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Abstract
Background

Hematopoietic stem cells (HSCs) derived from birth through adult possess differing differen-
tiation potential for T or B cell fate in the thymus; neonatal bone marrow (BM) cells also have
a higher potential for B cell production in BM compared to adult HSCs. We hypothesized
that this hematopoietic-intrinsic B potential might also regulate B cell development in the thy-
mus during ontogeny.

Methods

Foxn1"#°“ mutant mice are a model in which down regulation of a thymic epithelial cell
(TEC) specific transcription factor beginning one week postnatal causes a dramatic reduc-
tion of thymocytes production. In this study, we found that while T cells were decreased, the
frequency of thymic B cells was greatly increased in these mutants in the perinatal period.
We used this model to characterize the mechanisms in the thymus controlling B cell
development.

Results

Foxn1"#°“ mutants, T cell committed intrathymic progenitors (DN1a,b) were progressively

reduced beginning one week after birth, while thymic B cells peaked at 3—4 weeks with pre-
B-Il progenitor phenotype, and originated in the thymus. Heterochronic chimeras showed
that the capacity for thymic B cell production was due to a combination of higher B potential
of neonatal HSCs, combined with a thymic microenvironment deficiency including reduction
of DL4 and increase of IL-7 that promoted B cell fate.

Conclusion

Our findings indicate that the capacity and time course for thymic B-cell production are pri-
marily controlled by the hematopoietic-intrinsic potential for B cells themselves during
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ontogeny, but that signals from TECs microenvironment also influence the frequency and
differentiation potential of B cell development in the thymus.

Introduction

The thymus is the primary site of T cell development, differentiation, and maturation, and is
seeded periodically by lymphoid progenitor cells (LPCs) from outside the thymus [1-4]. At
least three discrete waves of LPCs seed the thymus at different stages from various hematopoi-
etic tissues including the Aorta-gonado-mesonephros region (AGM), fetal liver (FL), and bone
marrow (BM) [5,6], each of which has distinct lineage potentials [7-9]. A developmental
switch from fetal to adult HSCs occurs during the first to three weeks of postnatal life in mice
[10-12]. Adult HSC:s differ from fetal HSCs in number and phenotype, and thymus-seeding
LPCs derived from adult HSCs possess multiple lineage potentials for the development of T/B/
NK/DC and myeloid cells within the thymus [13-16]. HSCs demonstrate an age-related
decrease in B lineage potential between neonatal BM or cord blood and adult BM [7,17,18].
Fetal HSC:s also preferentially develop into B-1a type B cells, rather than the more conventional
postnatal B-2 (referred to as B) cells [19,20]. Thymic seeding progenitors (TSPs) in the neona-
tal thymus also appear to have higher B potential than those from adult thymus [21,22]. How-
ever, how does TSPs in variable potential undergo the B lineage commitment and expansion,
and be regulated by the thymic environment during neonatal to young adult is still unclear.

The vast majority of LPCs commit to a T cell fate upon entering the thymus via activation
of the Notch signaling pathway. Notch signaling between LPCs expressing Notch receptors
and thymic epithelial cells (TECs) expressing the Delta-like 4 (DL4) ligand is required for
LPCs to commit to the T lineage [23-25]. In the absence of Notch signaling, LPCs undergo B
lineage commitment in the thymus. TEC differentiation, proliferation, and functional mainte-
nance are dependent on TEC-specific transcription factor FOXN1 [26]. Foxnl down-regula-
tion at either fetal or postnatal stage reduces DI4 expression, which leads to an increase in
thymic B cells [27-29], specifically B-1a cells [27]. In addition to the direct loss of Notch signal-
ing, overexpression of IL-7, TCRp deficiency, and CD3e mutants have all been shown to pro-
mote B cell development in the thymus [30-32]. The wild-type adult thymus also produces a
small number of B cells (< 1% of total thymocytes, ~2 x 10* per day) that are exported to the
periphery [31]. Thymic B cells normally reside preferentially at the cortical-medullary junction
and express a high level of MHCII. Although their functional role in the thymus is not entirely
clear, thymic B cells have been recently implicated in negative selection during T cell develop-
ment [33-35]. However, the mechanisms that normally regulate B cell development in the thy-
mus, and the role of TECs in this process, are not known.

