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Abstract: The weight of skeletal muscle accounts for approximately 40% of the whole weight in a
healthy individual, and the normal metabolism and motor function of the muscle are indispensable
for healthy life. In addition, the skeletal muscle of the maxillofacial region plays an important
role not only in eating and swallowing, but also in communication, such as facial expressions and
conversations. In recent years, skeletal muscle atrophy has received worldwide attention as a serious
health problem. However, the mechanism of skeletal muscle atrophy that has been clarified at present
is insufficient, and a therapeutic method against skeletal muscle atrophy has not been established.
This review provides views on the importance of skeletal muscle in the maxillofacial region and
explains the differences between skeletal muscles in the maxillofacial region and other regions. We
summarize the findings to change in gene expression in muscle remodeling and emphasize the
advantages and disadvantages of denervation-induced skeletal muscle atrophy model. Finally, we
discuss the newly discovered beneficial effects of natural compounds on skeletal muscle atrophy.

Keywords: skeletal muscle; maxillofacial muscle; atrophy; denervation; muscle homeostasis; natural
compounds; royal jelly; geranylgeraniol

1. Introduction

Skeletal muscle atrophy is the loss of the volume of skeletal muscle, leading to the
weakness of muscle and causes disability. Skeletal muscle atrophy is known to be caused
by immobility, aging, malnutrition, medication, or a wide spectrum of injuries or diseases
that impact the nervous or musculoskeletal system. Sarcopenia was firstly described in
1989 as an age-related decrease in lean body affecting nutritional status, mobility, and
independence [1]. Now, sarcopenia is defined as a progressive and generalized skeletal
muscle disorder which involves the accelerated loss of muscle mass and function [2]. Thus,
the definition of sarcopenia includes muscle loss related to physical inactivity, chronic
disease, and malnutrition [3]. When age-related, it is known as primary sarcopenia. On
the contrary, sarcopenia due to chronic disease or loss of mobility is called as secondary
sarcopenia. However, this distinction is sometimes difficult because older patients some-
times present with both [4]. Sarcopenia is prevalent worldwide [5] and is recognized as a
disease by the World Health Organization and included in the International Classification
of Disease (ICD code M62.8) [6]. Therefore, skeletal muscle research has been actively
conducted in recent years. However, therapeutic methods have not been established for
skeletal muscle atrophy.

Sarcopenia has also occurred in the muscle of the head, neck, and maxillofacial
region. Oral frailty, which impairs oral function, induces a high mortality rate [7]. The
concept of oral frailty partially overlaps with sarcopenia of the muscle related to speaking,
chewing, and swallowing [8]. In addition, facial muscle abnormalities cause facial and
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systemic disorders because skeletal muscles are involved in normal maxillofacial growth
and malocclusion [9,10]. It is interesting to note that the developmental process and gene
expression of facial muscles are different from that of other muscles [11–13].

Here, we summarize the muscle specificity in the maxillofacial region and emphasize
the unique features of the maxillofacial region. We also explain the molecular mechanism
of muscle development, anabolism, and catabolism. In addition, we focus on the sciatic
nerve denervation model as a skeletal muscle atrophy model. Finally, we introduce
foods that have been shown to be effective against skeletal muscle atrophy and discuss
their usefulness.

2. Maxillofacial Problems Caused by Muscle Atrophy

Sarcopenia affects the maxillofacial region. Maxillofacial problems caused by muscle
atrophy include oral frailty, malocclusion, and inhibition of normal growth and development.

In recent years, attention has been paid to the decline in oral function known as oral
frailty; muscle weakness in the maxillofacial region can affect dysphagia and communica-
tion, while oral frailty has also been reported to have a high mortality rate [7].

Maxillofacial muscles and dentition are closely related. The dentition is aligned in
accordance with the muscle pressure exerted by the orbicularis oris, buccinator, and tongue
muscles [10]. Thus, when muscle pressure imbalances occur, malocclusion occurs (Figure 1).

Figure 1. Relationship between dentition and facial muscles. (A) The muscles run vertically and hori-
zontally on the face. (B) The teeth move to the position where the pressure is balanced. The dentition
receives muscle pressure medially from the tongue muscles and laterally from the orbicularis oris
and buccinator muscles. Orthodontists perform myofunctional therapy because abnormal oral habits
(e.g., infant-type swallowing and tongue thrusting habit) adversely affect the dentition.

For example, patients with muscular dystrophy have a lower tongue position than
that seen commonly because of weakness of the lingual muscles. As a result, the maxillary
arch narrows because of reduced tongue pressure. In addition, weakness of the masticatory
muscles causes the mandible to lower downwards, resulting in supra-eruption of the
molars. Therefore, it causes an anterior open bite.

Muscle weakness adversely affects the growth and development. Moss proposed
functional matrix theory, which states that non-bone tissue induces bone growth in facial
growth [9]. The growth of the membranous neurocranium and the naso-maxillary complex
is regulated by environmental factors such as organ position and size, as well as the influ-
ence of soft tissues and teeth. Conversely, cartilage growth in the cartilage neurocranium,
nasal septum, and mandibular condyle is highly regulated by genetic factors. A normal
functional matrix is essential for obtaining a normal morphology. Craniofacial muscle
weakness during growth hinders growth and development. In progressive facial hemia-
trophy, muscle atrophy occurs unilaterally, resulting in facial asymmetry. Even after the
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growth is complete, deformation of the mandible can be caused by a mechanical imbalance
in the masticatory muscles [14–16]. Moreover, masseter muscle removal [17] and masseter
muscle damage [18] can cause mandibular asymmetry.

