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Alzheimer’s disease (AD) is the most prevalent form of neurodegenerative disease,
currently affecting over 5 million Americans with projections expected to rise as
the population ages. The hallmark pathologies of AD are Aβ plaques composed of
aggregated beta-amyloid (Aβ), and tau tangles composed of hyperphosphorylated,
aggregated tau. These pathologies are typically accompanied by an increase in
neuroinflammation as an attempt to ameliorate the pathology. This idea has pushed
the field toward focusing on mechanisms and the influence neuroinflammation has
on disease progression. The vast majority of AD cases are sporadic and therefore,
researchers investigate genetic risk factors that could lead to AD. Apolipoprotein E
(ApoE) is the largest genetic risk factor for developing AD. ApoE has 3 isoforms-ApoE2,
ApoE3, and ApoE4. ApoE4 constitutes an increased risk of AD, with one copy increasing
the risk about 4-fold and two copies increasing the risk about 15-fold compared to
those with the ApoE3 allele. ApoE4 has been shown to play a role in Aβ deposition, tau
tangle formation, neuroinflammation and many subsequent pathways. However, while
we know that ApoE4 plays a role in these pathways and virtually all aspects of AD, the
exact mechanism of how ApoE4 impacts AD progression is murky at best and therefore
the role ApoE4 plays in these pathways needs to be elucidated. This review aims to
discuss the current literature regarding the pathways and mechanisms of ApoE4 in AD
progression with a focus on its role in neuroinflammation.
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INTRODUCTION

Alzheimer’s Disease
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and the 6th leading
cause of death in the United States. AD affects more than 5.7 million Americans and by 2050, it is
projected to affect over 13 million. Not only is AD a growing health concern, it is also an extreme
financial burden costing nearly 290 billion dollars, annually, not taking into account the thousands
of unpaid caregivers (1, 2). Clinically, AD is characterized by progressive learning and memory
deficits that ultimately impede a patient’s ability to perform daily activities. The hallmark plaque
and tangle pathology associated with AD were originally described in 1907 by Alois Alzheimer.
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It is now known these plaques are composed of aggregated
beta-amyloid (Aβ), and the tangles are composed of
hyperphosphorylated, aggregated tau, present typically within
the neurons. While these two hallmark pathologies together
lead to the neurodegeneration seen in AD, (3–5) Aβ pathology
deposition typically begins decades before tangles and tangles
have been shown to be better indicators of cognitve decline (2, 6).
Going back to Alois Alzheimer’s first description of the disease
in 1907, he also noted activation of microglia and astrocytes in
response to the pathology (5, 7–9), providing further areas in AD
to study. In recent years, one of the major themes in AD research
has been understanding neuroinflammation and the role it plays
in AD progression using both animal models and human tissue.

While all cases of AD have Aβ plaques and tau tangles, the
mechanism leading to pathology is believed to differ between
cases. Exceptionally few cases (<1%) develop solely due to
genetics, with mutations in genes involved in Aβ processing
being the clear cause. Three genes where mutations are known
to cause AD are the amyloid precursor protein (APP), presenilin
1 (PSEN1) and presenilin 2 (PSEN2) (10–12). Inheritance of any
of these genetic mutations will lead to the accumulation of Aβ

and ultimately AD. These cases are characterized as early onset
AD (EOAD), affecting patients between 30 and 60 years of age
(13, 14). The remaining 99% of AD cases are sporadic and are
often associated with late onset AD (LOAD). Apolipoprotein
E4 (ApoE4) stands out as the largest genetic risk factor for
developing LOAD (15–17). Apolipoprotein (ApoE) has three
isoforms with varying risk for developing AD. ApoE4 confers
an increased risk of AD relative to ApoE3 with E4 homozygotes
showing the greatest risk of AD with an odds ratio of 10–15-
fold increase. ApoE4 is present in about 14% of the general
population and 37% in the AD population (16–18). ApoE3 is the
most common allele is typically used as the baseline comparison
in AD studies. ApoE3 is present in about 78% of the general
population and 59% in the AD population (16). The ApoE2 allele
has been shown to be protective for AD compared to the ApoE3
allele, being present in about 5% of all AD cases and about 9% in
the general population (19). It is important to note, studies have
shown ApoE4 has an increased risk in AD and ApoE2 has been
protective when comparing these changes to ApoE3, as it is used
as the control allele (20).

