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Abstract

Horizon scanning for innovative technologies that might be applied to medical products and requires new assessment
approaches to prepare regulators, allowing earlier access to the product for patients and an improved benefit/risk ratio. The
purpose of this study is to confirm that citation network analysis and text mining for bibliographic information analysis can
be used for horizon scanning of the rapidly developing field of Al-based medical technologies and extract the latest research
trend information from the field. We classified 119,553 publications obtained from SCI constructed with the keywords “con-
ventional,” “machine-learning,” or “deep-learning" and grouped them into 36 clusters, which demonstrated the academic
landscape of Al applications. We also confirmed that one or two close clusters included the key articles on Al-based medical
image analysis, suggesting that clusters specific to the technology were appropriately formed. Significant research progress
could be detected as a quick increase in constituent papers and the number of citations of hub papers in the cluster. Then
we tracked recent research trends by re-analyzing “young” clusters based on the average publication year of the constituent
papers of each cluster. The latest topics in Al-based medical technologies include electrocardiograms and electroencepha-
lograms (ECG/EEG), human activity recognition, natural language processing of clinical records, and drug discovery. We
could detect rapid increase in research activity of Al-based ECG/EEG a few years prior to the issuance of the draft guidance
by US-FDA. Our study showed that a citation network analysis and text mining of scientific papers can be a useful objective
tool for horizon scanning of rapidly developing Al-based medical technologies.

Keywords Horizon scanning - Citation network - Delivery of health care/trends - Diagnostic imaging - Artificial
intelligence

Introduction

The application of innovative technologies to the develop-
ment of medical products is expected as a potential new
treatment or diagnostic tool for various diseases. Conversely,
in some cases, the application of conventional development
and evaluation concepts and/or regulatory frameworks to
innovative technologies is inappropriate. In some cases in
the past, a guidance document was issued when the clinical
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development is about to begin, the development of compan-
ion diagnostics in Japan, the U.S., and the EU. However, the
guidance must be provided earlier, such as before starting
clinical development planning. Therefore, the early identifi-
cation of innovative technologies with a potential application
to medical products through horizon scanning would encour-
age regulatory authorities to establish new approaches to
assess their quality, efficacy, and safety to advice developers
and revise their regulations if necessary. Doing so contrib-
utes to timely patient access and improve the benefit/risk
ratio of the product [1].

The International Coalition of Medicines Regulatory
Authorities ICMRA), consisting of regulatory authorities,
has recognized the need to respond quickly to innovative
technologies and promotes the use of “horizon scanning” to
identify such technologies [2]. The ICMRA Innovation con-
cept note [3] describes horizon scanning as a broad-reach-
ing information-gathering monitoring activity to anticipate
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emerging products and technologies and potentially disrup-
tive research avenues. Two major methods exist for acquiring
the data needed to create high-quality horizon scanning [4].
The expert-based approach mainly uses the tacit knowledge
of domain experts, such as the Delphi method. Tradition-
ally, horizon scanning has been conducted predominantly
in Europe for policy making, scientific research funding,
and health-care budgeting purposes, by surveying a variety
of sources such as the Internet, government, international
organizations and companies, databases, and journals [5, 6].
This type of expert-based approach is very difficult to imple-
ment in the current information explosion. Moreover, indi-
vidual experts must subdivide their domain of expertise to
keep up with the growth of their respective domains, which
makes their perception of the big picture extremely subjec-
tive [7]. Computer-based approaches collect and analyze
vast amounts of formal knowledge, such as articles, patents,
and newspapers. Recently, the European Commission (EC)
published reports, such as “Weak signals in Science and
Technologies 2019 Report” based on Tools for Innovation
Monitoring (TIM) [8] that use text mining and keywords in
the scientific literature. The Japanese National Institute of
Science and Technology Policy (NISTEP) also uses a digi-
tal tool to analyze academic papers; the top 1% of citations
contributes to science and innovation policy planning.

These cover the medical field as a sub-survey of the over-
all science survey and are used in efforts to identify and
evaluate advanced technologies.