We previously generated a novel Foxn1 allele, designated Foxn1"“* [36). In this model,
Foxnl expression is normal at fetal stages, but down-regulated beginning postnatal day 7, caus-
ing progressive involution of the thymus and reduction of total thymocytes. In the current
study, we show that the earliest TCRo committed progenitors (DN1a/b [16]) generate a wave
of T cells around day 7 in both controls and Foxn1"*“ mutants accompanied by a transient
increase in thymic B cells. In the current study, we addressed the developmental kinetics and
the capability of production of thymic B cells, characterized this abnormal increase in B cells,
and identified their origin and the regulatory molecules in the thymus. We provide evidence
that although D14 and IL-7 levels influence the production of thymic B cells, the intrinsic B
potential of HSCs during neonatal versus young adult ages is key for the development of thy-
mic B cells. Our data demonstrate that the production of thymic B cells is controlled not only
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by changes in the B lineage potential of HSCs cells, but also by factors expressed by the thymic
epithelium that regulate B cell fate and developmental progression during the transition from
neonatal to young adult.

Material and methods

Mice

Foxn1"*“"1a% (7/7) mice were generated as described previously on a C57Bl6/J background
[36,37]. Foxnl™ heterozygous (Foxnl*’ nude) mice on a C57Bl6/] background (Stock No:
000664) were purchased from The Jackson Laboratory (Bar Harbor, ME). Foxn1'<#/mde (7/N)
mice were generated by crossing Z/Z with Foxn1*™“ mice. CD45.1 C57BL6/J mice (Stock
No: 002014) were purchased from Jackson Laboratory (Bar Harbor, ME). All analysis was per-
formed on littermate animals whenever possible. All mice were maintained in a specific patho-
gen-free (SPF) facility at University of Georgia. All experiments were approved by the
University of Georgia Institutional Animal Care and Use Committee.

Flow cytometry

Freshly isolated thymocytes in suspension (1x10°) were used for each sample. Cells were
blocked by anti-CD16/32 (Clone:93) antibody before staining. For tracing the kinetic pheno-
typic profile and counting the numbers of thymocyte subsets, anti-CD4 APC (GK1.5),
anti-CD8 FITC (53-6.7), anti-CD44 PE (IM7), and anti-CD25 biotin (3C7) followed by strep-
tavidin PerCP were used. For analyzing the profile of Lin" DN1ab T cells in the total DN1sub-
populations, phycoerythrin (PE) conjugated lineage markers anti-CD3 (145-2C11), CD4,
CD8, CD11c (N418), CD19 (6D5), Gr-1 (RB68-C5), TER-119 (TER-119), NK1.1 (PK136) plus
anti-CD25 PE antibodies were mixed and combined with anti-CD44 biotin followed with
streptavidin PerCP. The profile of DN1a through DN1e subsets was analyzed using anti-cKit-
APC (2B8) and CD24-FITC (M1/69) antibodies. For analysis of thymic B cells in total DN1
cells, PerCP conjugated anti-CD4, CD8 and CD25 antibodies with anti-CD19 PE, or NK1.1
PE and CD44-APC, CD24-FITC were used. Total thymic cells gated on CD197B220* (RA3-
6B2) were also analyzed for CD43 (1B11), CD93 (AA4.1), Ly51 (6C3), CD25, MHCII (M5/
114.15.2), IgM (RMM-1), IgD (11-26¢.2a) or CD5 (53-7.3) in a different panel. All antibodies
were purchased from Biolegend (San Diego, CA). The data were analyzed using CellQuest™
or Flowjo ™ software.

Cell sorting

For thymic B-cell sorting, a total thymus suspension was passed through a cell strainer, and
cells were stained by CD19 PE-Cy7, B220 APC, IgM + Lin PE, CD24 FITC and CD43
APC-Cy7 (1B11). Thymic progenitor B cells were gated on CD19+B220+CD24+CD43+/1°IgM’
subpopulations. For LSK cell transfer, BM suspension cells from 14 day and 3 months Ly5.1
mice were isolated and stained with PE-conjugated antibodies for the lineage markers cKit-
APC and Sca-1-FITC (D7, Biolegend). The LSK cells were gated on the Lin'Scal"cKit" sub-
population. All cells were sorted using a MoFlo™ cell sorter.

Chimera generation

BM cells were isolated from CD45.1 mice at indicated ages, and RBCs deleted by ACK-lysing
buffer (Cambrex Bio Science). To isolate T and B deleted BM cells, the suspension of BM cells
was incubated with purified rat anti-CD19 and CD3 antibodies and followed by anti-rat IgG
Dyna-beads (Invitrogen Life Technologies). The efficiency of T/B cell removal was higher than
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95%. 1x10” T/ B-depleted BM cells in 200pl PBS from CD45.1 mice at a different age were
retro-orbital transferred into sub-lethal (600 rad) irradiated CD45.2 mice at indicated age.
Donor (CD45.1) and host thymic cells (CD45.2) were analyzed 12 days after cell transfer. For
LSKs transfer, sorted 14-day or 3-month CD45.1 LSK cells were transferred respectively into
sub-lethally irradiated 1.5 month or 17-day old Z/Z mice by retro-orbital injection, 3000 LSK
cells per mouse. The donor and host thymic B cells were analyzed 6 weeks after transfer. For
competition experiments, BM cells from 3 months CD45.1 and day 20 CD45.2 BL6 were
mixed and then transferred into lethally (1100 Rad) irradiated Z/Z mice, then analyzed 12 days
after transfer.

