAM-1, L1CAM. Sandwich Duoset ELISA development

systems (R&D Systems, catalog #DY-850, and DY-2408 respectively; Minneapolis, MN) were

used to measure APP and NCAM-1 as previously described [28]. L1CAM levels were mea-

sured using a commercially available kit (DRG, catalog #EIA5074; Mountainside, NJ), also

described previously [31]. Although the CSF matrix is complex, these ELISA kits have been

used previously by our group and others to measure these specific analytes in CSF and in PHH

and other, non-hemorrhagic hydrocephalus etiologies [30–34]. While possible that the CSF

matrix could affect the performance of the ELISAs, our group has previously validated these

measurements against Western blots and MS/MS proteomics, where PHH samples and pro-

tein-spiked samples were analyzed [28]. In all instances, ELISAs were run according to the

manufacturer’s protocol. Briefly, plates were coated with a primary capture antibody and

blocked prior to incubation with CSF. A secondary antibody was added, followed by streptavi-

din-HRP and tetramethylbenzidine. The ensuing chemical reaction was then stopped with sul-

furic acid. The plates were washed between each of the steps except the final one. All CSF

samples were run in duplicate, and the 96-well plates were read at 450nm on a Versamax

microplate reader (Molecular Devices; Sunnyvale, CA). Protein concentrations were then

determined using a four-parameter logistic standard curve as detailed by the manufacturer.

Total CSF protein (TP) was estimated using the Pierce Bicinchoninic Acid protein assay kit

(Thermo Scientific; Waltham, MA) according to the manufacturer’s protocol and as described

previously [31]. Provided bovine serum albumin standards and CSF samples were placed into

microplate wells in duplicate; the working reagent was then added and the plate was incubated

at 37˚C for 30 minutes. The plate was then cooled to room temperature and the absorbance

was measured at 562nm on a plate reader. Total CSF protein levels were measured using a

four-parameter logistic standard curve. In order to confirm that cellular lysate/debris was not

impacting ELISA results, CSF protein concentrations from 10 PHH age- and ventricular-size

matched CSF samples collected at the lead site and processed by centrifugation at 1000g/2500

rpm for 6 minutes were compared with the cohort of 23 PHH CSF samples from the lead site

HCRN cohort (no centrifugation). No differences were noted in any of CSF proteins between

the cohort of samples that had been centrifuged prior to freezing and storage versus those in

the lead site HCRN cohort: NCAM-1 (474±132 ng/ml vs 469±301 ng/ml, p = 0.4797), APP

(2794±1785 ng/ml vs 2172±1430 ng/ml, p = 0.1478), L1CAM (541±448 ng/ml vs 445±307 ng/

ml, p = 0.2369), or TP (3101±1992 ug/ml vs 3870±4035 ug/ml, p = 0.2866).

Neurodevelopmental testing

Trained psychometricians performed Bayley Scales of Infant Development-III (Bayley-III)

testing at 15–30 months corrected age. Bayley-III is a standard, validated testing paradigm to

assess neurobehavioral development in infants and toddlers [35]. The cognitive subtest

assesses sensorimotor development, object exploration, manipulation, and relatedness, mem-

ory and concept formation, while the motor subtest assess fine and gross motor function, and

the language subtest assesses receptive and expressive language development. Composite

PLOS ONE CSF Biomarkers in Post-Hemorrhagic Hydrocephalus

PLOS ONE | https://doi.org/10.1371/journal.pone.0247749 March 10, 2021 4 / 16

https://doi.org/10.1371/journal.pone.0247749


scores were derived from sums of the subtest scaled categories and used to compare the sub-

ject’s performance with age-matched, typically developing children.

Across the entire study cohort (n = 124), 31.5% (39/124) of subjects had Grade III IVH,

while 68.5% (85/124) had Grade IV IVH; 41% (16/39) of subjects with Grade III IVH and

44.7% (38/85) of those with Grade IV IVH underwent for Bayley testing (p = 0.69).