Hines et al. reported that, in the medical and health-care
field, most horizon-scanning methods used manual or semi-
automated, with relatively few automated aspects, which
may be resolved in the not-too-distant future via the rapidly
evolving fields of machine learning and artificial intelligence
[6]. To solve this challenge, a computer-based approach can
complement the expert-based approach as it fits the scale of
the information [9, 10] because they are compatible with the
scale of the information. The two types of computer-based
approaches are citation mining and text mining.

The citation-based approach assumes that the cited papers
and their research topics are similar. Analyzing this cita-
tion network allows us to understand the structure of the
research areas constituting the large volume of papers that
we can read. These methods have been widely used as pow-
erful tools to visualize and understand the structure of a
research field and to identify new trends and research direc-
tions; they also have been proven effective in various stud-
ies [11-13]. For example, Kajikawa et al. [7] used citation
network analysis to track emerging research areas in the field
of sustainable science effectively and efficiently. Many fields
have applied similar approaches, including energy research
[14], regenerative medicine [15], robotics, and gerontol-
ogy [16]. Sakata et al. [17] proposed a meta-structure of
academic knowledge on patent and innovation research to
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effectively assist policy discussions on intellectual property
system reform. They have shown that network analysis and
machine learning methods are useful for understanding and
predicting the development of technologies such as solar
cells [18] and nanocarbons [19].

Many fields have used also text mining to analyze tech-
nology trends; Kostoff et.al. (2004) analyzed multi-word
phrase frequencies and phrase proximity to extract energy-
related taxonomic structures [20]. Another study discussed
the trend in the field of information security by creating a
network of co-occurring words and focusing on clusters with
network centralities [21]. Ohniwa et al. (2010) focused on
the MeSH terms included in the top 5% of the increase rate
in a given year in the field of life science [22]. A study to
discuss a community’s the future prospects by calculating
the cosine similarity of terms in the session content from the
data of conference proceedings focused on the field related
to the World Wide Web [23].

R&D strategists and policymakers in many fields find
citation network analysis and text mining useful to under-
stand the broad scope of scientific and technological
research.

It is difficult to understand the semantics of clusters based
on citation relations alone. Text mining can reveal subject
relationships across citations and provide insights into the
diffusion of knowledge into interdisciplinary research and
development. The addition of text mining to citation-based
bibliometrics makes accessible the large-scale multigenera-
tional citation studies necessary to display the full impact
of research [24].

Text mining is extremely sensitive to certain terms. When
only text mining is used, the problem of terminological dis-
tortions cannot be ignored. In addition, it is difficult to sepa-
rate homonyms that are used in different fields with different
meanings. Hao et al. (2018) attempted to identify research
fronts using only text mining in the medical field [25]. They
highlighted the challenges of clustering by text similarity,
which makes the results vulnerable to the method selection.
At the same time, they observed that citation relationships
are highly valuable in explaining relationships in scientific
knowledge.

Therefore, there are challenges in analyzing trends using
only one citation network and text mining. The associations
between papers in citation networks reflect authors’ back-
ground knowledge which cannot be extracted by simple text
mining.

Our study proposes an objective methodology for hori-
zon scanning that identifies innovative technologies to be
applied to medical products from entire research papers in
the target field using citation network analysis methods and
text mining. The three types of citation network analysis
are direct citation, bibliographic merging, and co-citation.
Existing studies have shown that direct citation is the most
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appropriate for obtaining leading-edge information on trends
[26]. Other fields have widely used the approach of clus-
tering the subject area into subcategories by direct citation
networks and interpreting the contents of the clusters by
text mining [7, 14—17], but insufficient examples exist of
the application of advanced technologies in medical-related
fields. We focus on Al-based medical image analysis as a
retrospective example of Al-based medical devices that have
been developed in recent years, applied in many fields, and
selected for consideration in ICMRA [1].

Methods
Extraction of Paper Data for Analysis

We used “convolutional” OR “deep learning” in the review
article of medical image analysis [27]; we used “machine-
learning” to include a wide range of conventional studies.
As a result, we obtained 140,794 papers that contain “con-
volutional*” OR “machine-learning” OR “deep-learning”
from the SCI (Science Citation Index) and SSCI (Social
Sciences Citation Index) indexed by Web of Science Core
Collection (WoS, Clarivate analytics), between January 1,
1900, and December 31, 2020, (1900-2020). This database
has the longest history of containing bibliographic informa-
tion from academic papers. It is also used for many bib-
liometric analyses because of its excellent searchability
and comprehensiveness as a database platform [7, 14-17].