To identify if the increased thymic progenitor B cells in mutants were seeded by circulating
progenitor B cells from BM or spleen, The B220*CD19*CD24"CD43*""° IgM" progenitor B
cells were sorted from CD45.1 BM and spleen. 5 x 10° mixed pre-B cells were then retro-
orbital injected into sub-lethal irradiated (600 Rad) adult Z/N (CD45.2) mice. 21 days later,
the donor cells were analyzed in the host.

Immunofluorescence

Thymi were removed and placed in OCT, frozen on dry ice, then sectioned at 10pm. Primary
antibodies rat anti-CD19, rabbit anti-K5 (AF138, Covance) or rabbit anti-B5t (polyclone,
MBL) followed by appropriate fluorescence-conjugated donkey secondary antibodies (Jackson
Immunoresearch) were used. Images were obtained using a Zeiss Axioplan2 imaging micro-
scope with an AxioCam HRM, and AxioVision Rel 4.5 software (Jena, Germany).

Statistical analysis

All data were collected in a Microsoft Excel file and analyzed using Prism software by one-way
analysis of variance (ANOVA)-Bonferroni test or student’s t-test, P value in two-Tailed.

Results
Foxnl down-regulation results in a transient increase in DN1 thymocytes

The Foxn1"“ allele causes a gradual down-regulation of Foxnl expression in TECs beginning
one week after birth, resulting in a rapid reduction of total thymocyte numbers, but a transient
increased frequency of CD4 CD8 DN cells that peaks at 21-28 days [36]. To investigate this
increase in more detail, we analyzed the DN subsets during this time frame in both Foxn 1'%/
(Z/Z) and Foxnl ™41%Z (7/N) mutants, which have one copy of a null allele and so have further
reduced Foxnl levels, and compared them to Foxnl +/1acZ (1+/7) control mice. This transient
increase was specifically due to an increased percentage of DN1 (CD44*CD25™"°) cells in both
Z/Z and Z/N mutants after day 7 (Fig 1A and 1B), reaching a peak of 60-80% of total DN cells at
day 21-28. However, DN1 and DN3 percentages were almost restored to the control level at 5
weeks of age in Z/Z, and were partially restored in Z/N mice (Fig 1B and 1D). Interestingly,
although the thymic microenvironment deficiency is more severe in Z/N mice [36], the kinetics
of the transient DN1 increase and of the DN3 reduction were similar in both Z/Z and Z/N mice,
indicating that the thymic microenvironment is not the cause of the kinetic changes in DN
subsets.

Thymic progenitors have reduced T but increased B cell potential after day
7 postnatal in Foxn1"*** thymus

The transient increase in DN1 and reduction in DN2 cells could have been due to a partial
block at the DN1-DN2 transition [36]; alternatively, it could also reflect a reduction in early
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Fig 1. Transient increase of DN1 and decrease of DN2, DN3 showed in the Foxn1'*Z thymus. (A). Representative

profiles of CD25 and CD44 on gated total CD4 CD8 DN thymocytes at day 21 in +/Z, Z/Z and Z/N mice. (B-E).
Percentages of DN1, DN2, DN3, and DN4 populations at various time points are summarized in the histogram. Each
assay and time point represents at least 5 individuals. One-way ANOVA results between Z/Z, Z/N test groups and +/Z
control group at various time point: *P <0.05, **P <0.01, ***P <0.001. Bars indicate means + SEM.

https://doi.org/10.1371/journal.pone.0193189.9001

thymic progenitors (ETPs). cKit" DN1a,b subsets represent ETPs that commit to the TCRof8
T cell lineage and are the precursors of DN2 cells as well as most thymic NK cells, while DNlc,
d cells primarily have B cell potential in DN1 [16]. By gating on Lin” DN1 cells (Fig 2A), we
showed that in all genotypes, the percentage of DN1a/b cells was highest at the newborn stage,
and their frequency declined faster in Z/Z mice between 7-14 days, consistent with the timing
of Foxnl expression reduction in these mice (Fig 2B). The percentage of DN1c,d cells in +/Z
and Z/Z mice peaked slightly later, at day 7 (Fig 2C). However, the absolute cell number of
both DN1a,b and DN1c,d subsets peaked at day 7 in both genotypes. These numbers were sig-
nificantly reduced in the Z/Z mutants (Fig 2D and 2E). Furthermore, the rate of decline in
total numbers was slower in DN1c¢,d cells than in DN1a,b cells in Z/Z mutants from day 14
through 21, resulting in an increased ratio of DN1c,d to DN1a,b in Z/Z after day 7 (Fig 2F).
These effects tended to be exacerbated by further declines in the microenvironment in Z/N
mice. The peak timing of DN1a,b and DN1c,d subset frequency was similar to +/Z and Z/Z
mice (Fig 2B and 2C), although the frequency and number of DN1a,b cells was strongly
reduced in these mice (Fig 2B and 2D). The timing of the peak of DN1c,d numbers was also
shifted later, to 14 days (Fig 2E). The net effect of these differences was that the DN1¢,d/DNla,
b ratio was dramatically increased beginning at day 14 (Fig 2F)

