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Abstract
Horizon scanning for innovative technologies that might be applied to medical products and requires new assessment 
approaches to prepare regulators, allowing earlier access to the product for patients and an improved benefit/risk ratio. The 
purpose of this study is to confirm that citation network analysis and text mining for bibliographic information analysis can 
be used for horizon scanning of the rapidly developing field of AI-based medical technologies and extract the latest research 
trend information from the field. We classified 119,553 publications obtained from SCI constructed with the keywords “con-
ventional,” “machine-learning,” or “deep-learning" and grouped them into 36 clusters, which demonstrated the academic 
landscape of AI applications. We also confirmed that one or two close clusters included the key articles on AI-based medical 
image analysis, suggesting that clusters specific to the technology were appropriately formed. Significant research progress 
could be detected as a quick increase in constituent papers and the number of citations of hub papers in the cluster. Then 
we tracked recent research trends by re-analyzing “young” clusters based on the average publication year of the constituent 
papers of each cluster. The latest topics in AI-based medical technologies include electrocardiograms and electroencepha-
lograms (ECG/EEG), human activity recognition, natural language processing of clinical records, and drug discovery. We 
could detect rapid increase in research activity of AI-based ECG/EEG a few years prior to the issuance of the draft guidance 
by US-FDA. Our study showed that a citation network analysis and text mining of scientific papers can be a useful objective 
tool for horizon scanning of rapidly developing AI-based medical technologies.

Keywords Horizon scanning · Citation network · Delivery of health care/trends · Diagnostic imaging · Artificial 
intelligence

Introduction

The application of innovative technologies to the develop-
ment of medical products is expected as a potential new 
treatment or diagnostic tool for various diseases. Conversely, 
in some cases, the application of conventional development 
and evaluation concepts and/or regulatory frameworks to 
innovative technologies is inappropriate. In some cases in 
the past, a guidance document was issued when the clinical 

development is about to begin, the development of compan-
ion diagnostics in Japan, the U.S., and the EU. However, the 
guidance must be provided earlier, such as before starting 
clinical development planning. Therefore, the early identifi-
cation of innovative technologies with a potential application 
to medical products through horizon scanning would encour-
age regulatory authorities to establish new approaches to 
assess their quality, efficacy, and safety to advice developers 
and revise their regulations if necessary. Doing so contrib-
utes to timely patient access and improve the benefit/risk 
ratio of the product [1].

The International Coalition of Medicines Regulatory 
Authorities (ICMRA), consisting of regulatory authorities, 
has recognized the need to respond quickly to innovative 
technologies and promotes the use of “horizon scanning” to 
identify such technologies [2]. The ICMRA Innovation con-
cept note [3] describes horizon scanning as a broad-reach-
ing information-gathering monitoring activity to anticipate 
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emerging products and technologies and potentially disrup-
tive research avenues. Two major methods exist for acquiring 
the data needed to create high-quality horizon scanning [4]. 
The expert-based approach mainly uses the tacit knowledge 
of domain experts, such as the Delphi method. Tradition-
ally, horizon scanning has been conducted predominantly 
in Europe for policy making, scientific research funding, 
and health-care budgeting purposes, by surveying a variety 
of sources such as the Internet, government, international 
organizations and companies, databases, and journals [5, 6]. 
This type of expert-based approach is very difficult to imple-
ment in the current information explosion. Moreover, indi-
vidual experts must subdivide their domain of expertise to 
keep up with the growth of their respective domains, which 
makes their perception of the big picture extremely subjec-
tive [7]. Computer-based approaches collect and analyze 
vast amounts of formal knowledge, such as articles, patents, 
and newspapers. Recently, the European Commission (EC) 
published reports, such as “Weak signals in Science and 
Technologies 2019 Report” based on Tools for Innovation 
Monitoring (TIM) [8] that use text mining and keywords in 
the scientific literature. The Japanese National Institute of 
Science and Technology Policy (NISTEP) also uses a digi-
tal tool to analyze academic papers; the top 1% of citations 
contributes to science and innovation policy planning.

These cover the medical field as a sub-survey of the over-
all science survey and are used in efforts to identify and 
evaluate advanced technologies.