Muscles are also important factors in patients with jaw deformities. Patients with
skeletal mandibular protrusion have low levels of myosin heavy chain (MyHC) expres-
sion [19], which may be attributed to the small occlusal contact points in patients with
mandibular protrusion. Muscle effects have also been suggested to result in relapse after
orthognathic surgery [20–24], however in contrast, it is interesting that the movement of
bone fragments causes a change in the occupancy of the MyHC isoform. The masseter mus-
cle usually has a high proportion of type I fibers; after orthognathic surgery, the proportion
of type I fibers decreased and that of type II fibers increased [25–27]. Similarly, type I to
type II conversions also occur at limb muscles due to severe deconditioning or spinal cord
injury [28,29]. Decreased use of skeletal muscle has been reported in switching muscle fiber
types from slow to fast [28], and it is difficult to determine whether it results from damage
to the skeletal muscles, innervation caused by orthognathic surgery, or from intermaxillary
fixation after orthognathic surgery. Interestingly, the gene expression level changes depend-
ing on the movement direction of the mandible (anterior or posterior movement) [20,21].
Muscle extension is thought to be caused by the movement of bone fragments.

Therefore, prevention and early treatment of muscle atrophy are required because
muscle properties affect maxillofacial morphology and function. However, there are many
unclear points about muscular atrophy in the maxillofacial region, and further research
is needed.

3. Difference in Gene Expression between Facial and Other Muscles

In recent years, it has become clear that facial muscles and trunk muscles have sig-
nificantly different properties even if they are the same type of muscle. In development,
the facial muscles originate from the branchial arch, whereas the trunk muscles originate
from the somites. In addition, the genes expressed in facial muscles and trunk muscles are
different. Myogenic factor 5 (Myf5), myoblast determination protein 1 (MyoD), and paired
box protein 7 (Pax7) are expressed in both muscles, but mesoderm posterior 1 (Mesp1)
is found in facial muscles and Pax3 is found in trunk muscles [13]. However, expression
of both Mesp1 and Pax3 has been confirmed in the muscles of tongue. Further, the gene
expression of the facial muscles differs depending on the site, such as Myf5 in the eye
muscles and Myf5/insulin gene enhancer protein (ISl1) in the masticatory muscles [30].

The reaction to muscle atrophy differs between facial and somatic muscles. It is known
that in mature muscle tissue, facial muscles are less prone to cause muscle atrophy than
somatic muscles in patients with muscular dystrophy. It had been thought that this is
because the muscles of the face frequently contract to breathe and swallow. However, it
was suggested that resistance to skeletal muscle atrophy may differ. Yoshioka et al. showed
differences in muscle atrophy and regenerative ability between facial and trunk muscles
using a skeletal muscle atrophy model [31]. In addition, the composition of the MyHC
isoforms differs. It has been shown that expression of MyHC 2a is not observed in the
masseter muscle in adult mice [32]. The characteristics of MyHC isoform are summarized
in Table 1 [33–35].
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Table 1. Comparison of myosin heavy chain isoform.

Genes Proteins Characteristics

MYH 1 MyHC 2x Fast type 2x fibers

MYH 2 MyHC 2a Fast type 2a fibers

MYH 3 MyHC EMB Developing muscle, Extraocular muscles

MYH 4 MyHC 2b Fast type 2b fibers

MYH 6 MyHC α Heart and jaw muscles

MYH 7 MyHC β Heart and slow muscles, type 1 fibers

MYH 7b MyHC slow tonic Extraocular muscles

MYH 8 MyHC NEO Developing muscle, expression in masseter muscles

MYH 13 MyHC EO Extraocular muscles

MYH 15 MyHC 15 Extraocular muscles

MYH 16 MyHC 16 Jaw muscles (in human, translation is blocked)
Each Myosin heavy chain (MyHC) isoform has own characteristics and is different to expression depending on
the location and timing of muscles.

In human masseter muscles, MyHC 2x are high expression. Interestingly, MyHC NEO
is expressed in adult human masseter muscles [33]. In the trunk and limbs, MyHC NEO
is usually expressed only during development and regeneration [33]. Satellite cells and
muscle tissue stem cells are functionally heterogeneous populations in both masseter and
limb muscles [36].

Due to differences in mechanism and characteristics, a site-specific approach may be
required for muscle treatment. Research on the difference between facial muscles and trunk
muscles is desired.