Statistical analysis

Continuous variables are summarized as mean ± standard deviation. Categorical variables are

shown using counts and percentages. The relationships between CSF sample type (control vs

PHH) and CSF protein concentrations were assessed using the Wilcoxon rank-sum test.

Spearman’s correlation coefficient was used to assess relationships between FOHR and CSF

protein concentrations. Pearson partial correlation coefficient, adjusting for PMA at birth and

IVH grade, was used to analyze the relationship between CSF protein values and Bayley-III

scores. Because there were a substantial number of statistical tests between the CSF proteins

and Bayley-III scores, a linear setup method for controlling false discovery rate (FDR) was

used to adjust the p-values [36]. As such, results were considered significant when both

p<0.05 and Q (FDR) <0.20.

Results

Subject characteristics

A total of 124 subjects were enrolled in the current study across seven HCRN centers and 4

years (Table 1). The mean PMA at birth for the study cohort was 25.48 ± 2.08 weeks, while

birthweight was 859.11 ± 250.64g (Table 2). Intraventricular hemorrhage was Grade III in 39

(31.5%) and Grade IV in 85 (68.6%). Of the 124 enrollees, 104 underwent temporizing treat-

ment via implantation of RES (54, 51.9%), VSGS (44, 42.3%), or hybrid RES/VSGS (6, 5.8%) at

a mean PMA of 31.00 ± 3.00 weeks. CSF samples were available from 98 of these temporizing

procedures. Occipitofrontal circumference was 28.7 ± 3.98 cm at the time of temporizing

intervention, while FOHR was 0.7 ± 0.07. At the time of data analysis, 119/124 subjects were

eligible for Bayley-III testing, with 57 (48%) actually tested (Table 1). A total of 54 subjects who

Table 1. Subject data including temporizing surgeries, cerebrospinal fluid samples, and neurodevelopmental testing by Hydrocephalus Clinical Research Network

site.

Subjects Enrolled Temporizing Procedure CSF Sample Available Eligible for Bayley-III Bayley-III Completed

HCRN Site

Site A 10 7 7 10 7

Site B 24 23 23 24 13

Site C 26 26 26 21 15

Site D 6 5 3 6 1

Site E 4 3 1 4 0

Site F 40 29 28 40 17

Site G 14 11 10 14 4

Overall 124 104 98 119 57

Temporizing procedures included ventricular reservoirs (RES), ventriculosubgaleal shunt (VSGS), or hybrid RES/VSGS devices. Of note, 54 subjects had both CSF

samples and Bayley-III scores available for review. Bayley-III: Bayley Scales of Infant Development-III; CSF: cerebrospinal fluid; HCRN: Hydrocephalus Clinical

Research Network.

https://doi.org/10.1371/journal.pone.0247749.t001
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underwent Bayley-III testing had CSF samples from their temporizing procedure available for

analysis.

As noted above, 20/124 subjects did not receive a temporizing procedure, and instead

underwent permanent CSF diversion procedure [8 shunt cases, 12 endoscopic third

ventriculostomy ± choroid plexus cauterization (ETV±CPC) cases] at 40.97 ± 5.13 weeks PMA

with FOHR = 0.66 ± 0.09. Surgical outcomes for those with temporizing procedures (conver-

sion to shunt or ETV ± CPC) and those with permanent CSF diversion procedures (shunt mal-

function or ETV±CPC failure, infection, additional procedures) are the subject of a separate,

forthcoming study.

Cerebrospinal fluid proteins as biomarkers of PHH

CSF levels of APP, L1CAM, NCAM-1, and TP were measured in 16 controls and in 98 PHH

subjects at the time of temporizing neurosurgical procedure. Each of the 3 specific CSF pro-

teins and CSF TP were elevated at the time of the temporizing procedure (Fig 1A–1D). When

comparing PHH associated with Grade III and Grade IV IVH, there were no differences in TP

(388.7± 296.38 vs 562.3± 612.40, p = 0.506), APP (2538.7± 1592.45 vs 2418.0± 1646.45,

p = 0.677), L1CAM (451.9±286.38 vs 490.4±366.52, p = 0.843), or NCAM-1 (465.8±287.60 vs

601.6±1028.06, p = 0.903). On cross-sectional analysis, no significant association was noted

between FOHR and CSF APP, L1CAM, NCAM-1, or TP (Spearman correlation p-values of

0.102, 0.182, 0.177, 0.780, respectively; Fig 2A–2D).