Table 1 Key articles and the clusters in which they are contained

In addition to the data in 1900-2020, we created data-
sets for 1900-2012, 1900-2013, 1900-2014, 1900-2015,
1900-2016, 1900-2017, 1900-2018, and 1900-2019 and
identified the cluster that contains key articles for each year.

To track the development history of Al-based medical
image analysis and to select keywords for the extraction of
the papers for citation network analysis, we selected 13 key
articles [28-39] (Table 1 presents eight articles included
in the analysis data), including several papers cited in the
review article [28] on the application of deep learning in
medical image analysis and a study [39] that led to the
clinical development of IDx-DR, a retinal imaging software
approved as a medical device by the US Food and Drug
Administration (FDA) in 2018.

Citation Network Analysis

In this study, we converted the citation network into an
unweighted network with papers as nodes and citation
relationships as links. Papers with no citations as the
largest component were considered digressional and were
ignored in this study (Step 2 in Fig. 1). The core paper
with the highest number of citations appears at the center
of the citation relations. Papers with no citation rela-
tionships with other papers were considered deviant and
ignored in this study. The network was then divided into
several clusters using the topological clustering method.
Topological clustering is a clustering method based on
the graph structure of a network; here, we use modularity

Web of science

Times cited
within each
Label Paper title published year Cluster No cluster
A Gradient-based learning applied to document recognition. ~ 1998 1 1590
[27]
B Learning hierarchical features for scene labeling. [29] 2012 1 304
C Imagenet classification with deep convolutional neural 2012 1 1742
networks. [30]
D Deep learning. [34] 2015 3 1825
E Pulmonary nodule detection in CT images: false positive 2016 3 239
reduction using multi-view convolutional networks. [36]
F Improved automated detection of diabetic retinopathy on 2016 3 151
a publicly available dataset through integration of deep
learning. [37]
G Dermatologist-level classification of skin cancer with deep 2017 3 1015
neural networks. [38]
H A survey on deep learning in medical image analysis. [28] 2017 3 1127

The key articles that have contributed to the development of Al-based medical image analysis were selected based on a review article on Al-
based medical image analysis [32]. The clusters obtained from the citation network analysis of these articles are indicated. The clusters are
numbered in descending order of the number of constituent papers included. The cells for papers not included in the analysis were shadowed. 8
articles are listed, excluding the 5 articles [31-33, 35, 39] that were excluded
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Web of Science®
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Stepl: Extracting Dataset

Step2: Creating direct
citation network

Step3: Clustering

Step4: Visualization

1

1

1

: Those groups of papers (Clusters) are

: mapped into an Academic Landscape,
1 which helps visualize the relationship
! of technologies.

Fig.1 Steps of clustering and making Academic Landscape based
on citation network. This figure has been published in reference [10].
The procedure of the citation network is as follows: (1) Extract the
dataset of academic papers for analysis. (2) To extract the data, con-
vert the citation network into an unweighted network with papers as
nodes and citation relationships as links. (3) Divide the network into

maximization. A cluster module in a citation network is a
group of papers in which the citation relations are divided
by using a modularity (Q value) maximization method
and are densely aggregated (Louvain method) [19, 40].
The modularity maximization method appreciates network
partitioning so that the intracluster is dense and the inter-
cluster is sparse. The modularity maximization method
determines an optimal partitioning pattern by extracting
the partitioning pattern that maximizes the modularity
using a greedy algorithm. Q is an evaluation function of
the degree of coupling within a cluster and between clus-
ters, as follows:

1 kik;
Q=5 > <Aij - 2_,71)5(‘1"%‘)’

)

where A; represents the weight of the edge between i
and j, k; = Zinj is the sum of the weights of the edges
attached to vertex i, c; is the community to which vertex i
is assigned, d-function 8(u, v) is 1 if u = v and 0 otherwise,
andm = %ZUAU

The clusters are assigned labels corresponding to the
size of the number of papers included. The characteristics
of each cluster were confirmed by extracting a summary
of frequently cited academic papers in the cluster and the
characteristic keywords in the cluster.