These data suggest that even in the controls, the frequency of cells biased to the B cell line-
age peaks at 7-14 days postnatal. Furthermore, the degree of B cell bias is increased in the Z/Z
and Z/N mutants with defects in the microenvironment, with timing that corresponds to the
down-regulation of Foxn1 in these mutants [36]. Taken together, these data implicate both
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Fig 2. The kinetic change of DN1a,b, and DN1c,d subsets showed an increased B potential in the thymic
progenitors in Foxn1"*“ mutants. (A). The representative profiles of CD24 and cKit on gated Lin DN1 population at
day 14 in +/Z, Z/Z, and Z/N mice. DN1a-e subsets gates in +/Z. (B, C). Percentage of DN1a,b (DN1a plus DN1b) (B)
and DN1c,d (DN1c plus DN1d) (C) at various analysis time points. (D, E). Total cell number of DN1a,b (D) and
DNIlc,d (E) at various analysis time points. (F). The ratio of DN1c,d versus DN1a,b cells. Each assay and time point
represented at least three individuals. One-way ANOVA results between Z/Z, Z/N test groups and +/Z control group
at various time point: *P <0.05, **P <0.01, ***P <0.001. Bars indicate means + SEM.

https://doi.org/10.1371/journal.pone.0193189.9002

cell-autonomous and non-autonomous mechanisms may influence thymic B cell production
during this perinatal period.

A transient increase in thymic B-cell production during the neonatal to
young adult transition

Based on the analysis above, we directly assessed B cell development in the thymus during this
period and in Foxn1"“ mutants. Analysis of total DN1 cells showed that at day 28 more than 80~
90% of DN1 cells were CD19" in Foxn1"*“ mutant mice, compared to 38% in the +/Z controls,
and that NK and CD3" cells were relatively reduced in both Z/Z and Z/N mutants (Fig 3A and
3B). These results confirmed that increased B cells were the primary cause for the increase in the
DNI1 subset during this window. Further analysis of the kinetics of thymic B-cell production
showed that the percentage of B cells started increasing one week after birth and reached a peak
within DNT1 cells at day 28 in all genotypes analyzed (Fig 3C). Although the total thymic cell num-
ber was much less in Foxn1"“ mutants than in the control thymus [36], the numbers of thymic B
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Fig 3. Thymic B cells formed a transient wave around day 28 in the thymus. (A). Histograms show the
representative staining of CD19, NK1.1 and CD3 on gated DN1 thymocytes in +/Z, Z/Z and Z/N mice. (B). The
summary of the percentage of CD19*, NK1.1* and CD3" cells in the DN1 subset. (C-E). Kinetic change of the
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(F-G). The kinetic change of the percentage of total B cells (CD19"), mature B cells (CD19*CD24"°) and immature B
cells (CD19"CD24") in spleen (F) and BM (G) cells in BL6 mice. Each assay time point represents at least three
individuals. One-way ANOVA results between Z/Z or Z/N test group and +/Z control group at various time point:
*P <0.05, **P <0.01, ***P <0.001, ****P<0.0001. Bars indicate means + SEM.

https://doi.org/10.1371/journal.pone.0193189.9003

cells were almost 2-fold higher in both Z/Z and Z/N mutants at day 28 (Fig 3D), resulting in a
much higher ratio of thymic B cells to T cells than in +/Z control thymus, particularly in the Z/N
mice (Fig 3E). However, the peak time of thymic B-cell production was similar in all genotypes, at
28 days. These results strongly suggested that changes in the thymic environment in these mutants
controlled the magnitude, but not the timing of thymic B-cell production.