ApoE in the Central Nervous System
ApoE is the primary transporter of lipids and cholesterol in
the brain and is mainly generated by astrocytes; however,
microglia and neurons can generate ApoE in times of stress (21).
ApoE works to reduce cholesterol levels as well as promoting
lipoprotein clearance. ApoE binds to lipoproteins and provides
clearance through the low-density lipoprotein receptor (LDLR).
The ApoE isoforms impact how lipoproteins are cleared and
the extent in which it is executed. ApoE3 has been shown
to bind to LDLR allowing for lipid uptake and, again, it is
characterized as the control phenotype for comparing function
of the other two alleles. ApoE2 has a decreased affinity to
LDLR and therefore leads to a type III hyperlipoproteinemia
associated with ApoE2 patients. ApoE4 has an increased lipid
binding ability but decreased proteolytic activity leading to an

increase in lipoproteins and cholesterol (21–24). On astrocytes,
ApoE interacts with plasma membrane ATP-binding cassette
transporter A1 (ABCA1) and becomes loaded with lipids and
cholesterol to provide the brain with needed nutrients (25–
27). In addition to ApoE4 having an impaired interaction with
receptors, ApoE4 has been shown to have a reduced interaction
with ABCA1 and therefore is typically found in a hypolipidated
state compared to ApoE3 (28–30).

ApoE4 has been suggested to decrease insulin signaling by
impairing recycling of the insulin receptor which in turn could
be leading to the decreased glucose metabolism seen in AD
patients (31, 32). ApoE4 has also been shown to directly impact
ApoER2 receptor recycling. This receptor works in conjunction
with Reelin and is critical for synaptic plasticity in the aging
brain. ApoE4 impairs recycling of ApoER2 and therefore impairs
synaptic plasticity (33, 34). APP recycling has also been shown
to be influenced by ApoE4 which can lead to an increase the
amyloidogenic pathway leading to an increase in Aβ (35). In both
post-mortem AD human brains and in mouse models of AD,
ApoE4 has been shown to play a significant intracellular role
in the movement and trafficking of receptors and intracellular
vesicles (36).

The role of ApoE4 in the brain as a whole has been studied in
metabolic approaches as well as through gross anatomy. These
studies have implicated ApoE4 in increased regional cortical
atrophy in the presence of AD compared to ApoE3. Specifically,
there is a decrease in gray matter volume in both the medial
temporal lobe and the anterior temporal lobes in AD cases (37–
39). ApoE4 has also been implicated in overall brain energy
and health as previously mentioned. Studies have shown ApoE
status plays a role in cerebral glucose metabolism in an aging
brain, regardless of the pathology present. At least one copy of
ApoE4 significantly decreases glucose metabolism in comparison
to non-ApoE4 carrying patients (40, 41).

ApoE has been shown to play integral roles in overall
brain health and impact the development of Alzheimer’s
disease. ApoE4 additionally plays many roles that are directly
pertinent to the progression and development of AD specially
through affecting inflammation. This will be discussed at
length in this review.

INFLAMMATION IN ALZHEIMER’S
DISEASE

Neuroinflammation in AD has been shown to contribute
significantly to the onset, progression, and pathogenesis of AD.
The main sources of inflammatory mediators in the brain are
microglia and astrocytes. Microglia and astrocytes can release
cytokines which can play both pro-inflammatory and anti-
inflammatory roles in the brain depending on the stimulus and
microenvironment (7, 42, 43). This fluctuation between the pro-
and anti-inflammatory profiles has be seen in patients with early
AD. One study showed patients with early AD have a bias toward
either a pro-inflammatory or anti-inflammatory phenotype and,
as disease progresses, the phenotype is more homogeneous, with
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both sides of inflammation elevated relative to age-matched, non-
disease controls (44). These findings demonstrate the complex,
and dynamic nature of inflammation in AD. Neuroinflammation
is also impacted through normal aging, however, this review
will focus on the impact on AD. For more information on
neuroinflammation and aging see the review from Rea et.al (45).