4. Molecular Mechanism of Muscle Homeostasis
4.1. Intracellular Signaling of Skeletal Muscle Anabolism

Insulin-like growth factor 1 (IGF-1) is mainly secreted from the liver and promotes the
growth and proliferation of skeletal muscles. The mammalian target of rapamycin (mTOR)
is a protein that plays a central role in the control of catabolism and anabolism, such as
translation of mRNA, promotion of cell growth, and suppression of autophagy. There
are rapamycin-sensitive mTOR complex 1 (mTORC1) that binds Raptor and rapamycin-
non-sensitized mTOR complex 2 (mTORC2) that binds Rictor [37]. Protein kinase B (Akt)
indirectly stimulates mTORC1. mTORC2 is required for phosphorylation of Akt [38].
Binding IGF-1 to the IGF-1 receptors leads to activation of mTORC1 via intracellular phos-
phoinositide 3-kinase (PI3K) and Akt. Conversely, when energy decreases, that is, when
adenosine monophosphate (AMP) concentration increases, AMP-activated protein kinase
(AMPK) is activated and protein synthesis is suppressed by negatively controlling mTORC1
activity [39]. mTORC1 promotes protein synthesis by suppressing eukaryotic translation
initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and activating ribosomal protein S6
kinase-1 (S6K1), which regulate mRNA translation [40]. 4EBP1 inhibits eIF4E activity.

Satellite cells are the most abundant tissue stem cells resided in skeletal muscle; they
are generally recognized for their contributions to regeneration, hypertrophy, and main-
tenance of muscle mass during the life span [41]. Pax7 is highly expressed in quiescent
satellite cells, and MyoD expression is increased when cells are activated. Some satellite
cells self-replicate and return to the quiescent phase, while others become myoblasts that ex-
press myogenin and cause muscle differentiation. Satellite cells are necessary for postnatal
skeletal muscle growth, and trigger cytokines are secreted not only by inflammatory cells
but also by muscle fibers, blood vessels, and motor neurons [42]. The trigger molecule has
various factors such as IGF-1, interleukin-6 (IL-6), transforming growth factor β (TGF-β),
and fibroblast growth factor (FGF), and is controlled intricately. IL-6 stimulation in skeletal
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muscle increases cyclin D1 expression via janus kinase 2 (JAK2)/signal transducer and
activator of transcription 3 (STAT3) signaling, while IL-6, which is excessive due to chronic
inflammation, suppresses satellite cell proliferation via JAK2/STAT3 signaling [43].

4.2. Intracellular Signaling of Skeletal Muscle Catabolism

Protein degradation system in muscle cells include the lysosomal system, the calpain
system, and the ubiquitin-proteasome system. The ubiquitin-proteasome system consists of
a ubiquitination system, which is comprised of ubiquitin activating enzyme (E1), ubiquitin
binding enzyme (E2), and ubiquitin ligase (E3), and the 26S proteasome system that
decomposes poly-ubiquitin [44]. The muscle-specific E3 ubiquitin ligases atrogin-1 and
muscle ring finger 1 (MuRF-1) are upregulated in various muscle atrophy models. Forkhead
box O (Foxo) is known as the gene that regulates the expression of atrogin-1 and MuRF-1.
Foxo1 transgenic mice show decrease in muscle mass [45]. Atrogin-1 null mice and MuRF-1
null mice have been shown to suppress denervation-induced skeletal muscle atrophy [46].

Akt, which is activated by IGF-1, phosphorylates Foxo and suppresses the transcrip-
tional activity of Foxo. Conversely, AMPK phosphorylates different sites of Foxo and
increases the transcriptional activity [47]. The nuclear factor kappa-light-chain-enhancer
of activated B cells (NF- κB), which is activated during inflammation, also promotes the
induction of MuRF-1 expression [48]. Tumor necrosis factor α (TNF-α) also increases
MuRF-1 expression via NFκB [49]. In addition, TNF-α increases Foxo activity by inhibiting
the IGF1-Akt pathway via c-jun N-terminal kinase (JNK) [50].

Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1-α), which is a
transcription conjugate factor, decreases when exercise is insufficient or inactive. A decrease
in PGC1-α reduces phosphorylation of Foxo [51]. In addition, Casitas B-lineage lymphoma-
b (Cbl-b) has been reported as a E3 ubiquitin ligase whose expression is highly increased in
atrophic muscles. Cbl-b specifically binds to insulin receptor substrate-1 (IRS-1) to enhance
ubiquitination and degradation, thus diminishing the IGF-1 signal [52,53]. It was confirmed
that a peptide called Cblin, which is a Cbl-b inhibitor, inhibits the degradation of IRS-1
in the gastrocnemius muscle of mice undergoing sciatic nerve resection and suppresses
the expression of muscle atrophy-related genes [53]. Cbl-b can be a treatment for skeletal
muscle atrophy.

Myokines are secreted by skeletal muscles, some of which act on other organs and
some of which act on the skeletal muscle itself. IGF-1, FGF-2, and IL-6 also act as
myokines [54]. Myostatin, a member of the TGF-β superfamily, is secreted by skele-
tal muscle and has been reported as a factor that negatively regulates muscle growth [55].
Myostatin activates Smad2/3 via activin type II B receptors (ActRIIB) on the cell surface.
Smad2/3 forms a heterodimer with Smad4. Smad2/3/4 regulates cell proliferation by
controlling the expression of p21 and cyclin-dependent kinase 2 (CDK2). It also controls the
expression of Pax7, MyoD, and myogenin to suppress muscle differentiation. In addition,
phosphorylated Smad2/3 acts on Akt to inhibit mTORC1 activation and Foxo inactivation
and negatively regulates protein levels [56].