It has been reported that the highest absolute numbers of clonable progenitor B cells in the
BM is around 3-4 weeks of age [17]. To determine if the production kinetics of thymic B cells
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correlated with the ontogeny of B cell development in the BM, we compared the kinetics of
thymic B cells to the development of B cells in the spleen and BM (Fig 3F and 3G). Newly pro-
duced CD19"CD24™ immature B cells increased from day 12 with a peak at day 20 in both the
spleen and BM. Thus, B cell production in both the spleen and BM preceded that in the thy-
mus, likely due to the time needed for BM progenitors to seed the thymus. B cell development
in the thymus may also be slower than in BM. Since the importation of BM-derived progeni-
tors in the postnatal thymus is a gated phenomenon, profiled as 7 days of receptivity with
around 4 weeks of refractivity [4,6], the wave of thymic B cells around day 28 was likely gener-
ated from neonatal BM-derived progenitors.

The progenitors from young BM possess higher potential to generate B
cells in the thymus

To test whether there was a BM-intrinsic component to the transient increase in B cells in
these mutants, we transferred T, B-cell depleted day 14 BM cells from CD45.1 wild-type mice
into 2-month-old sub-lethally irradiated CD45.2 +/Z, Z/Z, or Z/N mice, and compared the
percentages of thymic B cells from both CD45.1 donor and CD45.2 host BM cells after 12 days
(Fig 4A showed a gate after transfer). The 14-day donor BM cells generated significantly more
B cells than did the 2-month host BM cells in both the Z/Z and Z/N mutant thymus. In Z/N
mice, 60% of DN1 cells were CD19*, 90% of which were CD24™ immature B cells (Fig 4B).
Conversely, BM cells from 3-month old mice transferred into day 20 Z/N mice generated sig-
nificantly fewer B cells than the younger host BM in the Foxn1"* thymus (Fig 4C). Similar
results were obtained from transferring LSK cells (Lin Sca-1*ckit™) (S1 Fig). We also per-
formed a direct competition between host and donor cells, mixing BM cells from 3 month-old
(CD45.1) and 20 day-olds (CD45.2) wild-type mice and transferring this mixture into Ly5.2 Z/
N lethally irradiated hosts, which showed similar results (Fig 4D). To determine if B cell poten-
tial in BM cells was age-dependent, T, B-depleted BM cells from 14 day, 22 day and 2.5
month-old CD45.1 wild-type donors were transferred into sub-lethally irradiated day 20 Z/N
mutant host mice (Fig 4E). The greatest number of thymic B cells was derived from day 14
BM, with B cell generation declining with BM age. Young BM in this model again generated
significantly more B cells in the mutant thymic microenvironment. Taken together, these
results indicated that perinatal and young BM-derived cells have a high intrinsic B potential,

which is revealed by the Foxn 1" mutant thymic microenvironment.

The increased thymic B cells in Foxn1'*“* mutants are pre-B-II cells

We compared the phenotypes of B cells in the thymus (Fig 5A) to the same cell population in
spleen (Fig 5B) and BM (Fig 5C). No significant difference in B cell profiles were seen between

1" mutants in spleen or BM; therefore, only the +/Z results in BM

+/Z controls and Foxn
and spleen are shown. Most B cells in the +/Z control thymus showed a mature profile of
CD19™B220™, and CD24 and CD43 low (Fig 5A top panel), similar to those in spleen (Fig 5B
and 5D-5F). In contrast, most B cells in the Z/N mutant thymus showed an immature CD19*
B220'°CD24"CD43" phenotype (Fig 5A lower panel), similar to B cells in BM (Fig 5C and
5D-5F). The phenotype of B cells in Z/Z mutants was intermediate between +/Z and Z/N (Fig
5A middle panel and Fig 5D-5F). In addition, thymic B cells in the Foxn1'* mutants had
increased Ly51 and CD93 levels, but reduced IgM, CD25, and MHCII (Fig 5G). Thus, the
majority of thymic B cells in Z/Z and Z/N mutants were CD19'°B220'°CD24"CD93*CD43"/
hi1gM’, with increased Ly51, and thus are similar to the pre-B-II cells at the Fr C-D stage in
BM [38-40]. However different from Pre-B-II in BM, CD25 levels were low, indicating that
the development of B cells in thymus might be different from that of B cells in BM [38].
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into sub-irradiated CD45.2 +/Z, Z/Z, and Z/N mice. Thymic B cells from the donor (CD45.1) and host (CD45.2) were
analyzed 12 days later. (A). Gating for donor and host CD19" cells in the DN1 subset. (B). Day 14 wild-type BM cells
were transferred into 2-month old mice, genotypes of host recipients are indicated to the left of each pair of panels.
Profiles of CD19 and CD24 staining within the DN1 subset are shown. Percentages of CD19" cells in DN1 subsets in
donor and host are summarized in the graphs to the right. Data are representative of three independent experiments,
(+/Z:n=7,Z/Z:n=5,Z/N: n = 4). (C). 3 month-old wild-type BM cells were transferred into 20-day old Z/N mice.
Data are representative of two independent experiments, (n = 4). (D). Competitive transfer experiment of mixed BM
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20-day old Z/N mice, and profiled for CD19 and CD24 staining. Percentage of donor CD19" cells in DN1 subsets and
total thymic B cells are shown in the bar graphs. Data are representative of four independent experiments, (14d n =5,
22d n =3, 2.5M n = 4). Student’s t-test results: “P <0.05, **P <0.01, ***P <0.001. Bars indicate means + SEM.