Hines et al. reported that, in the medical and health-care 
field, most horizon-scanning methods used manual or semi-
automated, with relatively few automated aspects, which 
may be resolved in the not-too-distant future via the rapidly 
evolving fields of machine learning and artificial intelligence 
[6]. To solve this challenge, a computer-based approach can 
complement the expert-based approach as it fits the scale of 
the information [9, 10] because they are compatible with the 
scale of the information. The two types of computer-based 
approaches are citation mining and text mining.

The citation-based approach assumes that the cited papers 
and their research topics are similar. Analyzing this cita-
tion network allows us to understand the structure of the 
research areas constituting the large volume of papers that 
we can read. These methods have been widely used as pow-
erful tools to visualize and understand the structure of a 
research field and to identify new trends and research direc-
tions; they also have been proven effective in various stud-
ies [11–13]. For example, Kajikawa et al. [7] used citation 
network analysis to track emerging research areas in the field 
of sustainable science effectively and efficiently. Many fields 
have applied similar approaches, including energy research 
[14], regenerative medicine [15], robotics, and gerontol-
ogy  [16]. Sakata et al. [17] proposed a meta-structure of 
academic knowledge on patent and innovation research to 

effectively assist policy discussions on intellectual property 
system reform. They have shown that network analysis and 
machine learning methods are useful for understanding and 
predicting the development of technologies such as solar 
cells [18] and nanocarbons [19].

Many fields have used also text mining to analyze tech-
nology trends; Kostoff et.al. (2004) analyzed multi-word 
phrase frequencies and phrase proximity to extract energy-
related taxonomic structures [20]. Another study discussed 
the trend in the field of information security by creating a 
network of co-occurring words and focusing on clusters with 
network centralities [21]. Ohniwa et al. (2010) focused on 
the MeSH terms included in the top 5% of the increase rate 
in a given year in the field of life science [22]. A study to 
discuss a community’s the future prospects by calculating 
the cosine similarity of terms in the session content from the 
data of conference proceedings focused on the field related 
to the World Wide Web [23].

R&D strategists and policymakers in many fields find 
citation network analysis and text mining useful to under-
stand the broad scope of scientific and technological 
research.

It is difficult to understand the semantics of clusters based 
on citation relations alone. Text mining can reveal subject 
relationships across citations and provide insights into the 
diffusion of knowledge into interdisciplinary research and 
development. The addition of text mining to citation-based 
bibliometrics makes accessible the large-scale multigenera-
tional citation studies necessary to display the full impact 
of research [24].

Text mining is extremely sensitive to certain terms. When 
only text mining is used, the problem of terminological dis-
tortions cannot be ignored. In addition, it is difficult to sepa-
rate homonyms that are used in different fields with different 
meanings. Hao et al. (2018) attempted to identify research 
fronts using only text mining in the medical field [25]. They 
highlighted the challenges of clustering by text similarity, 
which makes the results vulnerable to the method selection. 
At the same time, they observed that citation relationships 
are highly valuable in explaining relationships in scientific 
knowledge.

Therefore, there are challenges in analyzing trends using 
only one citation network and text mining. The associations 
between papers in citation networks reflect authors’ back-
ground knowledge which cannot be extracted by simple text 
mining.

Our study proposes an objective methodology for hori-
zon scanning that identifies innovative technologies to be 
applied to medical products from entire research papers in 
the target field using citation network analysis methods and 
text mining. The three types of citation network analysis 
are direct citation, bibliographic merging, and co-citation. 
Existing studies have shown that direct citation is the most 
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appropriate for obtaining leading-edge information on trends 
[26]. Other fields have widely used the approach of clus-
tering the subject area into subcategories by direct citation 
networks and interpreting the contents of the clusters by 
text mining [7, 14–17], but insufficient examples exist of 
the application of advanced technologies in medical-related 
fields. We focus on AI-based medical image analysis as a 
retrospective example of AI-based medical devices that have 
been developed in recent years, applied in many fields, and 
selected for consideration in ICMRA [1].

Methods

Extraction of Paper Data for Analysis

We used “convolutional” OR “deep learning” in the review 
article of medical image analysis [27]; we used “machine-
learning” to include a wide range of conventional studies. 
As a result, we obtained 140,794 papers that contain “con-
volutional*” OR “machine-learning” OR “deep-learning” 
from the SCI (Science Citation Index) and SSCI (Social 
Sciences Citation Index) indexed by Web of Science Core 
Collection (WoS, Clarivate analytics), between January 1, 
1900, and December 31, 2020, (1900–2020). This database 
has the longest history of containing bibliographic informa-
tion from academic papers. It is also used for many bib-
liometric analyses because of its excellent searchability 
and comprehensiveness as a database platform [7, 14–17]. 