5. Denervation Animal Model

The denervation model is a popular mechanism of skeletal muscle atrophy [57–60],
where the sciatic nerve is usually removed. The reason is that nerves can be easily removed,
surgery can be performed without damaging the tissue to be analyzed, and normal raising
is possible after the surgery [61]. By analyzing the muscles (tibialis anterior muscle, gas-
trocnemius muscle, and extensor digitorum longus muscle) in the sciatic nerve innervation
region, denervation-induced skeletal muscle atrophy is evaluated. Denervation-induced
skeletal muscle atrophy upregulates the lysosome, calpain, and ubiquitin-proteasome
systems [46,62,63]. The denervation model is useful for inducing major mechanisms of
skeletal muscle catabolism.

The advantage of the denervation model is that both an experimental group and
a control group can be secured in the same animal [61]. By performing sciatic nerve
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denervation treatment on the experimental side and sham surgery on the opposite side,
it is possible to ensure that muscles with and without atrophy can coexist in the same
animal. It is beneficial for researchers to be able to eliminate the variability that occurs
between individuals.

There are some things to consider in the denervation model. While skeletal muscle
atrophy is induced by removing the sciatic nerve, there is a neuropathic pain model using
the same method. According to the neuropathic pain model, it may cause self-harm on
the affected limb, and it is necessary to observe excessive self-harm when evaluating the
muscular atrophy model [64]. Further, the sciatic nerve denervation model is used as an
osteoporosis model [65]. The prevalence of sarcopenia and osteoporosis has been reported
to be correlated, and it has been suggested that myokine affects bone [66]. In recent years,
it has been suggested that osteokine secreted by bone tissue affects the whole body [54].
These reports mean that the denervation-induced skeletal muscle atrophy model does not
merely reflect skeletal muscle atrophy; it suggests that it is affected by neural transmission,
trophic substances, and secretions from bone tissue.

Moreover, not all mechanisms of muscle atrophy can be elucidated by the denervation
model. Other animal models include the hind limb unloading and immobilization models,
while the hind limb unloading model induces skeletal muscle atrophy by lifting the legs.
This model induces skeletal muscle atrophy similar to the microgravity-like space area.
The immobilization model imitates bedrest and induces muscle atrophy in immobile legs
using casts. These models differ in the mode of skeletal muscle atrophy. For example, in
the space area, the rat soleus muscle undergoes severe atrophy, but the tibialis anterior
muscle shows less atrophy [67]. In the immobilization model, protein degradation by
lysosomes was lower than that in the other models [68]. These reports differ from that of
denervation-induced skeletal muscle atrophy. The use of other models is considered for
skeletal muscle atrophy under these specific conditions.

While some molecular mechanisms are common among skeletal muscle atrophy
models, there are specific mechanisms to denervation-induced skeletal muscle atrophy.
Activation of mTORC by denervation stimulates S6K, resulting in suppression of IRS-1 as
a negative feedback effect, and it has been suggested that Foxo-upregulation occurs as a
result [69]. In addition, it has been shown that muscle atrophy occurs even if myostatin is
inhibited during denervation, and muscle fibers do not recover. In contrast, the immobi-
lization model has been shown to suppress muscle atrophy by inhibiting myostatin, which
shows that there are differences in the mechanism of muscle atrophy models [57]. Further
detailed molecular mechanisms are expected to be elucidated in future.

Furthermore, attention should be paid to skeletal muscle atrophy in the craniofacial
region. As mentioned earlier, the development pattern is different between the facial and
limb muscles. The limb muscles are controlled by the motor nerves from the spinal cord,
while the facial muscles are controlled by the cranial nerves. The orbicularis oris and
buccinator muscles are controlled by the facial nerve (cranial nerve VII), and facial nerve
axotomy models have been established [70]; however, studies on facial muscle atrophy are
insufficient. In the future, it is necessary to investigate whether gene expression differs
from that of somatic muscle during muscle atrophy of facial muscles.

The denervation model is considered to be the following disease model. Spinal mus-
cular atrophy, amyotrophic lateral sclerosis, and neuralgic amyotrophy are caused by
motor nerve degeneration, and because these diseases impair facial muscle movement
and swallowing, the sciatic nerve denervation model may be useful for elucidating the
mechanism of muscular atrophy in maxillofacial region. These diseases indicate a poor
prognosis. Motor nerve degeneration or denervation occurs not only in congenital diseases
but also in acquired factors (for example, injuries, virus infection, and surgery). Denerva-
tion is thought to contribute to sarcopenia, because motor innervation of skeletal muscle
decreases with aging [71]. Sarcopenia affects other diseases, with osteoporosis [72,73],
bone fractures [74], critical limb ischemia [75], diabetes [76], cognitive decline [77], and
cancer [78–80] showing a higher predilection in sarcopenia. In other words, an increase
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in skeletal muscle mass is important for the prevention of various diseases. Therapy and
prevention of skeletal muscle atrophy need to intervene the catabolic downregulation
and/or anabolic upregulation. Currently, however, there are no therapeutic strategies to
approach the muscle remodeling cycle (Figure 2).