https://doi.org/10.1371/journal.pone.0193189.9004

Thymic progenitor B cells accumulate in the cortex and originate in the
Foxn1"*“* mutant thymus

Recently, thymic B cells were reported to act as self-antigen presenting cells for the induction
of central T cell tolerance [34,35,41]. Yamano showed that these thymic B cells were peripheral
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ANOVA: "P <0.05, **P <0.01, ***P <0.001, ****P<0.0001. ns: not significant. Bars indicate means + SEM.

https://doi.org/10.1371/journal.pone.0193189.9005

mature B cells that had immigrated into the thymus, different from previous studies conclud-
ing that thymic B cells were originally generated in the thymus [25,31,34]. In our study, immu-
nofluorescence analysis showed that CD19" B cells were almost exclusively localized in the B5t”
and K5" medulla and cortical medullary junction (CM]J) in control thymus (Fig 6A left panels),
while in Z/Z thymi, CD19" B cells were distributed throughout both the cortex and medulla
(Fig 6A middle panel and a). Many CD19" B cells with weak staining accumulated in the sub-
capsular region in the Z/N thymus at one month of age (Fig 6A right panel and b). This distri-
bution profile of B cells in the Z/Z and Z/N was consistent with a previous report that thymic
progenitor B cells are located in the cortex [31], suggesting that the increased thymic B cells
were generated within the thymus. However, the disorganized structure of the Foxn1"*
mutant thymus might allow peripheral B cells to more easily immigrate into the thymus [36].
To test whether pre-B cells can efficiently immigrate into the thymus, we isolated phenotypi-
cally similar progenitor B cells (B220*CD19* CD24*CD43*"°IgM",) from CD45.1 spleen and
BM (S2 Fig) and injected them i.v. into sub-lethally irradiated adult Foxn1'** mutants. The
donor B progenitors (CD45.1) were found in both spleen and BM, but were not detected in
the thymus in +/Z and Z/N mice (Fig 6B and 6C). Thus, B committed pre-B cells isolated from
BM were not able to immigrate into the mutant thymus, consistent with previous reports
[31,34]. Since transferred BM precursors can generate thymic B cells in Foxn1* mutants, we
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Fig 6. Thymic progenitor B cells accumulate in the cortex and originate in the Foxn1"*“ mutant thymus. (A). Inmunofluorescence

staining of sections from +/Z, Z/Z and Z/N thymus at day 30 for CD19 (red) and 5t (green) (top row), or CD19 (red) and K5 (green) (bottom
row). a,b. Insets show digitally enlarged images of thymic B cells in the medulla in Z/Z (a) and subcapsular zone in Z/N mice (b). Scale

bar = 0.1mm. (B). Analysis of CD45.1* wild-type donor progenitor B cells (B220*CD19* CD24*CD43"/°IgM") in thymus, spleen, and BM at
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https://doi.org/10.1371/journal.pone.0193189.g006

conclude that the most likely source of the increased thymic progenitor B cells was differentia-
tion from multipotent progenitors within the Foxn1"* thymus.

Molecular changes in key signals from the microenvironment

Previous studies have shown that the expression levels of factors important for LPC im-
migration and lineage commitment, especially MHCII, DL4, and CCL25 correlate with Foxnl
levels ([27,28], but see [42]), and that DI4 and CcI25 are direct targets of FOXN1 [43]. To

test whether the changes in T and B cell production were due to a property of the thymic
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https://doi.org/10.1371/journal.pone.0193189.g007

microenvironment, we assessed the gene expression of above factors as well as IL-7, a key cyto-
kine for early T and B cell expansion, in sorted total TECs (CD45 MHCII"Epcam™) (Fig 7A).
Consistent with the timing of Foxnl down-regulation and reduction of MHCII™ TECs in the
Z/Z thymus (Fig 7A and see [36]), the MHCII mRNA level was reduced relative to controls
after day 8 (Fig 7B). DI4 and CCL25 were already lower than controls at day 8 (earlier in Z/N
mice; data not shown), consistent with their being direct targets of FOXN1. After day 8, both
Dl4 and Ccl25 levels dropped in both controls and mutants; while Ccl25 levels remained lower
in mutants than controls, DL4 levels were similar by day 22 (Fig 7C and 7D). This down-regu-
lation of CCL25 could contribute to the reduction of ETPs in Z/Z mutants, while DI4 down-
regulation at day 8 and 14 could enhance the intrinsic tendency to B cell fate in the perinatal
HSCs.