Relationship of CSF proteins to neurobehavioral outcome

Neurodevelopment was assessed using Bayley-III at 15–30 months corrected age in 54 subjects

who had CSF collected at their temporizing neurosurgical procedures (21 with a subgaleal

shunt, 32 with a reservoir, and 1 with a hybrid device) for PHH treatment across the HCRN

(Tables 1 and 3). Notably, this study cohort contains a subgroup of subjects from SOPHH [1];

Bayley-III results for the entire SOPHH cohort will be reported elsewhere. Consistent with

prior reports, the PHH infants in the current study exhibited poor Bayley-III results for all

Table 2. Surgical parameters for temporizing neurosurgical procedures for PHH across the Hydrocephalus Clini-

cal Research Network.

Overall

(n = 104)

Type of Temporizing Procedure

Ventriculo-subgaleal shunt 44 (42.3%)

Ventricular/Ommaya reservoir 54 (51.9%)

Hybrid RES/VSGS device 6 (5.8%)

Post-menstrual age (weeks) 31.0 ± 3.00

Birthweight (g) 859 ± 250.64

Intraventricular Hemorrhage

Grade III 35 (33.7%)

Grade IV 69 (66.3%)

Occipitofrontal circumference (cm) 28.7 ± 3.98

Frontal-Occipital Horn Ratio1 0.7 ± 0.07

1Two subjects did not have pre-operative imaging available for analysis, therefore no FOHR was measured in these

subjects. Temporizing procedures included ventricular reservoirs (RES), ventriculosubgaleal shunt (VSGS), or hybrid

RES/VSGS devices.

https://doi.org/10.1371/journal.pone.0247749.t002
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subtests, with the lowest scores observed for Grade IV IVH (Table 3). Of note, they did receive

usual neurosurgical care as expected for infants with PHH [3, 18]. No significant relationship

was identified between temporizing neurosurgical procedure type and Bayley-III cognitive,

language, or motor scores. FOHR did exhibit a trend toward association with Bayley-III motor

(p = 0.0647 and R = -0.2912) and cognitive scores (p = 0.0506 and R = -0.2966).

Fig 1. Cerebrospinal fluid amyloid precursor protein (APP), L1 cell adhesion molecule (L1CAM), neuronal cell

adhesion molecule-1 (NCAM-1), and total protein (A–D respectively) are elevated at the time of initiation of post-

hemorrhagic hydrocephalus treatment via temporizing neurosurgical procedure. For NCAM-1, in addition to the

datapoints shown, there were outliers at 2653.49 and 7725.39 ng/ml.

https://doi.org/10.1371/journal.pone.0247749.g001

Fig 2. Cerebrospinal fluid amyloid precursor protein (APP), L1 cell adhesion molecule (L1CAM), neuronal cell

adhesion molecule-1 (NCAM-1), and total protein (A–D respectively) were not associated with ventricular size in

cross-sectional analysis.

https://doi.org/10.1371/journal.pone.0247749.g002
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Relationships between CSF APP, L1CAM, NCAM-1, and TP and Bayley-III composite scores

are detailed in Table 4. Pearson partial correlation coefficients, adjusting for PMA at birth and

IVH grade, were used to analyze the relationship between CSF protein values and Bayley-III

scores. Notably, a highly significant relationship was identified between CSF NCAM-1 at tempo-

rization and Bayley-III motor score (Pearson partial correlation coefficient = -0.422, p = 0.007,