Figure 2. Muscle remodeling cycle.

This schema is muscle remodeling cycle. Increasing muscle anabolism (proliferation,
differentiation, muscle hypertrophy) and reducing catabolism are necessary against skeletal
muscle atrophy. Satellite cells are stimulated by damaged-myofiber-derived factors from
the muscle tissue [81]. This cycle is also affected by hormones, myokines, osteokines,
and adipokines.

6. Natural Compounds (Effective Foods against Denervation-Induced Skeletal
Muscle Atrophy)

There are a wide variety of pathologies that cause skeletal muscle atrophy. However,
many factors, such as hereditary diseases and sarcopenia, are currently difficult to eliminate.
In addition, the muscle remodeling cycle is fast, and long-term treatment is necessary to
maintain muscle mass. Therefore, if skeletal muscle atrophy can be prevented by food, it
would be an effective population approach. These diets are safe, inexpensive, and can be
incorporated into daily intake. In addition, since food can cause allergies, it is necessary to
find as many foods as possible that can counteract skeletal muscle atrophy.

The following is a summary of effective foods against denervation-induced skeletal
muscle atrophy.

6.1. Royal Jelly (RJ)

Honeybees (e.g., Apis mellifera) excrete RJ from cephalic glands. RJ is the main source
of nutrition for queen honeybees; they are larger, with a longer life span than other
honeybees, while RJ affects the fertility of queen honeybees [82,83]. It has been reported to
prolong life span [84,85], reduce fatigue [86], and have antioxidant and anti-inflammatory
properties [87–89]. In humans, RJ reduces serum cholesterol and lipid levels [90].

The components of RJ include water (60–70%), proteins (9–18%), sugars (7.5–23%),
lipids (3–8%), and other trace compounds. RJ contains 60–80% trans-10-hydroxy-2-decenoic
acid (10H2DA) and 10-hydroxydecanoic acid (10HDAA) in lipids [91]. In animal experi-
ments, 10H2DA and 10HDAA were found to be pharmacologically beneficial [92–96].

RJ affects skeletal muscle metabolism. In mice experiments, RJ induces regeneration of
damaged skeletal muscle by satellite cells via the IGF-1-Akt pathway [97] and activation of
AMPK by endurance training [98]. RJ removed protein (protease-treated RJ [pRJ]) also had
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a positive effect on skeletal muscle. Daily oral administration of pRJ prevents denervation-
induced skeletal muscle atrophy [99], and it has been reported that pRJ affects muscle fiber
thickness, expression of satellite cell catabolic gene, and proliferation and differentiation in
C2C12 myoblasts [99,100].

Although it is known that RJ suppresses skeletal muscle atrophy, a detailed mechanism
has not been revealed. RJ is known to regulate epigenetic changes [101]. RJ and 10H2DA
suppressed histone deacetylase (HDAC)-activity without affecting DNA methylation [102].
Inhibition of HDAC and DNA methyltransferases upregulates myogenesis [103–106]. The
epigenetic effects of RJ should be further investigated and need to be examined for changes
in gene expression.

RJ upregulates IGF-1, IGF receptors, and pAMPK. Activation of Akt and AMPK
translocate glucose transporter type 4 (GLUT4) to the cell membrane [107]. 10H2DA, an
RJ-specific fatty acid, activates AMPK in skeletal muscles [108]. Mitochondrial activity in
skeletal muscle is related to insulin resistance and is important for preventing sarcope-
nia. These studies suggest a therapeutic approach to glucose tolerance with decreased
skeletal muscle.

The beneficial effects of RJ have only been partially elucidated. In future, a detailed
downstream analysis of RJ-specific components is required.

6.2. Geranylgeraniol (GGOH)

GGOH is a C20 isoprenoid found in fruits, vegetables, and grains. GGOH falls under
the category of “Generally recognized as safe (GRAS)” for consumption [109]. GGOH
is an intermediate product of the mevalonate pathway and functions as a precursor of
geranylgeranylpyrophosphate (GGPP).

Matsubara et al. showed that GGOH enhances C2C12 myoblast differentiation in vitro,
but high doses of GGOH tend to suppress myoblast proliferation [110]. Miyawaki et al.
reported that GGOH administration increased the muscle fiber size in denervation-induced
skeletal muscle atrophy in vivo [111]. GGOH also suppresses the denervation-induced
or glucocorticoid-induced atrogin-1 expression [111]. Expression of atrogin-1 is increased
when muscle atrophy is induced by the stressors [112]. Suppressing atrogin-1 expression is
important to prevent skeletal muscle atrophy.

Many studies have shown the role of NF- κB in the induction of muscle atrophy [48,113–117].
NF- κB upregulates atrogin-1 expression [118]. GGOH treatment decreases lipopolysac-
charide (LPS)-induced NF- κB signaling [119,120]. GGOH has also been demonstrated to
upregulate testosterone synthesis in testis-derived cells [121]. Testosterone is a steroid hor-
mone that is strongly involved in muscle metabolism [122]. Androgen and testosterone pro-
mote muscle hypertrophy and suppress the expression of atrogin-1 and MuRF-1 [123,124].
Therefore, NF- κB signaling and/or testosterone may participate in the suppression of
skeletal muscle atrophy by GGOH.