Strikingly, II7 expression in Z/Z mutant TECs peaked more than 3-fold above controls at
day 22 then declined, returning to control levels by day 40 (Fig 7E). Since IL-7 is produced by
TECs, especially cTECs [44-46), we sorted MHCII' and MHCII™ populations from day 22
thymi to measure II7 expression levels. II7 expression was increased in both MHCII™ and espe-
cially in MHCII TECs in Z/Z mutant (Fig 7F). We further sorted MHCII® and MHCII™ into
cTECs (UEA-1") and mTECs (UEA-17) populations (Fig 7G). MHCII" ¢TECs and both popu-
lations of mTECs expressed significantly higher II7 levels in the Z/Z mutant (Fig 7G). Since
MHCII" TECs are increasing in their frequency over time during in Z/Z mutants, this likely
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caused the increase of IL-7 in Z/Z thymus during day 14 to day 30, although the reason for the
decline to baseline by day 40 is less clear.

These results suggest that the down-regulation of Foxnl gene expression and disorganiza-
tion of the thymic microenvironment caused a broad TEC functional defect that affected ETP
seeding and the commitment to B cell fate in the thymus, with a transient up-regulation of IL-

1 lacz

7 expression that promoted immature B cell expansion in the Foxn1““ thymus.

Discussion

Although the existence of B cells in the thymus has been known for some time, their functional
significance has only recently been investigated [34,41,47-49] and the mechanisms controlling
their development are not known. As thymic B cells have been reported to play a role in thymic
negative selection [33-35], understanding these mechanisms is important to understanding
thymus function. Our data from heterochronic transplants show that HSCs from the perinatal
period generate higher frequencies and numbers of thymic B cells compared to adults even in
the wild-type thymus, indicating that there are stage-specific differences in B cell propensity in
HSCs in the bone marrow. In addition, thymi in which FoxnI levels decline prematurely have
increased numbers of primarily progenitor B cells, indicating that signals from the thymic
microenvironment also contribute to specification, proliferation, and differentiation of thymic
B cells. This increase is due to an amplification of the underlying B cell competence of the
HSCs, and likely due to a combination of signals from TEC that influence B cell development,
including decreased Notch signals and increased IL-7. In a related study, we further showed
that the timing of these events is also regulated by delayed Let-7g up-regulation in LPCs in the
thymus, which normally limits the generation of thymic B cells (see co-submitted manuscript:
Thymic epithelial cell-derived signals control B progenitor formation and proliferation in the thy-
mus by regulating Let-7 and Arid3a), and that this up-regulation also requires FOXN1-depen-
dent signals from the thymic epithelium.

A key event that can influence the differences in thymocyte development between neonatal
and adult thymus is the progenitor switch from fetal liver-derived to BM-derived HSCs, which
occurs during the neonatal to young adult period [10,11,18]. However, it is as yet unclear
when BM-derived adult-type HSCs first seed into the thymus, and how this switch to adult
HSCs contributes to thymocyte development during the neonatal period. Both the switch of
HSCs from a fetal to adult progenitor profile and maturation of the thymic vasculature had
been reported to occur by day 7 postnatal [11,50]. Thus, day 7 is a critical time point for
changes to occur in both hematopoietic derived cells and thymus structure that might funda-
mentally affect thymocyte development during the neonatal period. Consistent with this tim-
ing, we observed a wave of DN1a/b cells appearing in the thymus at postnatal day 7 (Fig 2C).
Based on current estimates that thymocytes spend 14 days at the DN stages and 2—4 days at the
DP stage [51,52], this importation wave of DN1a/b cells would generate a wave of DP thymo-
cytes at around 4 weeks of age. As the importation of BM derived progenitors in the postnatal
thymus is a gated phenomenon profiled as 7 days of receptivity and around 4 weeks of refrac-
tivity [4,6], and the neonatal BM progenitors posses a high B lineage potential [7,17,18], our
data suggest that a wave of neonatal BM progenitors with higher B cell potential enters the thy-
mus during the 1* week after birth to generate a thymic progenitor wave. In a normal micro-
environment, these cells generate primarily T cells in thymus, with DP cell production peaking
at about day 28, but also a slightly higher incidence of B cells with the same timing. However,
in Foxn1"*““ mutant thymus, due to the defect of thymic microenvironment, this wave of thy-
mic progenitors generated less primarily T cells but increase thymic B cells production peaking
at about day 28. After that time, the B cell potential decreases as the wave of progenitors is
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replaced by the adult-type HSCs in both normal and mutant adult thymus, with lower intrinsic
B cell. Our data also support the conclusion that thymic B cells can originate and develop in
the thymus, especially during young ages.