Moreover, we computed the term frequency-inverse clus-
ter frequency (TF-ICF) to extract the characteristic keywords
of each cluster. The TF gives a measure of the importance
of a term in a particular sentence, whereas the ICF provides
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several clusters by using the topological clustering method. (4) Use a
large graph layout (LGL), based on a force-direct layout algorithm,
to display the largest connected component of the network to gener-
ate coordinates for the nodes in two dimensions and to visualize the
citation network by expressing inter-cluster links with the same color.

a measure of the general importance of a term. The TF-ICF
of a given term i in a given cluster j is given by

TE-ICF = ff;; - icf; = tf ;- log(N /cf ),

where N is the total number of sentences. Each cluster was
labeled based on the resulting keywords and sentences.

To confirm the trends in the research field, we extracted the
mean or median year of publication of papers in each clus-
ter, as well as information on journals, authors, and affiliated
institutions.

After clustering the network, visualization is converted to
intuitively infer relationships among these clusters. We used a
large graph layout (LGL) based on a force-direct layout algo-
rithm [41, 42]. This layout can display the largest connected
component of the network to generate coordinates for nodes in
two dimensions. We visualize the citation network by express-
ing inter-cluster links with the same color (Step 4 in Fig. 1).
However, the position of the clusters and the distance between
clusters did not indicate an approximation of the content. Fig-
ure 1 shows an overview of this process.

For the extracted dataset, we converted the citation net-
work into an unweighted network with papers as nodes and
citation relationships as links (Step 2). The network was then
divided into several clusters using the topological clustering
method (Step 3). Moreover, a LGL, based on a force-direct
layout algorithm, displayed the largest connected component
of the network to generate coordinates for the nodes in two
dimensions, visualizing the citation network by expressing
inter-cluster links with the same color (Step 4).



Therapeutic Innovation & Regulatory Science (2022) 56:263-275 267

Year
2011 2012 2013 2014 2015 2016 2017 - 2018 - 2019 _-2020-_ 2021
0
1 fr\\ '
2 - /\/’ oY
3
2 AT
.5
S 6
g 7
S 8
© o9
10
11
12
13
14
15 o
16
17
A B ¢ D Times cited
E F OG OH within each cluster

Fig.2 Tracking clusters containing key articles. We analyzed papers
obtained from WoS published up to the indicated years. We plotted
the cluster numbers that contained the eight key articles shown in

Results
Results of Citation Network Analysis

We analyzed 140,794 papers and found that 119,553 (85%)
formed a citation network. We divided this network into 36
clusters by extracting the largest linkage component from all
linkage components via direct citation of papers (excluding
the gray linkage not involved in cluster formation shown in
Figs. 1, 2). The contents of the top 10 clusters, which con-
tain approximately 75% of the papers in a citation network,
were estimated from the characteristic keywords appearing
in each cluster and the titles and abstracts of the papers with
the highest number of citations. The cluster numbers (num-
ber of papers) and their contents are as follows:

Cluster 1 (14,033): Basic studies on deep learning and
convolutional neural networks (CNNs), including geo-
graphic information system (GIS) image analysis using
remote sensing.

Table 1, with the circle sizes representing the approximate number of
citations in the cluster for each paper

Cluster 2 (13,309): Drug discovery technologies
related to proteins, peptides, efc., using machine learning.

Cluster 3 (10,992): Applied research in medical image
analysis.

Cluster 4 (9867): Feature classification using ensemble
methods to increase accuracy by combination.

Cluster 5 (7829): Natural language processing of clini-
cal records.

Cluster 6 (7412): Application of deep learning to fault
diagnosis, for example, motor condition monitoring for
machines running on electric motors.

Cluster 7 (6571): Machine learning (ML) and data min-
ing (DM) methods for cyber analysis.

Cluster 8 (5815): Application to traffic flow informa-
tion analysis for the implementation of intelligent trans-
port systems.