Statins are used to prevent cardiovascular disease [125–128] and inhibit cholesterol
synthesis via the mevalonate pathway. However, they may induce muscle cell damage and
severe rhabdomyolysis [129–132]. Statin-associated muscle disorders may reduce crucial
intermediary molecules such as GGPP by inhibiting the mevalonate pathway [133–135].
Treatment of C2C12 cells with GGPP reverses the inhibitory effect of statins on myotube
formation [136]. Cao P et al. reported that GGOH treatment reduces the expression levels
of atrogin-1 that is induced by statins in vitro [137].

GGOH is inexpensive, classified as GRAS, and can be administered orally. In future, a
detailed downstream analysis of GGOH is required on skeletal muscle metabolism.

6.3. Soybeans

Soybeans are grown in many countries for food, fertilizer, and oil production. The
components of soybeans include proteins (33.8%), sugars (29.5%), lipids (19.7%), water
(12.4%), and other trace compounds [138]. Soy protein has been reported to promote
increased skeletal muscle mass and strength in humans [139].
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Long-term administration of soy protein increased the number of satellite cells and dif-
ferentiated cells (pax7− myoD+) in ovariectomized mice [140]. Glycinin is a major protein
contained in soybeans [141]. Glycinin has an amino acid sequence similar to that of Cblin.
When the muscle atrophy inhibitory effect of glycinin in denervation mice was examined, it
was confirmed that it suppressed the decrease in the muscle wet weight of the tibialis ante-
rior muscle and suppressed the decrease in muscle cross-sectional area [142]. A mixed diet
of soy protein and whey protein showed a strong inhibitory effect on denervation-induced
skeletal muscle atrophy [143]. In addition, it has been reported that soy protein isolate
and red bell pepper juice suppressed skeletal muscle atrophy in denervated mice [144].
Whey protein is known to stimulate muscle protein synthesis via mTOR signaling in hu-
mans [145]. It has been reported that ingestion of soy protein also increases muscle mass in
human with low physical activity [139].

Soybeans are nutritious and contain the isoflavones described in the next section. It is
necessary to determine the components that act on the skeletal muscles.

6.4. Polyphenol

Polyphenol is a compound containing multiples of phenol units contained in plants.
Various uses of polyphenols have been reported, including effective substances on muscle
atrophy in recent years.

Isoflavones are one of the flavonoids and are natural organic compounds. Administra-
tion of isoflavones suppresses denervation-induced apoptosis and muscle atrophy [146,147].
It has been reported that isoflavones can suppress the transcriptional activity of MuRF-1
induced by TNF-α and myotube atrophy [148]. In addition, isoflavones suppress the
damage of acetylcholine receptors through denervation. It has been suggested that they
have a protective effect on neuromuscular junctions [147].

Isoflavones are known to act as phytoestrogens. Women who consumed isoflavones
for 24 weeks had an increased muscle mass index [149]. Estrogen receptors (ER) include
ERα and ERβ. Daidzein, a soy isoflavone, has been shown to have more effect on ERβ
than on Erα [150]. ERβ is involved in the synthesis and degradation of skeletal muscles.
It has been shown to promote muscle fiber growth via Erβ [151]. In addition, it was
clarified that it is responsible for the inhibition of satellite cell proliferation and cell death
via Erβ [151]. A decrease in the blood levels of sex hormones that occur in old age leads to
a decrease in skeletal muscle. Daidzein may be effective in older women, and in addition,
8-prenylnaringenin, which has an estrogenic effect like daidzein, suppresses denervation-
induced skeletal muscle atrophy, and its effect is thought to be due to phosphorylation
of Akt [152]. These estrogenic isoflavones may be effective not only for skeletal muscle
atrophy, but also for postmenopausal disease.

Quercetin is a flavonoid contained in fruits and vegetables, and has a strong radical
scavenging ability. Reactive oxygen species (ROS) are generated during the process of
ATP production in mitochondria. ROS causes cell damage and is involved in the dis-
ease [153–155]. ROS activates the NFκB and Foxo pathways and induces the expression
of E3 ubiquitin ligase [156,157]. Research is ongoing on the concept that substances with
antioxidant activity suppress ROS and muscle atrophy. In the hind limb unloading model,
administration of quercetin to the gastrocnemius muscle reduced atrogin-1 and MuRF-1 ex-
pression and suppressed the loss of skeletal muscle mass [158]. Administration of quercetin
promotes phosphorylation of Akt and suppresses skeletal muscle atrophy [159].

6.5. Vitamins

Vitamins are nutrients that cannot be synthesized in sufficient amounts in the body,
and are organic compounds excluding the three major nutrients. Insufficient vitamin intake
has systemic effects but is also an important factor in skeletal muscle.