Microglia in Alzheimer’s Disease
Microglia are the largest player in neuroinflammation in the
CNS. Microglia have an important role in surveying the brain
in order to detect and clear debris while maintaining an optimal
microenvironment. Microglia can respond to virtually all foreign
factors in the brain typically described as danger-associated
molecular patterns (DAMPs) or pathogen-associated molecular
patterns (PAMPs) (46–50). Of particular importance to AD,
microglia respond to Aβ. Reports have suggested that in the
presence of Aβ, microglia become activated and surround the
plaque forming a barrier with the ultimate goal of preventing
further spread while also attempting to clear the Aβ (51, 52).
Upon activation around the Aβ plaque, the microglia can
phagocytose Aβ (52, 53). However, if there is a buildup of
Aβ in the microglia, this can subsequently lead to microglial
cell death and an increase in inflammation and recruitment
of more microglia, thus continuing this inflammatory cascade
(54). Additionally, the activated microglia can respond with a
pro-inflammatory response, releasing cytokines such as tumor
necrosis factor-α (TNFα) and interleukin 1β (IL-1β) as well as
other factors to potentially induce damage to surrounding tissue
(50, 55–59).

Once a microglial receptor binds to a given ligand, microglia
are able to become activated and work to ameliorate the situation.
In regards to the clearance of Aβ, Aβ receptors have been shown
to be present and have the ability to clear Aβ in early AD
(60). In later stages of AD, however, this overall expression of
both Aβ receptors and Aβ degradation enzymes are significantly
downregulated. This downregulation of the Aβ receptors and Aβ

degradation enzymes has been shown to be a direct response
to the increase in inflammatory cytokines in AD (57, 61). One
study looking at APP/PS1 mice found a twofold to fivefold
decrease in Aβ receptors and a 2.5-fold increase in IL-1β and
TNFα in older aged mice. This increase in pro-inflammatory
cytokines can impair the surrounding neurons leading to
neuronal degeneration (57). There are many microglial receptors
that are able to bind Aβ and work to either phagocytize or
create an inflammatory response to recruit other microglia in the
presence of Aβ (62–65). Without control over their inflammatory
response, the overall response of the microglia could become
detrimental and cause problems such as neurodegeneration.

Microglial activation, in addition to phagocytosis and
recruitment, can lead to induction of the inflammasome which
can increase inflammatory cytokines as well as possibly increase
Aβ deposition (59, 66). Inflammasomes help regulate the release
of IL-1β and act as sensors of signals in the brain. IL-1β is
incredibly potent, affecting the expression of adhesion molecules,
immune cell infiltration and the overall increase of more
cytokines. Due to its many functions, IL-1β requires several
checkpoints before it is fully activated and, therefore, is made

initially as an inactive molecule that the inflammasome cleaves
and activates (67). The components needed for this activation
include the inflammasome sensor molecule, adaptor molecule,
and adapter protein apoptosis associated speck-like protein
containing a CARD (ASC). Recent studies have shown, the
ASC has the ability to help seeding of Aβ and by blocking the
inflammasome it can decrease seeding of Aβ in the brain of
mouse models (59, 67–71).

Upon debris clearance, microglia rapidly work to counteract
their previously pro-inflammatory response (72–75). This can
be done through the induction of anti-inflammatory responses
which work to downregulate the potent, pro-inflammatory
response. This allows for the microglia to revert to a resting state
(50). In the case of AD, the microglia can become chronically
activated and be in a perpetually activated state, leading to
detrimental effects such as an increase in Aβ production
and neurodegeneration (74, 76). In AD, both pro- and anti-
inflammatory microglia states can be found in the same region,
and this co-existence is likely detrimental; however, deciding
which state the microglia should be in at a given instance remains
unclear (77).

Recently, a microglial receptor, triggering receptor expressed
on myeloid cells 2 (TREM2) has brought the importance of
microglia in AD to the forefront of inflammatory research since
mutations in TREM2 increase the risk for AD. As its name states,
TREM2 is expressed on myeloid-derived cells such as microglia,
macrophages, and osteoclasts. Rare mutations in TREM2 confer
an increased risk of AD with an odds ratio of 4.5 (78–80).
Individuals homozygous for mutations in TREM2 develop a rare
disorder characterized by bone fractures and presenile dementia
called Nasu-Hakola disease (81, 82). TREM2 responds to a wide
range of stimuli including apoptotic cells, Aβ, and lipoproteins.
Without AD pathology, TREM2 is expressed to clear damaged or
apoptotic neurons and clear cellular debris through phagocytosis
while downregulating the pro-inflammatory response to these
stimuli (83–85). In AD, TREM2 has been shown to be highly
expressed on microglia surrounding neuritic plaques and is
important in clearance of Aβ (86, 87). In mouse models lacking
TREM2, the microglia are unable to migrate toward an Aβ plaque
and do not cluster when compared to a model with functional
TREM2. While the overall impact of TREM2 is still up for debate,
evidence suggests that the timing of TREM2 expression is key.
Studies show that in early AD pathology, TREM2 is needed for
clearance of early Aβ plaques and slowing of cognitive decline,
while expression of TREM2 later in disease progression could
lead to detrimental long-term consequences (88–92).

