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Abstract: Mutations in the hotspot ligand-binding domain of the estrogen receptor (ER) gene ESR1
have recently been recognized as mechanisms of endocrine resistance in endocrine receptor-positive
metastatic breast cancer (MBC). Accumulating data suggest these mutations develop under the
selective pressure of endocrine treatments, and are infrequent in untreated ER-positive breast
cancers. In vitro studies show that these mutations confer ligand-independent activity, resistance to
estrogen deprivation, and relative resistance to tamoxifen and fulvestrant. Post-hoc retrospective and
prospective analyses of ESR1 mutations in patients with MBC have consistently found that these
mutations are markers of poor prognosis and predict resistance to aromatase inhibitors (AIs). These
results warrant further investigation and prospective validation in dedicated studies. Moreover,
studies are ongoing to clarify the activity of novel drugs in the context of metastatic endocrine resistant
luminal breast cancer harboring ESR1 mutations. In this review, we summarize the pre-clinical and
clinical findings defining the characteristics of ESR1 mutant breast cancer, and highlight the potential
clinical developments in this field.

Keywords: breast cancer; ESR1 mutations; endocrine-resistance; liquid biopsy; prognostic and
predictive biomarker; SERD

1. Introduction

Breast cancer (BC) is a complex disease that comprises different clinical and histopathological
subtypes. Two-thirds of cases express estrogen receptor-α (ER) [1,2]. Several in vitro and in vivo
studies have clarified the role of ER and its estrogen ligands in normal mammary gland development,
as well as in breast cancer evolution [3–5]. ESR1 is the gene that encodes ERα, a protein belonging to
the nuclear receptor superfamily [6]. ESR1 is composed of two activating function domains (AF-1,
the N-terminal ligand independent portion, and AF-2, the C-terminal ligand-dependent portion),
which regulate the transcriptional activity of the receptor, a ligand binding domain (LBD) located in the
C-terminal part, a DNA-binding domain, and a hinge domain [7]. Upon ligand binding to the receptor,
the engagement of co-regulatory proteins and binding to specific DNA motifs, such as estrogen
responsive element (ERE) [8], is triggered to modulate the expression of genes fundamental to several
processes, including tumorigenesis. ER-coregulatory complexes can also bind other transcription
factors such as AP-1 and Nfk-B, in turn modulating their transcriptional activity [9,10]. This last
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transcriptional function of ER appears increased in ligand-independent conditions under growth factor
stimulation [11]. Furthermore, ER interacts with different tyrosine kinase receptors and signaling
proteins, activating their signaling pathways [12]. From a molecular point of view, ER-positive (ER+)
BC presents two distinct phenotypes, which were originally defined by gene-expression profiling and
for which clinical surrogates exist. Firstly, the more indolent luminal A-like subtype is characterized by
low tumor grade, strong positive expression of ER and progesterone receptor (PgR), human epidermal
growth factor receptor 2 (HER2)-negativity and a low proliferative index; and the luminal B-like
subtype, which is typically more aggressive. Luminal B-like tumors express ER, but display variable
and lesser degrees of ER/PgR expression, are HER2-negative, and are associated with high grade and/or
high proliferative rate [13].

Resistance to endocrine therapy is a major challenge in the management of ER+/HER2-negative
breast cancer. In the metastatic setting, the majority of these cancers initially respond to endocrine
treatment, but almost ubquitiously eventually acquire resistance to antiestrogen drugs. Less frequently,
de novo endocrine resistance is observed in approximately 15–20% of patients, with no or a short-lived
initial response to endocrine therapy [14]. In the past 30 years, several research groups have
proposed various mechanisms involved in acquired endocrine resistance [7]. Previous research
efforts have investigated the relationship between ER expression/activity and sensitivity to endocrine
therapy, implicating a multitude of mechanisms. Loss of ER expression leading to endocrine therapy
insensitivity has been observed in 15–20% of metastatic BCs [10]. However, ER remains expressed in
the majority of cases of BC with acquired endocrine resistance [7]. Several mechanisms may induce
increased ER activity, including increased expression of ER [7] or its co-factors [7]. Importantly,
the interaction between ER and growth factor receptor signaling (including crosstalk with HER2) or
cellular kinase pathways (including MAPK, stress-related kinases, PI3K/AKT/mTOR, and CDK4/6
pathways) can modulate ER activity via phosphorylation of ER itself and/or its co-regulators, resulting
in fundamental modification of ER nuclear activity, which ultimately leads to endocrine resistance [7,11].
Hyperactivation of such signaling pathways can result from genetic alterations in a number of different
genes, including NF-1. Post-translational modifications of ER, including methylation, acetylation,
and SUMOylation, have been linked to endocrine resistance; additionally, delocalization of the ER to
the cellular membrane, enabling ER crosstalk with other proteins, including growth factor receptors
and their interacting proteins, and G protein-coupled receptor 30 (GPR30) have been involved in the
development of the endocrine-resistant phenotype. Other critical factors contributing to endocrine
resistance involve the tumor microenvironment and immune landscape. A deep discussion of this
complex milieu, which has been explored recently by others [7,10], is beyond the scope of this concise
review, which focuses specifically on the role of ESR1 mutations.