In addition to the data in 1900–2020, we created data-
sets for 1900–2012, 1900–2013, 1900–2014, 1900–2015, 
1900–2016, 1900–2017, 1900–2018, and 1900–2019 and 
identified the cluster that contains key articles for each year.

To track the development history of AI-based medical 
image analysis and to select keywords for the extraction of 
the papers for citation network analysis, we selected 13 key 
articles [28–39] (Table 1 presents eight articles included 
in the analysis data), including several papers cited in the 
review article [28] on the application of deep learning in 
medical image analysis and a study [39] that led to the 
clinical development of IDx-DR, a retinal imaging software 
approved as a medical device by the US Food and Drug 
Administration (FDA) in 2018.

Citation Network Analysis

In this study, we converted the citation network into an 
unweighted network with papers as nodes and citation 
relationships as links. Papers with no citations as the 
largest component were considered digressional and were 
ignored in this study (Step 2 in Fig. 1). The core paper 
with the highest number of citations appears at the center 
of the citation relations. Papers with no citation rela-
tionships with other papers were considered deviant and 
ignored in this study. The network was then divided into 
several clusters using the topological clustering method. 
Topological clustering is a clustering method based on 
the graph structure of a network; here, we use modularity 

Table 1  Key articles and the clusters in which they are contained

The key articles that have contributed to the development of AI-based medical image analysis were selected based on a review article on AI-
based medical image analysis [32]. The clusters obtained from the citation network analysis of these articles are indicated. The clusters are 
numbered in descending order of the number of constituent papers included. The cells for papers not included in the analysis were shadowed. 8 
articles are listed, excluding the 5 articles [31–33, 35, 39] that were excluded

Label Paper title published year

Web of science

Cluster No

Times cited 
within each 

cluster

A Gradient-based learning applied to document recognition. 
[27]

1998 1 1590

B Learning hierarchical features for scene labeling. [29] 2012 1 304
C Imagenet classification with deep convolutional neural 

networks. [30]
2012 1 1742

D Deep learning. [34] 2015 3 1825
E Pulmonary nodule detection in CT images: false positive 

reduction using multi-view convolutional networks. [36]
2016 3 239

F Improved automated detection of diabetic retinopathy on 
a publicly available dataset through integration of deep 
learning. [37]

2016 3 151

G Dermatologist-level classification of skin cancer with deep 
neural networks. [38]

2017 3 1015

H A survey on deep learning in medical image analysis. [28] 2017 3 1127
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maximization. A cluster module in a citation network is a 
group of papers in which the citation relations are divided 
by using a modularity (Q value) maximization method 
and are densely aggregated (Louvain method) [19, 40]. 
The modularity maximization method appreciates network 
partitioning so that the intracluster is dense and the inter-
cluster is sparse. The modularity maximization method 
determines an optimal partitioning pattern by extracting 
the partitioning pattern that maximizes the modularity 
using a greedy algorithm. Q is an evaluation function of 
the degree of coupling within a cluster and between clus-
ters, as follows:

where Aij represents the weight of the edge between i 
and j , ki =

∑

jAij is the sum of the weights of the edges 
attached to vertex i,  ci is the community to which vertex i 
is assigned, δ-function δ(u, v) is 1 if u = v and 0 otherwise, 
and m =

1

2

∑

ijAij.
The clusters are assigned labels corresponding to the 

size of the number of papers included. The characteristics 
of each cluster were confirmed by extracting a summary 
of frequently cited academic papers in the cluster and the 
characteristic keywords in the cluster.

Moreover, we computed the term frequency-inverse clus-
ter frequency (TF-ICF) to extract the characteristic keywords 
of each cluster. The TF gives a measure of the importance 
of a term in a particular sentence, whereas the ICF provides 

Q =
1

2m

∑

i,j

(

Aij −
kikj

2m

)

�
(

ci, cj
)

,

a measure of the general importance of a term. The TF-ICF 
of a given term i in a given cluster j is given by

where N is the total number of sentences. Each cluster was 
labeled based on the resulting keywords and sentences.