Astrocytes in Neuroinflammation
Astrocytes also play a role in the inflammation seen in AD
(93). In the brain, astrocytes interact with both neurons and
the cerebrovascular in order to maintain nutrients and chemical
gradients in the brain. They additionally work to maintain
calcium levels and potassium homeostasis, as well as provide
overall neuronal support. In AD, normal functions of astrocytes
become affected and contribute to astrocytic dysfunction and
inflammation. This dysfunction includes astrocytes losing their
ability to maintain calcium levels and potassium homeostasis
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(94–96). Additionally, activated astrocytes typically lose their
ability to deliver nutrients to neurons leading to impairments
in neuronal function (97, 98). Upon activation, studies have
shown astrocytes release cytokines that can lead to increased
neuronal toxicity as well as a decreased outgrowth of neuronal
processes and an overall decreased activity rate (99). Recent
studies suggest an interaction between microglia and astrocytes
finding that once microglia become activated, they can lead to
activation of astrocytes, resulting in a feed-forward loop which
is detrimental to the surrounding environment. The mechanism
showed that when activated, microglia release IL-1α, TNFα

and C1q and astrocytes become activated. Additionally, in the
presence of damaged blood vessels, the astrocytes promote tissue
repair and neuronal survival rather than microglia (99). This
provides a strong link showing that both microglia and astrocytes
work in conjunction to increase the neuroinflammation seen in
AD (Figure 1).

APOE, INFLAMMATION, AND
ALZHEIMER’S DISEASE

Early Investigations of ApoE Isoforms’
Role on Inflammation
While microglia and astrocytes are the main modulators of
inflammation in the brain, they are also the major sources of
ApoE in the brain. Early studies suggested that in glial cultures,
the presence of ApoE helped suppress glial activation in response
to lipopolysaccharide (LPS), showing ApoE provides a protective
anti-inflammatory response (100, 101). Studies showed that this
anti-inflammatory response could be through the inhibition
of the c-Jun N-terminal kinase (JNK) cascade (102). Another
study showed that APP was capable of activating microglia
and producing neurotoxic molecules in the presence of ApoE4,
however ApoE3 was able to prevent this activation (49).

Moving into animal studies, researchers then began to
investigate how ApoE as a whole, as well as the isoforms,
impacted neuroinflammation (49, 103, 104). In one study, APP
mice with and without ApoE were chronically administered LPS
and it was found that in the presence of ApoE, the mice had
increased gliosis and Aβ deposition suggesting a role for ApoE
to increase inflammation in AD models (104). When looking at
the ApoE isoforms specific impact on the inflammatory response,
a study from Lynch et.al. used humanized ApoE3 and ApoE4
mice and chronically administered LPS. They found a significant
increase in TNFα and IL6 present in the brains of ApoE4 mice.
The authors then examined the impact of a small ApoE-mimetic
peptide on inflammation and saw a significant reduction in
inflammation. These results together show ApoE isoforms impact
inflammation in the brain and that exogenous ApoE has the
potential to reverse these effects (105). Another study using
humanized ApoE3 and ApoE4 models showed ApoE isoforms
play a regulatory role in nitric oxide (NO) production from
microglia. They show that ApoE4 microglia release significantly
more NO compared to ApoE3 microglia, which could cause the
detrimental effects seen in the brains of ApoE4 patients (106).

The results from this study were later confirmed and further
research was done showing ApoE4 increased NO production in
mice as well as in humans. Additionally, the authors showed
resting microglia from the ApoE4 targeted replacement mice had
an increased proinflammatory profile which led to an altered
microglial phenotype compared to ApoE3 (Figure 1) (107).