Recently Razavi et al. combined genomic sequencing results of 1918 BC tumors (of which 1501
were ER+) with data pertaining to clinical and treatment outcomes [15]. Their findings suggested
a potential new taxonomy for resistance to endocrine therapy observed following treatment, which
sub-classifies endocrine-resistant disease into four groups: (1) Those harboring ESR1 mutations,
which represent about 18% of the tumors relapsing after endocrine therapy; (2) functional alterations
in the MAPK pathway and (3) mutations in the machinery of transcriptional regulation (MYC/TF)
(constituting 13% and 9% of resistant cases, respectively); and (4) pan-wild-type tumors with a still
unknown mechanism of resistance to hormonal therapy (representing the remaining 60% of cases).
These alterations may pre-exist in treatment-naïve disease, or be acquired under selective pressure
of endocrine therapy, resulting in the expansion of pre-existing resistant clones. In this review, we
focus on the pre-clinical and clinical studies investigating ESR1 mutations in ER+/HER2-negative
metastatic breast cancer (MBC), highlighting their potential prognostic and predictive roles, and how
awareness of mutational ESR1 status might impact upon clinical decision-making and the potential for
biomarker discovery. A biomarker is defined as prognostic if it provides information about cancer
outcome regardless of therapy, whereas a predictive biomarker is prospectively reflective of the effect
of a therapeutic intervention [16].
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2. ESR1 Gene Alterations

Several studies have shown that acquired genetic alterations, including gene amplification, in key
target genes may lead to adaptive resistance to targeted therapies [17–20]. Li et al. demonstrated that in
an ER+ patient-derived xenograft (PDX) obtained from a patient with endocrine-resistant MBC, ESR1
gene amplification led to ligand-independent tumor proliferation [21]. However, studies employing
next generation sequencing (NGS) showed that ESR1 amplification in either primary or metastatic
tumor is quite rare, occurring at a rate below 2% [7,22], thus reflecting a minor role in endocrine
resistance. The clinical relevance of ESR1 gene amplifications in determining endocrine resistance is
still unclear.

Genomic rearrangements of ESR1 leading to the dysregulation of gene transcription and the
production of fusion genes have also been related to endocrine resistance. Veeraraghavan et al.
identified a frequent genomic rearrangement involving the ESR1 and CCDC170 (YAP1) genes [23].
The fusion gene ESR1–CCDC170 demonstrates gain-of-function via the expression of N-terminally
truncated CCDC170 under the constitutionally active promoter of the ESR1 gene. The product of
YAP1/ESR1 translocation induces a reduced sensitivity to fulvestrant, due to the lack of LBD ESR1
in this chimeric protein [23]. More recently, Hartmeier et al. have shown that N-terminal ESR1
fusions involving exons 6–7 are rare recurrent events in metastatic BC with potential implications
for clinical resistance to endocrine therapy [24]. New insights into the genomic complexity of breast
cancer have been derived from large-scale genomic studies. Results from the pivotal Cancer Genome
Atlas (TCGA) project demonstrates that primary luminal breast cancers exhibit a lower mutation rate
than other intrinsic subtypes, including basal-like and HER2-enriched breast cancers. Furthermore,
mutations with a frequency of more than 5% were found in only eight genes, namely PIK3CA, TP53,
MAP3K1, MAP2K4, GATA3, MLL3, CDH1, and PTEN. Mutations in the ESR1 gene were found to
be relatively rare in primary BCs (<5%) [17]. Data from Karnink [25] and Roodi [26] are in line with
TCGA results, suggesting that ESR1 mutations are infrequent in primary BC. Contrastingly, research
focusing on the genomic characterization of metastatic BC has shown that ESR1 mutations are more
frequent in advanced endocrine receptor positive disease, occurring at a frequency of 12% (9/76; 95%
confidence interval (CI), 6–21%) in metastatic tumors. In a subgroup of patients who received an
average of seven lines of treatment, the frequency was 20% (5/25; 95% CI, 7–41%) [22,27]. ESR1
mutations tend to cluster in a hotspot region coding the ligand binding domain (LBD) of ER, changing
amino acid 536, 537, or 538 in helix 12 (p.Leu536Arg, p.Tyr537Ser, p.Tyr537Asn, p.Tyr537Cys, and
p.Asp538Gly) [22,28]. Toy at al. demonstrated that LBD ESR1 mutations found in this hotspot region
exhibit a constitutively ligand-independent ER activity, which activates ER transcription function,
promoting hormone-independent tumor cell growth [29]. This and further studies have shown that this
activation occurs in the heterozygous state, suggesting that the functional status of wild-type alleles
are overridden by that of co-existing mutations [30]. The most common ESR1 mutations are Y537S,
D538G, and E380Q [31]. E380Q mutations gather outside ESR1 LBD hotspot cluster sites, and exhibit a
yet-to-be-understood mechanism of cancer proliferation different to that of the constitutive activation
identified in Y537S and D538G mutants [22]. A pioneering study by Fuqua et al. reported another ESR1
somatic mutation, K303R (Lys to Arg), which lodges in the ER hinge domain [32]. This mutation confers
a higher sensitivity to estrogen, and a lower response to endocrine treatment in ER+ BC cells. K303R
mutation was the first to be described in BC [32–34], but its clinical significance is still under evaluation.