To confirm the trends in the research field, we extracted the 
mean or median year of publication of papers in each clus-
ter, as well as information on journals, authors, and affiliated 
institutions.

After clustering the network, visualization is converted to 
intuitively infer relationships among these clusters. We used a 
large graph layout (LGL) based on a force-direct layout algo-
rithm [41, 42]. This layout can display the largest connected 
component of the network to generate coordinates for nodes in 
two dimensions. We visualize the citation network by express-
ing inter-cluster links with the same color (Step 4 in Fig. 1). 
However, the position of the clusters and the distance between 
clusters did not indicate an approximation of the content. Fig-
ure 1 shows an overview of this process.

For the extracted dataset, we converted the citation net-
work into an unweighted network with papers as nodes and 
citation relationships as links (Step 2). The network was then 
divided into several clusters using the topological clustering 
method (Step 3). Moreover, a LGL, based on a force-direct 
layout algorithm, displayed the largest connected component 
of the network to generate coordinates for the nodes in two 
dimensions, visualizing the citation network by expressing 
inter-cluster links with the same color (Step 4).

TF-ICF = tf i,j ⋅ icf i = tf i,j ⋅ log(N∕cf i),

Academic papers
Web of Science

Target dataset

Step1: Extracting Dataset

Step2: Creating direct 
citation network

Step3: Clustering

Step4: Visualization
Those groups of papers (Clusters) are 
mapped into an Academic Landscape, 
which helps visualize the relationship 
of technologies.

Fig. 1  Steps of clustering and making Academic Landscape based 
on citation network. This figure has been published in reference [10]. 
The procedure of the citation network is as follows: (1) Extract the 
dataset of academic papers for analysis. (2) To extract the data, con-
vert the citation network into an unweighted network with papers as 
nodes and citation relationships as links. (3) Divide the network into 

several clusters by using the topological clustering method. (4) Use a 
large graph layout (LGL), based on a force-direct layout algorithm, 
to display the largest connected component of the network to gener-
ate coordinates for the nodes in two dimensions and to visualize the 
citation network by expressing inter-cluster links with the same color.
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Results

Results of Citation Network Analysis

We analyzed 140,794 papers and found that 119,553 (85%) 
formed a citation network. We divided this network into 36 
clusters by extracting the largest linkage component from all 
linkage components via direct citation of papers (excluding 
the gray linkage not involved in cluster formation shown in 
Figs. 1, 2). The contents of the top 10 clusters, which con-
tain approximately 75% of the papers in a citation network, 
were estimated from the characteristic keywords appearing 
in each cluster and the titles and abstracts of the papers with 
the highest number of citations. The cluster numbers (num-
ber of papers) and their contents are as follows:

Cluster 1 (14,033): Basic studies on deep learning and 
convolutional neural networks (CNNs), including geo-
graphic information system (GIS) image analysis using 
remote sensing.

Cluster 2 (13,309): Drug discovery technologies 
related to proteins, peptides, etc., using machine learning.

Cluster 3 (10,992): Applied research in medical image 
analysis.

Cluster 4 (9867): Feature classification using ensemble 
methods to increase accuracy by combination.

Cluster 5 (7829): Natural language processing of clini-
cal records.

Cluster 6 (7412): Application of deep learning to fault 
diagnosis, for example, motor condition monitoring for 
machines running on electric motors.

Cluster 7 (6571): Machine learning (ML) and data min-
ing (DM) methods for cyber analysis.

Cluster 8 (5815): Application to traffic flow informa-
tion analysis for the implementation of intelligent trans-
port systems.

Cluster 9 (4371): Single-image super-resolution (SR) 
to reconstruct high-quality data.
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Times cited 
within each cluster

Fig. 2  Tracking clusters containing key articles. We analyzed papers 
obtained from WoS published up to the indicated years. We plotted 
the cluster numbers that contained the eight key articles shown in 

Table 1, with the circle sizes representing the approximate number of 
citations in the cluster for each paper
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Cluster 10 (4333): Classification of individuals based on 
the analysis of text information from social media, such as 
emotions and behavior.