ApoE and Aβ
Evidence indicates that the three common ApoE isoforms impact
the clearance and aggregation of Aβ (16, 35, 108–112). Studies
have shown that ApoE is essential for deposition of Aβ in
animal models (29, 111, 113–115). ApoE4 has been shown to
have an increased binding ability to Aβ compared to ApoE3
which contributes to the increased aggregation of Aβ and
decreased clearance. In addition to increased binding, ApoE4 has
been shown to have increased rate of Aβ oligomerization and
increased Aβ plaque generation (116, 117). This increase has been
confirmed in human autopsy tissue as ApoE4 patients show an
increase in both vascular and parenchymal Aβ plaques (37, 118–
120). While the exact mechanism of how ApoE4 carriers exhibit
increases in Aβ plaques is not fully understood, it may be due to
the increased ability of ApoE4 to bind Aβ and inability to fully
remove Aβ from the brain.

There are several mechanisms in which Aβ could be cleared
and where ApoE4 could impact clearance (Figure 2). Typically,
Aβ is removed through either proteomic degradation, lysosomal
clearance or through the blood brain barrier (BBB) (121). ApoE4
has been shown to have an impact on these pathways and
could contribute to the decrease in Aβ removal seen with the
ApoE4 isoform. In addition to clearance of Aβ, ApoE has also
been shown to play a role in phagocytosis of apoptotic cells
which is necessary in AD due to neurodegeneration. Surprisingly,
one study showed ApoE4 has an increased phagocytosis of
apoptotic neuronal cells while having a decreased clearance of
Aβ in vitro. This increase in phagocytosis could be contributing
to the switch in phenotype from resting microglia to an altered
phenotype, leading to the detrimental phenotype associated with
ApoE4 (122).

APP processing and recycling has also been shown to be
influenced by ApoE4, leading to an increase in Aβ (35).
A recent study showed ApoE isoforms differently regulated APP
processing through altered MAPK signaling. They showed that
ApoE4 can function as a signaling molecule to enhanced activity
of this cascade leading to an increase of APP. This study gives
an ApoE dependent mechanism in which ApoE4 could directly
impact disease progression through alteration in a signaling
cascade (123).

In addition to ApoE4 playing a role in Aβ generation,
ApoE4 and Aβ can also have a significant role in the ApoE-
inflammatory cascade. As previously mentioned, ApoE4 has
a role in increasing the proinflammatory response of glia in
response to inflammatory stimuli. Researchers then moved into
transgenic mice expressing human ApoE in various AD models
to determine (1) the role of ApoE and (2) the role of ApoE
isoforms in disease progression. In a study investigating the
impact of ApoE using APP/PS1 mouse models, researchers found
ApoE had a direct impact on the deposition of Aβ through its
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FIGURE 1 | Graphical view of the impact of ApoE4 in the brain compared to ApoE3. These roles will be discussed in depth throughout the review. Created with
BioRender.

FIGURE 2 | The role ApoE4 plays with the hallmark AD pathologies.

influence on microglial activation. These results show ApoE is
required to stimulate the innate immune response to Aβ (124).
A study using human ApoE mice with familial AD mutations
(EFAD model), found ApoE4 significantly impacted Aβ plaque
morphology and showed increased glial activity. The increased
glial activity was measured by IL1β levels and showed a negative
impact on microglial morphology (114).

ApoE and Tau
ApoE4 has been shown to have varying inflammatory effects not
only on Aβ but, it has been shown to have differential effects

on tau induced neuroinflammation (Figure 2). ApoE4 has been
shown to exacerbate neurodegeneration through a tau-mediated
mechanism using P301S-ApoE TR models. The authors showed
ApoE4 microglia generate significantly more TNFα and led to
impaired neuronal viability compared to other ApoE isoforms
(125). Another study described how microglia could be playing a
vital role in neurodegeneration in a similar tau model through an
ApoE dependent method. This study suggests microglia could be
a key target in therapeutics when it comes to tauopathies (126).
This idea of microglia and ApoE being the driving factor in the
tau deposition is paralleled in another study using a model of
microglial ablation. This study showed microglia were the key
player in promoting plaque formation and neurodegeneration
in the animal models (127). These studies show the importance
of investigating both the detrimental and beneficial roles of
microglia, especially with ApoE isoforms (Figure 1).