FDR Q = 0.089). A more modest relationship between CSF NCAM-1 and Bayley-III cognition

and language was also noted, but this marginally reached significance with rigorous correction

for false discovery (cognition Pearson partial correlation coefficient = -0.335, p = 0.030, FDR

Q = 0.182 and language Pearson partial correlation coefficient = -0.314, p = 0.048, FDR

Q = 0.194). Based on the relationships between FOHR and Bayley-III scores noted above, the

analyses of the NCAM-1 and Bayley-III cognitive and motor scores were adjusted for FOHR

yielding Pearson partial correlation coefficient = -0.318, p = 0.042, FDR Q = 0.194 (cognitive) and

Pearson partial correlation coefficient = -0.415, p = 0.01, FDR Q = 0.114 (motor). No significant

relationships were observed between CSF APP, L1CAM, or TP and any Bayley-III parameter.

Discussion

In recognition of substantial neurobehavioral impairments in infants with PHH, there is

increased focus on efforts directed at enhancing neurodevelopmental outcomes. One major

factor impeding advances in clinical care and clinical research in PHH is a dearth of tools

Table 3. Bayley Scales of Infant Development-III composite scores for study subjects with post-hemorrhagic

hydrocephalus across the Hydrocephalus Clinical Research Network.

Bayley Scales of Infant Development-III Subtest Composite Score

PHH PHH PHH

IVH Grade III IVH Grade IV Total

n = 16 n = 38 (n = 54)

Cognitive composite score 77.1 (19.15) 65.8 (11.51) 69.2 (14.96)

Language composite score 75.9 (20.23) 67.7 (16.66) 70.0 (17.89) #

Motor composite score 74.9 (21.72) 57.5 (12.48) 62.3 (17.22)#

Of the 54 subjects with PHH, 16 had IVH Grade III prior to PHH, while 38 had IVH Grade IV prior to PHH. The

Bayley-III scores shown are for PHH subjects and both IVH subcategories. Three subjects#, respectively, were unable

to complete all phases of testing (2 pertaining to IVH Grade III and 1 pertaining to IVH Grade IV). Composites

scores are reported as mean (standard deviation). For reference, composite scores in typically developing children are

100 for each domain.

https://doi.org/10.1371/journal.pone.0247749.t003

Table 4. Correlations between the Bayley-III cognitive, language, and motor composite scores and CSF concentration of APP, NCAM-1, L1CAM, and total protein

at the time of temporizing neurosurgical procedure.

APP L1CAM NCAM-1 Total Protein

Bayley-III Cognitive Pearson partial Correlation -0.082 -0.180 -0.335 0.021

P-value 0.606 0.253 0.030 0.893

Q-value 0.808 0.679 0.182 0.893

Bayley-III Language Pearson partial Correlation -0.047 -0.060 -0.314 -0.147

P-value 0.772 0.714 0.048 0.365

Q-value 0.843 0.843 0.194 0.679

Bayley-III Motor Pearson partial Correlation -0.095 -0.149 -0.422 -0.140

P-value 0.567 0.367 0.007 0.396

Q-value 0.808 0.679 0.089 0.679

https://doi.org/10.1371/journal.pone.0247749.t004
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capable of providing real-time input for the clinical management of PHH, from establishing

the diagnosis of PHH to the timing of intervention, monitoring of therapeutic efficacy, and

evaluating the impact of PHH treatment on long-term neurodevelopmental outcome. Such

biomarkers of PHH would also be of tremendous value in stratifying patients and estimating

long-term outcomes in clinical trials designed to establish evidence-based management

approaches for the care of infants with PHH. The current study aimed to address this critical

void by examining candidate CSF biomarkers of neurodevelopment in PHH. Notably, CSF

NCAM-1 demonstrated a highly significant association with Bayley-III motor score as well as

more modest relationships with Bayley-III cognition and language. This is the first report of a

CSF protein acquired at the time of intervention demonstrating an association with long-term

neurodevelopment in PHH. No significant relationships were observed between the other CSF

proteins studied and Bayley-III scores.