Cluster 9 (4371): Single-image super-resolution (SR)
to reconstruct high-quality data.
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Fig.3 Tracking clusters related to ECG and EEG. We analyzed
papers obtained from WoS published up to the indicated years. A
cluster number indicates the cluster on ECG and EEG. The circle
sizes indicate the approximate citation frequency of the key article,

Cluster 10 (4333): Classification of individuals based on
the analysis of text information from social media, such as
emotions and behavior.

Table 1 presents the clusters in which key articles were
included. Three papers (labeled A, B, and C) based on image
recognition were found in clusters 1 and 5 (labeled D, E,
F, G, and H) on image diagnosis in cluster 3, including the
review article “Deep Learning” [34] (labeled D), which is
often cited in medical field papers. This indicates that we
appropriately formed clusters related to medical imaging in
cluster 3.

Tracking the Time Series of Key Articles

We analyzed papers published each year and identified the
cluster containing the key papers in Table 1 and the number
of citations within the cluster to assess the position of the
research on medical imaging in the past. As shown in Fig. 2,
all the papers were included in the same cluster until 2015
and the rank of cluster number increased by one until 2014.
In 2015, the number of papers in this field increased rapidly
and the rank of cluster numbers rose from 13th in 2014 to
6th, suggesting that great scientific attention has increased.
In 2016, a key paper on the imaging diagnosis of diabetic
retinopathy (F in Table 1) was in cluster 7, which comprised
papers on medical image analysis, and the other seven key
articles were in cluster 3. Subsequently, in 2017, cluster 1
contained all the key articles, but from 2018 onward, a new
separate cluster containing papers on image analysis using
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[73] and the number in each circle represents the number of citations
in the cluster. Clusters on ECG and EGG were first detected in 2015
as cluster number 10 and were classified into cluster numbers 11, 21,
1, 15, and 15 for 2016, 2017, 2018, 2019, and 2020, respectively

deep learning was formed. It should be noted that the num-
ber of citations of key articles also increased.

Thus, most key articles were in one or two clusters, sug-
gesting that we properly formed the clusters related to the
targeted Al-based medical image analysis. The research
status of the clusters can also be confirmed by the cluster
numbers, which reflect the number of papers comprising
the cluster and the number of citations of the key articles.

Recent Research Trends in Al-Based Medical
Products

To detect the latest research trends in Al-based medical
products, we focused on “younger” clusters with an aver-
age publication year later than 2017 as research progress
could be observed over three years for Al-based medical
image analysis (Fig. 3). We re-analyzed clusters 3, 15, 12, 5,
13, and 2, which we considered to be closely related to Al-
based medical technologies. We listed these clusters in order
of average publication year. Table 2 lists the sub-clusters
formed by re-analysis of the most cited articles (hub-paper)
[34, 43—74] in each subcluster, suggesting recent research
trends in this field as follows:

Cluster 3 Applied research in medical image analysis.

Cluster 15 Electrocardiogram, electroencephalogram,
and other electrical biosignals of human activity.

Cluster 12 Human activity recognition.

Cluster 5 Natural language processing of clinical records.
Cluster 13: Neuroimaging analysis.
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Cluster 2 Drug discovery with machine learning related
to proteins, peptides, efc.

Among these Al-based medical technologies, EEG analy-
sis was identified for applications in epileptic seizure predic-
tion, emotional analysis, and brain—computer interfaces, for
which the FDA issued draft guidance on non-clinical and
clinical trials in 2019.

Electrocardiograms (ECGs) and electroencephalograms
(EEGS) in cluster 15 are most likely to be applied to new
medical devices; therefore, we tried to follow the cluster
containing a key paper on the application of deep learning
to EEG analysis [75], which was one of the triggers for the
development of this field. During 2015-2016, the article was
included in the same cluster as other neuroimaging tech-
niques, such as MRI (MEG, fNIRS, etc.). In 2017, the key
article was found in a separate cluster numbered 20 from
other neuroimaging techniques, suggesting that a new clus-
ter specific to the application of deep learning to EEG was
formed. Then, in 2018, we included the article in cluster 1
of the applications of deep learning in various fields but was
included in specific clusters re-formed, numbered 14 and 15
in 2019 and 2020, respectively; the number of citations of
the article increased. This suggests that research in this field
has developed rapidly since 2017.