ApoE and Inflammatory Signaling
Cascades
ApoE has been shown to interact with TREM2 leading
to activation of TREM2’s signaling cascade (91, 128–130).
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Recent studies have suggested that, in the presence of
neurodegeneration, ApoE and TREM2 are both required
for microglia to become activated and assume a Disease
Associated Microglia (DAM) phenotype. This phenotype
allows for microglia clustering around the Aβ plaque and
clearance of apoptotic neurons. Microglia with a DAM
phenotype are highly localized around neuritic plaques and
activation requires a step wise transition (131–134). First
is an increase in Apoe and downregulation of homeostatic
genes such as Purinergic Receptor P2Y12 (P2ry12), followed
by an upregulation of Trem2. This DAM phenotype has
helped bring together ApoE and TREM2 through a disease
specific pathway as well as how mulitple risk factors
for AD play a role in this cascade (131, 134). Further
studies are needed to examine the role of ApoE isoforms
on this cascade as well as looking into the proteomics
of these cascades.

ApoE and Autophagy
Autophagy is a mechanism to eliminate aggregated proteins
and internal structures that become dysfunctional. Studies
have shown this pathway specifically becomes dysfunctional
early in disease states and can lead to neurodegeneration.
With the role of ApoE4 in neurodegeneration, researchers
have suggested that ApoE4 likely has an impact on clearance
of neuronal degenerative products after injury since ApoE is
upregulated post insult, thus potentially linking ApoE4 with
autophagy dysfunction (135–138). Recent studies suggest a
potential interaction with ApoE4 and an autophagy pathway
that may account for the decreased autophagy in ApoE4
carriers (139). This study showed a direct interaction with
ApoE4 and coordinated lysosomal expression and regulation
(CLEAR), suggesting ApoE4 has a direct impact on autophagy
transcription leading to impaired autophagy (140). This
allows for further studies in ApoE4 as a transcription factor
as well as other potential mechanisms in which ApoE4
impacts autophagy.

ApoE Fragmentation
The ApoE4 protein has been shown to have a decreased
expression compared to the other isoforms but the exact
mechanism of this is unknown. One possibility of this
downregulation is through the rate of degradation of ApoE.
Studies have suggested that ApoE can be fragmented by high-
temperature requirement serine peptidase A1 (HtrA1). Of the
ApoE isoforms, ApoE4 is the least stable protein confirmation
and therefore most susceptible to this fragmentation. These
fragments could bind to Aβ or cell surface receptors to
prevent clearance, possibly contributing to the progression
of the disease through neurotoxicity and neuroinflammation
(141–144). ApoE3 also can become fragmented and studies
suggest the primary fragment produced is neuroprotective
(105, 145). More studies are needed to examine the exact
mechanism in which ApoE4 fragments can contribute to
inflammation and disease progression and potential therapeutics
with ApoE3 fragments.

ApoE and Blood Brain Barrier
Dysfunction
The importance of ApoE on the BBB has been a growing topic in
the field of AD as well as other brain injury research due to the fact
that brain trauma leads to a disruption in the BBB (146). Studies
have shown patients with ApoE4 have worsened outcomes to
brain injuries including traumatic brain injury (TBI) and stroke
compared to ApoE3. Additionally, TBI earlier in life has been
shown to contribute to an increased risk of AD later in life. TBI
patients with ApoE4 typically experience increased coma length,
mortality and decreased prognosis (147–150). These suggest
ApoE isoforms play a role in BBB regulation and ApoE4 has
a clear impact on the overall strength and integrity of the BBB
(Figure 1).

The mechanism as to how ApoE isoforms could be involved in
BBB dysfunction is necessary to understand why ApoE4 causes
detrimental outcomes when the brain becomes compromised.
One crucial component of the BBB are the tight junctions, as
they provide a barrier that allows selective molecules to flow
between blood and brain, maintaining homeostasis and keeping
out unwanted molecules. Nishitsuji et al. showed that these tight
junctions are important in BBB integrity and are significantly
impaired in the presence of ApoE4. The authors suggest that this
could be due to changes in matrix-metalloproteinase-9 (MMP9)
or other molecules that would degrade or impact the BBB
integrity (151). MMP9 has been shown to have multiple targets
present in the BBB, but one specifically is tight junctions. MMP9
can work to decrease the bond in the tight junction leading to
a leaky BBB (152). A study from Bell et.al built upon the idea
that ApoE4 triggers BBB breakdown and found that cyclophilin
A (CypA) is the likely culprit in this breakdown. They showed
that an increase in CypA led to activation of NF-kB, followed
by a significant increase in MMP9, specifically in the pericytes
found surrounding and supporting the vasculature in the brain
(153). Recently, Main et.al showed that ApoE4 had an impact
on the BBB integrity and the activation of the MMP9 pathway
in a comprehensive study using a TBI model. This study once
again confirmed that ApoE4 with TBI worsens disease outcomes.
They also found that after injury in both ApoE3 and ApoE4,
the BBB must become stabilized which leads to an increase in
ApoE. After the ApoE increase, there is pericyte loss, decreased
tight junction expression and an increase in MMP9 expression.
This appears in both ApoE3 and ApoE4 models, however, ApoE4
is much slower at the resolution of this progression. ApoE4
has clear detrimental effects on BBB integrity by activating
the MMP9 system and activating other inflammatory cascades
(154). In the presence of ApoE4, the pericytes significantly lose
their supportive capabilities, leading to an increase in leaky
vessels (155). A culmination of these studies implicates ApoE4
in decreasing BBB integrity through weakening tight junctions,
increases in MMP9 and a loss of support needed for the BBB.