APP, L1CAM, and NCAM-1 were selected as candidate CSF biomarkers of PHH based on

a body of work drawing on findings from a seminal proteomic analysis of PHH CSF [28].

Among protein mediators of neurodevelopment in the index proteomics study, APP demon-

strated the greatest change in concentration, while L1CAM showed the highest statistical sig-

nificance [28]. NCAM-1 demonstrated both robust responsiveness and high significance.

Notably, all three of these candidate biomarkers have important roles in neurodevelopment,

but have also been implicated in neurodevelopmental and/or neurodegenerative disorders.

APP, for instance, is best known as a contributor to the pathophysiology of Alzheimer’s dis-

ease, but its primary role in brain physiology is likely in generating important neurotrophic

factors (e.g. sAPPα) for normal neurodevelopment and neuroprotection [37]. L1CAM is

essential in the migration of neural precursors, synaptogenesis, dendritic arborization, and

corticogenesis [38, 39], and mutations in L1CAM are known to cause hydrocephalus, cerebral

anomalies, spasticity, and developmental delay [40, 41]. Among other roles, the protein

NCAM-1 regulates synaptic connectivity and cortical circuit formation, and aberrations in

NCAM-1 have been implicated in neuropsychiatric diseases, including autism [42–46].

Cerebrospinal fluid APP, L1CAM, and NCAM-1 have been shown to correlate with ven-

tricular size in individual human infants with PHH [30]. Measuring the levels of each of these

biomarkers in serial CSF samples obtained from ventricular reservoirs in individual subjects,

CSF APP, L1CAM, and NCAM-1 all tracked ultrasound-based measures of ventricular size

(FOHR) in real time throughout the neonatal period, with CSF APP demonstrating the best

correlation. Preliminary data in the same report suggested that NCAM-1 may also be corre-

lated with intracranial pressure. These findings, coupled with the developmental relevance of

each of these proteins, provided the scientific premise for selecting these three candidate CSF

biomarkers of neurodevelopment in PHH.

The Bayley-III remains the gold standard for evaluating neurodevelopment in early child-

hood. The Bayley-III provides summary scores for cognition, expressive language, receptive

language, fine motor skills, and gross motor skills. While the Bayley-III is a widely accepted

tool for infants and young children, there are limitations in its application and interpretation,

as several reports have suggested that the Bayley-III may underestimate developmental delay

[47] and its fidelity in predicting long-term outcomes is debated [48]. Further work is under-

way in an ongoing HCRN randomized clinical trial (ClinicalTrials.gov Identifier:

NCT04177914) to rigorously examine the relationship of CSF NCAM-1 and neurodevelop-

ment, with formal neurobehavioral testing using additional tools for up to 5 years after hydro-

cephalus treatment.

In the current study, and similar to other recent reports in infant hydrocephalus, we

observed low performance on the Bayley-III in our participants (Table 3) [3, 7, 18, 49–52].

Consistent low performance on Bayley-III may reflect limitations in the responsiveness of this
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tool in PHH, where neurological impairments may be substantial, but it also may cause a ‘floor

effect’ and affect our ability to detect robust associations between CSF biomarkers and long-

term neurodevelopmental impairments in this population. Notably, such limitations in our

current tools provide excellent justification for additional biomarkers with enhanced respon-

siveness and long-term predictive capabilities.

Relatedly, neurodevelopmental outcomes in PHH, whether measured using Bayley-III, as

in this study, or other tools administered at later ages, would be expected to be affected by myr-

iad factors, not the least of which are those related to the IVH itself (age at the time of hemor-

rhage, size, grade, location, and laterality of hemorrhage) [3–5, 27, 53–63] and the

development of PHH requiring surgical treatment [3]. The arc of neurosurgical treatment

[temporizing treatments (RES/VSGS/hybrid; CSF volume removed), permanent treatments

(shunt/ETV-CPC), shunt infection, and the number and severity of shunt malfunctions/revi-

sions] would also be expected to impact outcomes and are the subject a forthcoming study.