Down-regulation of Foxnl expression is associated with reduced expression of MHCII,
DIl4, and Ccl25 in TECs [27,28], all of which we also see in the Foxn1““ mutants. These
changes are also consistent with the reduction in MHCII™ TECs [36], which have been previ-
ously shown to produce Ccl25, associated with progenitor migration to the thymus [53]. The
observed reduction of DN1a/b cells in these mutants could thus be directly related to down-
regulation of Ccl25 expression. The gradual increase of thymic B cells in the DN1 population
from day 7 to an adult could also be promoted by reduced DII4 expression, which is required
for T lineage commitment [23,24], one week after birth. However, these changes cannot
explain the transient nature of the increase in thymic B cells, or the fact that an increase was
seen in both control and Foxn1"“ thymus (although the change in controls was slight). The
timing of this increase correlated with changes in the B cell potential of BM-derived cells, most
clearly demonstrated by the fact that young BM or LSK cells (d 14) showed a higher B lineage
potential than adult BM cells when transferred into the B cell permissive Foxnl mutant thymic
microenvironment. These results are consistent with reports showing that ETPs (DN1a/b
cells) derived from neonatal thymus and progenitors from fetal and neonatal BM or cord
blood cells possess a high B lineage potential compared to those from adults [21,22,54,55].

The increased numbers and proliferation of these progenitor B cells could be further pro-
moted by the microenvironment in the form of increased II7 levels. Exposure to exogenous 117
or enforced II7 expression has been shown to promote progenitor of B cell development in the
thymus [32,56,57], and overexpression inhibits the development of TCRo T cells [32]. The
increase in II7 expression seen in our mutants is less obviously due to the down-regulation of
Foxnl [36], but could be a secondary phenotype, as depletion of thymocytes alone has also
been shown to cause an up-regulation of Il7 and Cxcl12 (Sdfla) in TECs [44,58]. However,
reduction of thymocyte number alone is not sufficient to promote thymic B cell production
[30]. This would also not account for the dramatic spike in expression at 28 days, which does
not correlate with any specific change in either Foxnl expression or thymocyte numbers [36].
However, as IL-7 is produced by a specific subset of TECs [44-46,59], and our data show that
MHCII" TECs expressed a higher level of 117 in Foxn1““ mutant thymus, it is possible that as
the microenvironment declines a subset of TECs are transiently over-represented that produce
a high level of IL-7 during neonatal to young adult. Alternatively, it is possible that IL-7 pro-
duction by TEC is differentially regulated in some way by cross-talk with B cells themselves,
and that the spike in IL-7 production is related to the peak of B cell production from fetal
HSCs, causing a feed-forward loop. In any case, this high level of IL-7 likely promotes progeni-
tor B cell expansion in the deficient Foxn1'* thymic environment, as these increased thymic
B cells were primarily pre-B-II Fr C-D stage [38,40,57,60].

Conclusion

Taken together, we have shown that neonatal BM progenitors possess a higher B lineage
potential than adult type progenitors, that generates a transient wave of B cell development in
the thymus during the neonatal to young adult period. This HSC potential was revealed by the
thymic microenvironmental deficiency in the Foxn1'*“ mutants with a reduction of Notch sig-
nals and an increase of IL-7 production during this period. Our findings have potential clinical
implications for improving the transplantation of umbilical cord blood cells or adult BM cells,
and for understanding the contributions of thymic microenvironmental signals to the B cells
development and function in the thymus.
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Supporting information

S1 Fig. Flow cytometry analysis of thymic B cells after BM cells transfer. (A-B). 3000 LSK
cells sorted from day 14 BM of CD45.1 mice were retro-orbital transferred into the sub-irradi-
ated 42-day Z/N mice (A), similarly, 3-month LSKs were transferred into 17-day Z/N mice (B)
respectively. The profile of CD19 and CD24 staining were showed in donor and host. Data are
representative of two independent experiments, (Z/N: n = 3 for A, n = 4 for B). Data are repre-
sentative of two independent experiments. Student’s t-test results: **P <0.01, ****P <0.0001.
Bars indicate means + SEM.

(TTF)

S2 Fig. The cell sorting of BM pre-B cells from BM and thymus. (A-B). The total BM cells
(A) and total thymocytes (B) from CD45.1 were stained by B220, CD19, CD24, CD43 and IgM
+ Lin, and the progenitor B cells were sorted on B220"CD19* CD24*CD43*"°IgM Lin" sub-
population by MoFlo™ cell sorter.

(TIF)

S1 File. NC3Rs ARRIVE guidelines checklist.
(PDF)
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