The evidence shows an increase in MMP9 with ApoE4 leads to
the loss of BBB integrity and increase in inflammation. ApoE4 has
also been associated to an increase in cerebral amyloid angiopathy
(CAA) which can trigger BBB dysfunction due to the deposition
of Aβ in the vessel walls and impaired clearance through the BBB
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compared to ApoE3 (118). Anti-Aβ immunotherapies for animal
models and in clinical trials have been shown to increase MMP9
expression leading to an increase in microhemorrhages, showing
a decrease in BBB integrity (156). While the majority of the
anti-Aβ trials failed due to adverse effects, these adverse events
were more robust in ApoE4 carriers. This connection between
MMP9 activation due to the anti-Aβ therapies and the effect of
ApoE4 on MMP9 expression can explain the ApoE4 involvement
in BBB dysregulation that in turn, leads to neurodegeneration.
More information on ApoE4 in clinical trials will be provided
later in the review.

In addition to the disruption of the BBB integrity upon brain
injury, there has been shown to be an interesting connection
between TBI and development of AD later in life. In ApoE TR
models of ApoE3 and ApoE4, the mice were given repeated TBI
over 1 month. This showed a significant increase in microgliosis,
via IBA1 immunoreactivity, in ApoE3 mice but not ApoE4
mice. ApoE4 mice showed significant increases in phospholipids
and LDLR but not in inflammation suggesting that ApoE4
plays a role in many detrimental pathways but also shows an
impaired inflammatory phenotype (157). This finding suggests
that something more than just a decrease in BBB integrity is
occurring in the presence of ApoE4.

ApoE and the Glymphatic System
As previously discussed, ApoE4 constitutes a significant
impairment in the clearance of Aβ. This leads to the buildup
of Aβ in the vessels of ApoE4 AD patients, contributing to an
inflammatory response. This impairment in clearance has been
hypothesized to be directly related to ApoE4 forming globular
structures in conjunction with Aβ, potentially impairing the
availability of receptors necessary for the clearance of Aβ into the
blood vessels. Due to the involvement of ApoE in clearance of
Aβ from the brain to the vasculature, it is logical to hypothesize
that ApoE4 could also be involved in the impairments seen in the
glymphatic system due to a similar mechanism. Studies thus far
have examined glymphatic system impairments with Aβ removal
without examining ApoE isoforms. This study also examined
human autopsy tissue and found impairments and buildup of
Aβ in the glymphatic system but again, ApoE isoforms were not
considered (158, 159). More studies are needed to specifically
examine human tissue and consider ApoE isoforms to determine
the potential role of ApoE in the glymphatic system.

ApoE and Other Neurodegenerative
Diseases
Studies have implicated ApoE4 in other forms of dementia
other than AD, including Lewy Body Dementia (LBD). LBD is
one of the most prevalent forms of dementia and is found in
about 40% of Parkinson’s Disease patients. Two independent
studies published in 2020 investigated the effect of ApoE4 on
α-synuclein (α-syn), the defining pathology seen in LBD, and
showed an increase in pathology was associated with ApoE4.
Both studies used transgenic mice expressing human ApoE
isoforms with differing routes of α-syn production (transgenic
model and AAV- α-syn). The results from the animal studies

both showed ApoE4 lead to an increase in α-syn pathology, a
decrease in cognitive decline and an increase in gliosis around
the pathology (160, 161). In addition to animals, human patients
were also investigated, and it was shown that ApoE4 patients
with Parkinson’s disease had an increased rate of cognitive decline
(161). Human neuropathology data showed that ApoE4 patients
had an increase in α-syn pathology as well (160). Together these
studies show a clear impact of ApoE4 in other neurological
diseases as well as the impact of ApoE4 on neuroinflammation
is not limited to AD pathology.