Beyond IVH and PHH, other acute or chronic newborn medical illnesses, including sepsis or

other infection, chronic lung disease, nutrition, and visual or auditory deficits, also may affect

neurodevelopment. Similarly, access to physical, occupational, and other therapies would be

expected to affect neurodevelopmental trajectories. Due to sample size considerations, the

potential impact of these factors on Bayley-III composite scores was not accounted for in the

current study.

Similar to previous studies [4, 5, 27, 63], our results demonstrate higher levels of neurologi-

cal disability in PHH associated with Grade IV IVH compared with Grade III IVH. In order to

account for this difference in our analyses, we employed Pearson partial correlation coeffi-

cients, adjusting for PMA at birth and IVH grade. As differences in follow-up rates in Grade

III versus Grade IV IVH subjects could potentially introduce bias into our results, we also

examined Bayley-III testing in these two groups and found no difference in the return rate for

Bayley-III testing (p = 0.69).

Our group and others [7, 9, 64] have demonstrated that larger ventricle size at the time of

neurosurgical intervention may be associated with worse neurodevelopmental outcome,

though this remains controversial and is an area of active study [18, 64–66]. Notably, in the

current study, the FOHR at temporization was high (0.7 ± 0.07), indicating substantial ventri-

culomegaly prior to intervention. These values significantly exceed the ‘late’ criteria in the ran-

domized trial of early versus late ventricular intervention study (“ELVIS”) [8] and may have

resulted in a ‘ceiling effect,’ limiting our ability to detect relationships among CSF biomarkers

and FOHR and attenuating the strength of associations that we observed between CSF bio-

markers and outcomes (e.g. R = -0.415 for CSF NCAM-1 and Bayley-III motor score). Indeed,

the Bayley-III scores reported herein are lower than those reported in ELVIS and a few other

studies[4, 5, 63, 67, 68], though comparison to other studies is difficult due to variation in Bay-

ley testing (Bayley-II versus Bayley-III) or incomplete or aggregated data [4, 63].

The CSF samples included in this study were acquired prospectively from 7 different HCRN

sites across North America and aggregated at the HCRN PHH CSF Repository at Washington

University. The multi-institutional nature of this repository is both a significant strength and a

limitation. Despite standard operating procedures, there was likely inherent variability in the

handling, processing, storage, and shipping of CSF samples across sites. This variability

enhances the generalizability of our results but also attenuates our ability to detect and quantify

statistical relationships. To address the differences in access to research facilities across HCRN

sites, our protocol specified for freezing CSF samples immediately after acquisition. While our

quality control analysis identified no differences in the concentrations of NCAM-1, APP,

L1CAM, or TP between these HCRN samples and samples centrifuged immediatedly after

acqusition (see Methods above), it remains possible that cellular lysate or debris could have
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impacted our CSF protein analyses. Comparison of lumbar and ventricular CSF also creates a

potential confound owing to possible rostro-caudal CSF protein gradients. We have addressed

this thoroughly in prior reports [31, 34], one of which confirmed PHH-associated increases

over control in CSF APP, L1CAM, and NCAM-1 when analyzing only lumbar CSF samples (i.e.

control and PHH CSF samples were all acquired via lumbar puncture). Further, there may be

bias introduced by the variability in enrollment or selection of study participants across the

HCRN or the modest Bayley-III testing rate (47.9%). These limitations relate to variability

among HCRN centers in terms of location, practice environment, patient population, access to

Bayley-III assessments, and practical limitations in obtaining these assessments (long-distance

travel, complex chronic illnesses). As previously detailed in a comprehensive review [34], myr-

iad other candidate CSF-based biomarkers have been proposed for IVH/PHH (and hydroceph-

alus of other etiologies) for predicting clinical course and understanding the basic mechanisms

underlying the pathophysiology of IVH/PHH and associated developmental consequences.

Finally, a separate study investigating the association of CSF biomarkers with surgical parame-

ters (device malfunction, treatment failure, infection, etc.) is forthcoming.

Supporting information
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