Table 1 presents the clusters in which key articles were 
included. Three papers (labeled A, B, and C) based on image 
recognition were found in clusters 1 and 5 (labeled D, E, 
F, G, and H) on image diagnosis in cluster 3, including the 
review article “Deep Learning” [34] (labeled D), which is 
often cited in medical field papers. This indicates that we 
appropriately formed clusters related to medical imaging in 
cluster 3.

Tracking the Time Series of Key Articles

We analyzed papers published each year and identified the 
cluster containing the key papers in Table 1 and the number 
of citations within the cluster to assess the position of the 
research on medical imaging in the past. As shown in Fig. 2, 
all the papers were included in the same cluster until 2015 
and the rank of cluster number increased by one until 2014. 
In 2015, the number of papers in this field increased rapidly 
and the rank of cluster numbers rose from 13th in 2014 to 
6th, suggesting that great scientific attention has increased. 
In 2016, a key paper on the imaging diagnosis of diabetic 
retinopathy (F in Table 1) was in cluster 7, which comprised 
papers on medical image analysis, and the other seven key 
articles were in cluster 3. Subsequently, in 2017, cluster 1 
contained all the key articles, but from 2018 onward, a new 
separate cluster containing papers on image analysis using 

deep learning was formed. It should be noted that the num-
ber of citations of key articles also increased.

Thus, most key articles were in one or two clusters, sug-
gesting that we properly formed the clusters related to the 
targeted AI-based medical image analysis. The research 
status of the clusters can also be confirmed by the cluster 
numbers, which reflect the number of papers comprising 
the cluster and the number of citations of the key articles.

Recent Research Trends in AI‑Based Medical 
Products

To detect the latest research trends in AI-based medical 
products, we focused on “younger” clusters with an aver-
age publication year later than 2017 as research progress 
could be observed over three years for AI-based medical 
image analysis (Fig. 3). We re-analyzed clusters 3, 15, 12, 5, 
13, and 2, which we considered to be closely related to AI-
based medical technologies. We listed these clusters in order 
of average publication year. Table 2 lists the sub-clusters 
formed by re-analysis of the most cited articles (hub-paper) 
[34, 43–74] in each subcluster, suggesting recent research 
trends in this field as follows:

Cluster 3 Applied research in medical image analysis.
Cluster 15 Electrocardiogram, electroencephalogram, 

and other electrical biosignals of human activity.
Cluster 12 Human activity recognition.
Cluster 5 Natural language processing of clinical records. 

Cluster 13: Neuroimaging analysis.

Fig. 3  Tracking clusters related to ECG and EEG. We analyzed 
papers obtained from WoS published up to the indicated years. A 
cluster number indicates the cluster on ECG and EEG. The circle 
sizes indicate the approximate citation frequency of the key article, 

[73] and the number in each circle represents the number of citations 
in the cluster. Clusters on ECG and EGG were first detected in 2015 
as cluster number 10 and were classified into cluster numbers 11, 21, 
1, 15, and 15 for 2016, 2017, 2018, 2019, and 2020, respectively
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Cluster 2 Drug discovery with machine learning related 
to proteins, peptides, etc.

Among these AI-based medical technologies, EEG analy-
sis was identified for applications in epileptic seizure predic-
tion, emotional analysis, and brain–computer interfaces, for 
which the FDA issued draft guidance on non-clinical and 
clinical trials in 2019.

Electrocardiograms (ECGs) and electroencephalograms 
(EEGs) in cluster 15 are most likely to be applied to new 
medical devices; therefore, we tried to follow the cluster 
containing a key paper on the application of deep learning 
to EEG analysis [75], which was one of the triggers for the 
development of this field. During 2015–2016, the article was 
included in the same cluster as other neuroimaging tech-
niques, such as MRI (MEG, fNIRS, etc.). In 2017, the key 
article was found in a separate cluster numbered 20 from 
other neuroimaging techniques, suggesting that a new clus-
ter specific to the application of deep learning to EEG was 
formed. Then, in 2018, we included the article in cluster 1 
of the applications of deep learning in various fields but was 
included in specific clusters re-formed, numbered 14 and 15 
in 2019 and 2020, respectively; the number of citations of 
the article increased. This suggests that research in this field 
has developed rapidly since 2017.