Impact of ApoE on Clinical Trials
Due to the growing impact of AD, the need for therapeutics to
either prevent or delay the onset of AD is imperative. In 2012, the
National Alzheimer’s Project Act was established to help prevent
future cases of AD and related dementias. The group came up
with five major goals that includes optimizing care quality for
patients, improving support for those with AD and their families,
enhancing public awareness, tracking progress, and preventing
and effectively treating AD by 2025 (162). Having a prevention
or treatment option by 2025 is a lofty goal but the field is working
hard to achieve this goal. While we have had many drug trials
in the past 20 years, the failure rate is high which is pushing the
field in a direction of a more personalized medicine approach to
AD. Using this idea in clinical trials and therapeutic treatments,
the likelihood of a single drug helping everyone with the disease
is not likely. As this review has showed, ApoE4 plays a large and
varied role in AD, and thus is necessary to take into consideration
upon selection for clinical trials.

Targeting Aβ through anti-Aβ immunotherapy has been a
constant focus of trials and is still being actively perused.
Bapineuzumab was one of the initial anti-Aβ immunotherapies
designed to increase clearance of Aβ. In a phase II clinical
trial, bapineuzumab treated ApoE4 non-carriers had significant
benefits on cognition and function at the endpoints of the
study while this was not seen in ApoE4 patients. This trial also
showed that ApoE4 patients had an increase in amyloid related
imaging abnormalities (ARIA) which occurred 3–7x more in
ApoE4 patients depending on copy number. These findings led
to the phase III trial where ApoE4 patients received a lower
dose to offset ARIA (163–165). This study ultimately failed to
meet the endpoints and Aducanumab moved in as a newer anti-
Aβ immunotherapy for trial. Aducanumab can be tolerated at
a higher concentration and was dosed every 4 weeks. This trial
was focused on patients with AD before cognitive symptoms
had occurred. While the drug showed an effect on cognition,
ARIA was the main adverse effect in ApoE4 patients. Moving
into the phase III trial for Aducanumab, patients were segregated
out into ApoE status to dose according (166). These two studies
have clearly shown that while the goal is to find a treatment for
AD, it is important to consider ApoE status into the trial design
and study outcomes.

Currently, very few clinical trials take ApoE status into
account while grouping or dosing for trials. One current ongoing
trial, “A Study of CAD106 and CNP520 Versus Placebo in
Participants at Risk for the Onset of Clinical Symptoms of
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Alzheimer’s Disease” (NCT02565511), is investigating the effects
of CAD106 and CNP520, which both target amyloid, on the
impact of cognition, clinical status and pathology. They will
investigate ApoE4/4 patients due to their high risk of progression
to MCI and AD and is expected to reach completion in 2024.
Another upcoming trial is directly targeting ApoE4 patients
by using an adeno-associated virus in order to convert ApoE4
patients to ApoE2 in hopes to delay AD onset (NCT03634007).
Studies incorporating ApoE status into their inclusion and
dosing criteria will be imperative in the growing field of AD
trials and research.

One of the most multi-faceted clinical trials going on
right now is the Finnish Geriatric Intervention Study to
Prevent Cognitive Impairment and Disability (FINGER),
which now has branches in the United States as well as
around the world. The original FINGER study showed
that after lifestyle modifications, ApoE4 carriers showed
no significant cognitive improvements to those without
ApoE4 and that E4 carriers with lifestyle modifications
had greater cognitive and physical improvements than
those without the modifications (167, 168). This study
emphasized the importance of preventative strategies for ApoE4
patients, specifically through lifestyle modifications such as
physical activity.

CONCLUSION

As shown through this review, ApoE4 plays a role in virtually all
aspects of AD ranging from clearance of hallmark pathologies,
to disruption of intracellular pathways, to impacts on whole
brain metabolism. While these pathways can seem unrelated,
they can be connected through the overarching theme of
neuroinflammation. In moving forward, the impact of ApoE4
needs to be considered in studies, both human and animals. In
conclusion, ApoE4 plays a negative role in AD through both
gain of misfunction and loss of function mechanisms and further
studies are needed to elucidate these pathways and push the field
toward new therapeutics.
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