Discussion

In this study, we examined the possibility of using this analy-
sis method for horizon-scanning targeting Al-based medical
image analysis. IDx-DR, an image-analysis software for the
automatic diagnosis of diabetic retinopathy, received FDA
certification in 2018. The Al characteristics are self-learn-
ing, the algorithm for learning data during the development
of a medical product is in a black box, and performance
changes as the product continues learning during clinical
use. This has become an interesting dilemma for regulators
[76].

We assessed the feasibility of using citation network anal-
ysis and text mining to identify trend history in Al-based
medical image analysis research and development as fol-
lows: Research on convolutional neural networks (CNNs),
the current leading technology in deep learning that arose
in the 1970s, renewed interest in neural networks was Wer-
bos’s multi-layer networks [77]. LeNet [54], a CNN-based
handwritten number recognition system—was developed
and succeeded by a CNN called AlexNet [30], which is a
key trigger for renewed interest in neural networks. Later,
the U-net [33] architecture was proposed, which consists of
an upsampling section that uses "up" convolution to increase
the image size. Furthermore, the combination of CNNs and
recurrent neural networks (RNNs), represented by long

short-term memory (LSTM), has been applied to analysis
involving time-series data [28, 54].

We evaluated 13 key articles, including these milestones
in the development of Al-based medical image analysis, to
determine how citation network analysis can capture key
articles. We identified eight articles in one or two clusters
(Table 1), with a concentration of the characteristic key-
words of the clusters, and the titles and abstracts of the arti-
cles with the highest number of citations confirmed that the
clusters were related to Al-based medical image analysis and
that identifying actual research trends was possible. Moreo-
ver, we analyzed the papers reported each year and found
that the number of constituent papers of the cluster contain-
ing the key articles increased dramatically after 2014, with
the rank rising from 13 to 6th, suggesting that the technology
related to diagnostic imaging has progressed dramatically.
This might have led to a major clinical trial of IDx-DR in
2017. Since then, research activity has increased in this field,
as can be seen from the rank of cluster numbers and number
of citations in the key articles.

We did not include five of the 13 selected articles in the
analysis: three papers were not included in the WoS and the
other two [31, 39] on clinical evaluation were not found with
the set query, because there was no mention of the underly-
ing technology in the abstract or title, and the methods were
mainly described as product names or computer detection
in either paper.

Next, we explored trends in the development of new med-
ical products using Al by re-analyzing “young” clusters with
a late average of the publication year of constituent papers
to identify more specific topics by sub-clustering (Table 2).
This allowed us to objectively look at the landscape of Al-
based medical technology. We focused on EEG and ECG,
which have the potential to lead to the development of new
medical devices, and followed the cluster containing the key
article on this topic. As shown in Fig. 3, the increase in con-
stituent papers and citations of key articles suggested that
this topic developed significantly between 2017 and 2018, a
couple of years before the FDA issued a guidance draft on
brain—computer interfaces in 2019, which was finalized in
2021 [78]. Regarding the FDA’s activity, a public workshop
was held on November 21, 2014, to promote open discus-
sion of scientific and clinical considerations related to the
development of BCI devices, suggesting that the FDA might
consult public on product development. The ECG is already
at the stage of realization in smartwatches and other devices
and was judged to be of low novelty. The FDA has already
approved the app for the Apple Watch®.

This study also showed that analysis every several
months might allow us to identify the candidate topics for
further investigation through the rapid rise of the rank of
cluster number, i.e., a sharp increase in constituent papers
(2014-2015 in Fig. 2 and 2017-2018 in Fig. 3), or the
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emergence of a new cluster spun out of the original one
(2017-2018 in Fig. 2 and 2016-2017 in Fig. 3), which may
be a signal of significant research progress.