Vitamin C is a cofactor involved in the synthesis of collagen. Vitamin C is usually
considered to have an antioxidant effect and eliminates ROS [160]. However, some reports
show that vitamin C have prooxidant effect [161,162]. It was reported that elderly women
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with high concentration of vitamin C had high muscle strength and physical ability [163].
When genetically modified mice that could not biosynthesize vitamin C were used, vitamin
C deficiency reduced muscle weight and increased expression of Foxo-1, Cbl-b, atrogin-1,
and MuRF-1. Further, re-administration of vitamin C rescued muscle weight and reduced
skeletal muscle atrophy gene expression [164]. Conversely, Makanae et al. reported that the
supplementation of vitamin C suppresses the hypertrophy of muscle by overloading [165].
Like that, the function of vitamin C in muscle metabolism is controversial and may be
different depending on the physical status.

Vitamin D is involved in calcium absorption and utilization and bone calcification,
but in recent years it has been suggested that it may also play an important role in skeletal
muscle [166]. In mice, deletion of vitamin D receptor reduces muscle fiber size [167].
Low levels of vitamin D in the blood reduce muscle strength and increase the risk of
sarcopenia [168]. There is also a report that vitamin D administration restores muscle
strength [169]. In experiments using C2C12 cells, vitamin D suppressed the expression of
atrogin-1 and cathepsin L [170]. These literatures also showed that the supplementation of
vitamin D is effective only in the condition of vitamin D deficiency.

Vitamin E has an antioxidant effect similar to that of vitamin C; therefore, it is expected
to remove ROS. In the Unload model, vitamin E reduced the expression of atrogin-1 and
MuRF-1 and suppressed skeletal muscle atrophy [171]. In this study, muscular atrophy
suppression is not due to an antioxidant effect. In contrast, there are reports that vitamin E
has no suppressive effect on muscular atrophy [172].

6.6. Capsaicin

Capsaicin is a pungent ingredient contained in chili peppers. The capsaicin receptor
transient receptor potential vanilloid 1 (TRPV1) is known as a pain receptor. It was
reported that TRPV1-mediated Ca2+ signaling activates mTOR and promotes muscle
hypertrophy [173]. However, the stimulation of TRPV1 causes pain; therefore, it seems
difficult to apply it as a food approach.

Figure 3 shows how natural compounds are effective in muscle remodeling cycle and
Table 2 summarizes the studies to examine the effect of natural compounds on skeletal
muscle atrophy in human and animal model. Unfortunately, no studies have reported the
function of natural compounds on maxillofacial muscle atrophy and sarcopenia. Special
attention and research on maxillofacial muscle should be required immediately. Because
the malnutrition by the problems of occlusion and/or swallowing may contribute to the
loss of whole body muscles.

Figure 3. Schematic overview of the effective natural compounds in muscle remodeling cycle.



Int. J. Mol. Sci. 2021, 22, 8310 11 of 20

These are natural compounds that suppress denervation-induced skeletal muscle
atrophy. In other words, they induce the increasing muscle anabolism and/or decreas-
ing muscle catabolism. The mechanism of suppressing skeletal muscle atrophy differs
depending on the foods. RJ: Royal jelly, GGOH: Geranylgeraniol.

Table 2. Studies for the function of natural compounds on skeletal muscle metabolism.

References Species Natural Compounds Phenotype, Intervention/
Key Findings

Niu K
et al. [97] mice Royal jelly

(RJ)

C57BL/6J mice, aged mice/
Suppression of decrease muscle weight and grip strength

Increase the regeneration of injured muscles and the serum
insulin-like growth factor-1 (IGF-1)

Takahashi Y
et al. [98] mice RJ

ICR mice, training/
RJ induces mitochondrial adaptation with endurance

training by AMP-activated protein
kinase (AMPK) activation

Shirakawa T
et al. [99] mice RJ

C57BL/6J mice, denervation/
Suppression decrease muscle fiber size by

oral administration

Okumura N
et al. [100] mice RJ

Genetically heterogeneous mice, aged mice/
Motor function

Increase fiber size
Increase proliferation and differentiation

Takikawa M
et al. [108] mice 10H2DA

C57BL/6J mice, oral adnimistration/
Stimulated phosphorylation of AMPK

Glucose transporter type 4 (Glut4) translocation to
the plasma membrane

Miyawaki A
et al. [111] mice Geranyl-geraniol

(GGOH)

C57BL/6J mice, denervation/
Suppression decrease muscle fiber size and expression

of atrogin-1

Hashimoto R
et al. [139] Humans Soy protein High and low physical activity, food intake/

Increase skeletal muscle mass in low activity human

Kitajima Y
et al. [140] mice soymilk

C57BL/6 mice, ovariectomized mice/
Muscle fiber hypertrophy

Increase grip strength

Abe T
et al. [142] mice Soy glycinin

C57BL/6J mice, denervation/
Increase fiber diameter

Suppression expression of muscle atrogene via
IGF-1 signaling

Nikawa T
et al. [143] mice Soy protein and

whey protein
C57BL/6 mice, denervation/
Suppression muscle atrophy

Tachibana N
et al. [144] mice Soy protein and red

bell pepper juice
C57BL/6J mice, denervation/

Suppression of muscle atrophy and decrease atrogenes

Kakigi R
et al. [145] Humans Whey protein Male, Food intake, resistance exercise/

Mammalian target of rapamycin (mTOR) signaling activate

Tabata S
et al. [146] mice isoflavones

ICR mice, denervation/
Suppression muscle atrophy

Decrease in apoptosis-dependent signaling

Hirasaka K
et al. [147] mice Soy isoflavones

C57BL/6J mice, denervation/
Resistance to muscle atrophy

Suppression of acetylcholine receptor disorders in
denervating atrophic muscles

Aubertin-Leheudre M
et al. [149] Humans isoflavones Sarcopenic-obese women, food intake/

Increase fat-free mass and muscle mass index
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Table 2. Cont.