Discussion

In this study, we examined the possibility of using this analy-
sis method for horizon-scanning targeting AI-based medical 
image analysis. IDx-DR, an image-analysis software for the 
automatic diagnosis of diabetic retinopathy, received FDA 
certification in 2018. The AI characteristics are self-learn-
ing, the algorithm for learning data during the development 
of a medical product is in a black box, and performance 
changes as the product continues learning during clinical 
use. This has become an interesting dilemma for regulators 
[76].

We assessed the feasibility of using citation network anal-
ysis and text mining to identify trend history in AI-based 
medical image analysis research and development as fol-
lows: Research on convolutional neural networks (CNNs), 
the current leading technology in deep learning that arose 
in the 1970s, renewed interest in neural networks was Wer-
bos’s multi-layer networks [77]. LeNet [54], a CNN-based 
handwritten number recognition system—was developed 
and succeeded by a CNN called AlexNet [30], which is a 
key trigger for renewed interest in neural networks. Later, 
the U-net [33] architecture was proposed, which consists of 
an upsampling section that uses "up" convolution to increase 
the image size. Furthermore, the combination of CNNs and 
recurrent neural networks (RNNs), represented by long 

short-term memory (LSTM), has been applied to analysis 
involving time-series data [28, 54].

We evaluated 13 key articles, including these milestones 
in the development of AI-based medical image analysis, to 
determine how citation network analysis can capture key 
articles. We identified eight articles in one or two clusters 
(Table 1), with a concentration of the characteristic key-
words of the clusters, and the titles and abstracts of the arti-
cles with the highest number of citations confirmed that the 
clusters were related to AI-based medical image analysis and 
that identifying actual research trends was possible. Moreo-
ver, we analyzed the papers reported each year and found 
that the number of constituent papers of the cluster contain-
ing the key articles increased dramatically after 2014, with 
the rank rising from 13 to 6th, suggesting that the technology 
related to diagnostic imaging has progressed dramatically. 
This might have led to a major clinical trial of IDx-DR in 
2017. Since then, research activity has increased in this field, 
as can be seen from the rank of cluster numbers and number 
of citations in the key articles.

We did not include five of the 13 selected articles in the 
analysis: three papers were not included in the WoS and the 
other two [31, 39] on clinical evaluation were not found with 
the set query, because there was no mention of the underly-
ing technology in the abstract or title, and the methods were 
mainly described as product names or computer detection 
in either paper.

Next, we explored trends in the development of new med-
ical products using AI by re-analyzing “young” clusters with 
a late average of the publication year of constituent papers 
to identify more specific topics by sub-clustering (Table 2). 
This allowed us to objectively look at the landscape of AI-
based medical technology. We focused on EEG and ECG, 
which have the potential to lead to the development of new 
medical devices, and followed the cluster containing the key 
article on this topic. As shown in Fig. 3, the increase in con-
stituent papers and citations of key articles suggested that 
this topic developed significantly between 2017 and 2018, a 
couple of years before the FDA issued a guidance draft on 
brain–computer interfaces in 2019, which was finalized in 
2021 [78]. Regarding the FDA’s activity, a public workshop 
was held on November 21, 2014, to promote open discus-
sion of scientific and clinical considerations related to the 
development of BCI devices, suggesting that the FDA might 
consult public on product development. The ECG is already 
at the stage of realization in smartwatches and other devices 
and was judged to be of low novelty. The FDA has already 
approved the app for the Apple Watch®.

This study also showed that analysis every several 
months might allow us to identify the candidate topics for 
further investigation through the rapid rise of the rank of 
cluster number, i.e., a sharp increase in constituent papers 
(2014–2015 in Fig. 2 and 2017–2018 in Fig. 3), or the 
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emergence of a new cluster spun out of the original one 
(2017–2018 in Fig. 2 and 2016–2017 in Fig. 3), which may 
be a signal of significant research progress.