This analysis has the following limitations. Which would
be detected by this method as well. Therefore, it is neces-
sary to determine whether the candidate topic is a good idea
or We included papers in major journals in WoS relatively
quickly after publication, but there might be a delay of
approximately six months for almost all journals and some
research areas may not be reflected in WoS sufficiently
quickly, which may delay the identification of research
trends. Until the birth of Scopus and Google Scholar in
2004, WoS was the only tool for citation analysis [79]. Even
today, WoS is known to have a longer record period than
Scopus and is one of the most effective databases in the
field of history. In addition to WoS, Scopus and PubMed
have also become powerful databases, and future studies
are needed to evaluate the robustness of those databases.
Although this paper does not show these data, we also ana-
lyzed the papers obtained from PubMed; however, approxi-
mately 30% of the papers formed a citation network and only
five of the 13 key articles were included. One possible rea-
son for not being able to extract appropriate research papers
from PubMed was that many papers did not use terminol-
ogy related to Al-based technologies. This suggests that
the choice of the literature database according to the target
technology is also critical. Furthermore, research results in
the field of machine learning, which covers basic technolo-
gies in the field of Al and other informatics fields, tends to
be published as proceedings of international conference or
arXiv.com as preprints than peer-reviewed journals, where
researchers can directly exchange papers with each other via
the Internet; therefore, the latest results cannot be covered
by databases of academic papers, such as WoS or PubMed.
A comparison of peer-reviewed journal-based analysis and
proceeding—or preprints-based analysis—needs to be con-
ducted in the future.

Experts who have a deep understanding of innovative
technologies would be able to predict the development of
medical products based on the technology. However, it might
sometimes be inappropriate to narrow the scope of consid-
eration based solely on experts’ opinions [80]. Extracting
a limited number of novel topics that may affect pharma-
ceutical regulations from a vast amount of information on a
human basis is difficult and using a computer-based method
(such as this study) is reasonable and appropriate. This study
assumes that the ultimate users are regulators who evaluate
technologies in the mid to long term. Because policymakers
and decision makers are not always experts in their fields,
providing the status of the academic field in a systematic
method supports decision making that can be reproduced
by anyone. In our study, we used citation network analysis
and text mining to classify the entire papers in the target
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field in terms of research topic. Furthermore, we identified
the topics of the clusters based on the characteristic cluster
keywords and titles of the most cited papers. We objectively
evaluated the popularity and novelty of a topic based on
the number of papers and the median year of publication.
We consider that the feature of the method is suitable for a
primary screening by regulators to pick up candidate topics
from wide range of scientific fields, and the topics would be
further evaluated based on the opinion of experts of the topic
and other sources such as patents.

We considered that limiting the search to papers in the
clinical development stage was rather inappropriate because
the purpose of horizon scanning is to detect technologies
that have the potential to reach clinical development in the
pre-clinical stage. When searching for papers on clinical
development, papers on related technologies in the earlier
stages are less likely to not include in the analysis, which
involves the risks that do not reflect the overall picture of the
field. The overall landscape of R&D can be grasped more
objectively by analyzing a wide range of papers, for example
and then target cluster, the cluster on clinical development
is obtained by clustering and re-clustering. Information on
the clinical development stage can be directly and timely
obtained from clinical trial registries such as ClinicalTrials.
gov. The information provided by these other tools from
analysis such as “Tools for Innovation Monitoring (TIM)”
is useful for determining the query for the papers data in
our method.

Another possible bias, as mentioned [81], is that research-
ers mainly check and cite papers written in their native lan-
guage or journals they contribute to, or that they tend to
search and cite papers using the same terminology and not
others, even when the technological meaning is the same.

Considering the opinions of experts in the field regarding
candidate topics to be investigated will help in overcoming
the aforementioned limitations. Our method provides infor-
mation about the median and average year of publication of
the papers in the cluster and the newness of the Hub paper,
but prioritization requires the perspective of an expert in the
field. Academic size and speed of discussion do not neces-
sarily determine prioritization; however, depending on the
social demands and feasibility of the technologies included
in the individual topics. Hence, a content-based evaluation
is necessary.

Conclusion

This study showed that citation network analysis and text
mining for bibliographic information analysis of the rap-
idly developing field of Al-based medicine can be used
for horizon scanning for medical products that require
new assessment approaches. We detected recent research
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developments, including Al-based ECG/EEG. We sug-
gest that this method be used as a primary screening tool
for horizon scanning, and that the analysis results be used
more effectively and appropriately by incorporating the
opinions of experts.
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