References Species Natural Compounds Phenotype, Intervention/
Key Findings

Mukai R
et al. [152] mice 8-Prenylnarin-genin

C57/BL6 mice, denervation/suppress muscle atrophy
Increased phosphorylation of Akt

Suppression expression of Atrogin-1

Mukai R
et al. [158] mice quercetin

C57BL/6J mice, tail suspension/
Suppression decrease muscle weight and express

ubiquitin ligase

Mukai R
et al. [159] mice quercetin

C57BL/6 mice, denervation/
Suppression muscle atrophy

Decrease Reactive oxygen species (ROS)
Increased phosphorylation of Akt

Saito K
et al. [163] Humans Vitamin C

Women, 70–84 years old/
Plasma vitamin C levels are positively correlated with grip
strength, length of time standing on one leg with eyes open,

and walking speed

Takisawa S
et al. [164] mice Vitamin C

SPM30 knockout mice/
Muscle atrophy due to vitamin C deficiency, and recovery of

muscle mass after vitamin C supplementation

Makanae Y
et al. [165] rats Vitamin C

Wistar rats, overload/
suppression muscle hypertrophy on overload by

administration of vitamin C

Ceglia L
et al. [166] Humans Vitamin D Mobility-limited, vitamin D-insufficient women/

Increase muscle fiber by supplemental vitamin D

Endo I
et al. [167] mice Vitamin D Vitamin D receptor (VDR) deletion mice/

Muscle fiber contraction by deletion of VDR

Visser M
et al. [168] Humans Vitamin D

55–85 years old/
In humans with low serum vitamin D, lower grip test and

tend to low appendicular skeletal muscle mass

Servais S
et al. [171] rats Vitamin E Wistar rats, hindlimb-suspend/

Suppression of muscle atrophy and decrease atrogenes

Ikemoto M
et al. [172] rats Vitamin E

Wistar rats, tail suspension/
Supplemental vitamin E does not show effect of

suppression muscle atrophy

Ito N
et al. [173] mice capsaicin

Denervation, hindlimb suspension/
Suppression of muscle atrophy by capsaicin

injected intramuscularly

The table is summarized the literatures to investigate the function of natural com-
pounds skeletal muscle metabolism.

7. Conclusions

The dynamics of muscle atrophy are complex and diverse. If food is effective in pre-
venting skeletal muscle atrophy, it is safe and applicable to many people. The substances
introduced this time can be candidates for treatment methods, but we think there are other
beneficial substances. Animal models, including denervation models, are effective for elu-
cidating molecular mechanisms and developing therapeutic substances. Further research
focusing on foods against skeletal muscle atrophy is needed to study the mechanism of
skeletal muscle atrophy.

Author Contributions: T.S., A.M., T.K., and S.K., writing the manuscript; S.K., study design; S.K.,
literature review, article preparation, and document submission. All authors have read and agreed to
the published version of the manuscript.



Int. J. Mol. Sci. 2021, 22, 8310 13 of 20

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

MyHC myosin heavy chain
Myf5 myogenic factor 5
MyoD myoblast determination protein 1
Pax7 paired box protein 7
Mesp1 mesoderm posterior 1
ISl1 insulin gene enhancer protein
IGF-1 insulin-like growth factor 1
mTOR mammalian target of rapamycin
mTORC1 mammalian target of rapamycin complex 1
mTORC2 mammalian target of rapamycin complex 2
PI3K phosphoinositide 3-kinase
AMP adenosine monophosphate
AMPK adenosine monophosphate -activated protein kinase
eIF4E eukaryotic translation initiation factor 4E
4EBP1 eukaryotic translation initiation factor 4E-binding protein 1
S6K1 ribosomal protein S6 kinase-1
IL-6 interleukin-6
TGF-β transforming growth factor β
FGF fibroblast growth factor
JAK2 janus kinase 2
STAT3 signal transducer and activator of transcription 3
MuRF-1 muscle ring finger 1
Foxo forkhead box O
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
TNF-α Tumor necrosis factor α
JNK c-jun N-terminal kinase
PGC1-α peroxisome proliferator-activated receptor gamma coactivator 1
Cbl-b casitas B-lineage lymphoma-b
IRS-1 insulin receptor substrate-1
ActRIIB activin type II B receptors
CDK2 cyclin-dependent kinase 2
RJ royal jelly
10H2DA trans-10-hydroxy-2-decenoic acid
10HDAA 10-hydroxydecanoic acid
pRJ protease-treated royal jelly
HDAC histone deacetylase
GLUT4 glucose transporter type 4
GGOH geranylgeraniol
GRAS generally recognized as safe
GGPP geranylgeranylpyrophosphate
LPS lipopolysaccharide
ER estrogen receptors
ROS reactive oxygen species
TRPV1 transient receptor potential vanilloid 1
VDR Vitamin D receptor
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