This analysis has the following limitations. Which would 
be detected by this method as well. Therefore, it is neces-
sary to determine whether the candidate topic is a good idea 
or We included papers in major journals in WoS relatively 
quickly after publication, but there might be a delay of 
approximately six months for almost all journals and some 
research areas may not be reflected in WoS sufficiently 
quickly, which may delay the identification of research 
trends. Until the birth of Scopus and Google Scholar in 
2004, WoS was the only tool for citation analysis [79]. Even 
today, WoS is known to have a longer record period than 
Scopus and is one of the most effective databases in the 
field of history. In addition to WoS, Scopus and PubMed 
have also become powerful databases, and future studies 
are needed to evaluate the robustness of those databases. 
Although this paper does not show these data, we also ana-
lyzed the papers obtained from PubMed; however, approxi-
mately 30% of the papers formed a citation network and only 
five of the 13 key articles were included. One possible rea-
son for not being able to extract appropriate research papers 
from PubMed was that many papers did not use terminol-
ogy related to AI-based technologies. This suggests that 
the choice of the literature database according to the target 
technology is also critical. Furthermore, research results in 
the field of machine learning, which covers basic technolo-
gies in the field of AI and other informatics fields, tends to 
be published as proceedings of international conference or 
arXiv.com as preprints than peer-reviewed journals, where 
researchers can directly exchange papers with each other via 
the Internet; therefore, the latest results cannot be covered 
by databases of academic papers, such as WoS or PubMed. 
A comparison of peer-reviewed journal-based analysis and 
proceeding—or preprints-based analysis—needs to be con-
ducted in the future.

Experts who have a deep understanding of innovative 
technologies would be able to predict the development of 
medical products based on the technology. However, it might 
sometimes be inappropriate to narrow the scope of consid-
eration based solely on experts’ opinions [80]. Extracting 
a limited number of novel topics that may affect pharma-
ceutical regulations from a vast amount of information on a 
human basis is difficult and using a computer-based method 
(such as this study) is reasonable and appropriate. This study 
assumes that the ultimate users are regulators who evaluate 
technologies in the mid to long term. Because policymakers 
and decision makers are not always experts in their fields, 
providing the status of the academic field in a systematic 
method supports decision making that can be reproduced 
by anyone. In our study, we used citation network analysis 
and text mining to classify the entire papers in the target 

field in terms of research topic. Furthermore, we identified 
the topics of the clusters based on the characteristic cluster 
keywords and titles of the most cited papers. We objectively 
evaluated the popularity and novelty of a topic based on 
the number of papers and the median year of publication. 
We consider that the feature of the method is suitable for a 
primary screening by regulators to pick up candidate topics 
from wide range of scientific fields, and the topics would be 
further evaluated based on the opinion of experts of the topic 
and other sources such as patents.

We considered that limiting the search to papers in the 
clinical development stage was rather inappropriate because 
the purpose of horizon scanning is to detect technologies 
that have the potential to reach clinical development in the 
pre-clinical stage. When searching for papers on clinical 
development, papers on related technologies in the earlier 
stages are less likely to not include in the analysis, which 
involves the risks that do not reflect the overall picture of the 
field. The overall landscape of R&D can be grasped more 
objectively by analyzing a wide range of papers, for example 
and then target cluster, the cluster on clinical development 
is obtained by clustering and re-clustering. Information on 
the clinical development stage can be directly and timely 
obtained from clinical trial registries such as ClinicalTrials.
gov. The information provided by these other tools from 
analysis such as “Tools for Innovation Monitoring (TIM)” 
is useful for determining the query for the papers data in 
our method.

Another possible bias, as mentioned [81], is that research-
ers mainly check and cite papers written in their native lan-
guage or journals they contribute to, or that they tend to 
search and cite papers using the same terminology and not 
others, even when the technological meaning is the same.

Considering the opinions of experts in the field regarding 
candidate topics to be investigated will help in overcoming 
the aforementioned limitations. Our method provides infor-
mation about the median and average year of publication of 
the papers in the cluster and the newness of the Hub paper, 
but prioritization requires the perspective of an expert in the 
field. Academic size and speed of discussion do not neces-
sarily determine prioritization; however, depending on the 
social demands and feasibility of the technologies included 
in the individual topics. Hence, a content-based evaluation 
is necessary.

Conclusion

This study showed that citation network analysis and text 
mining for bibliographic information analysis of the rap-
idly developing field of AI-based medicine can be used 
for horizon scanning for medical products that require 
new assessment approaches. We detected recent research 
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developments, including AI-based ECG/EEG. We sug-
gest that this method be used as a primary screening tool 
for horizon scanning, and that the analysis results be used 
more effectively and appropriately by incorporating the 
opinions of experts.
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