3. Pre-Clinical Data: ESR1 Mutations and Drug Resistance

Pre-clinical data show that BC cells harboring LBD ESR1 mutations display partial resistance
to tamoxifen and fulvestrant in vitro, as higher doses of these agents are needed to elicit their
anti-proliferative effect in cells carrying such mutations [22,28]. Data also suggest that LBD ESR1
mutations confer complete resistance to aromatase inhibitors [22]. This may be ascribed to the different
mechanism of action of these drugs: Tamoxifen is a selective ER modulator (SERM) and fulvestrant is a
selective ER down-regulator (SERD), both binding ER to modulate its activity. The affinity of tamoxifen
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and fulvestrant to ESR1 LBD mutants has not yet been fully elucidated, but emerging evidence suggests
that the conformational change induced by mutations reduces affinity, which may explain the partial
resistance mechanism [21,35]. Conversely, aromatase inhibitors do not bind directly ER, but act by
reducing the levels of the estrogen ligand. Therefore, they cannot inhibit the ligand-independent
activity of the mutant ER. More detailed in vitro studies have shown that different ESR1 mutations may
have a differential impact on the response to fulvestrant treatment [29]. Utilizing xenograft models,
it was observed that fulvestrant fully inhibited BC cells with both wild-type ESR1, and with the E380Q
mutation, whilst BC cells with Y537S mutations were less inhibited by fulvestrant therapy. Indeed,
in this model, it was observed that the Y537S mutant model needed higher levels of fulvestrant to
completely inhibit its activity [36].

Wardell et al. [37] tested the activity of the cyclin-dependent kinase 4/6 (CDK 4/6) inhibitor
palbociclib administered as both monotherapy or in combination with the SERM bazedoxifene, in PDX
models derived from patients with ER+ endocrine-resistant BC. Palbociclib monotherapy showed
activity in PDX with ESR1 wild-type, and in PDX with ESR1 amplification, but was ineffective in PDX
with ESR1 D538G mutation. However, this observation may be explained by the concurrent loss of Rb
expression in this model, a well-described mechanism of resistance to CDK4/6 inhibitors. Conversely,
in the ESR1 Y537S mutant PDX model, palbociclib alone or in combination with bazedoxifene similarly
inhibited tumor growth, but the combination proved more effective in decreasing Ki67 expression than
either agent given as monotherapy [37].

4. ESR1 Mutations in a Clinical Context: Difference Between Metastatic and Early Breast Cancer

Recently, Schiavon et al. analyzed ESR1 mutations on circulating tumor DNA (ctDNA) from
171 patients affected by metastatic BC, and from 28 patients with early stage disease [38]. These
data showed that ESR1 mutations are often selected during treatment with aromatase inhibitors in
the metastatic setting, whilst are rarely acquired during adjuvant therapy with aromatase inhibitors
(AI) [38]. However, Kuang et al. observed higher rates of ESR1 mutations in patients treated with AI
regardless of the treatment setting (adjuvant, metastatic or both) [39]. In line with the concept that
ESR1 mutations are primarily acquired during aromatase inhibitors treatment, Allouchery et al. have
recently published findings from 42 patients with early BC treated with AI for at least 2 years, showing
that ESR1 mutations were not found in any of the studied patients [40]. These data confirm prior
observations that detecting ESR1 mutations in early BC is a rare event, ranging between 2 and 5%
depending on the dataset [22]. In a recent study, ESR1 mutations were detected in only 2.7% of 73
cases of early BCs [41]. In the same study, the authors explored the correlation between the frequency
of ESR1 mutations detected in ctDNA in patients with metastatic disease (N = 68), and the number of
treatment lines received in the metastatic setting. Contrastingly, the occurrence rate of ESR1 mutations
ranged between 25 and 43%, depending on the number of treatment lines received. Jeselsohn et al.
recently reviewed studies reporting ESR1 LBD mutations, describing a frequency of mutations of 21%
in patients who received at least one line of endocrine therapy [22]. A series of studies focused on
ESR1 LBD-activating mutations demonstrated that these mutations are more frequent in samples from
heavily pre-treated BC patients and, in particular, in those exposed to prior AI treatment [21,22,29].
Overall, these data suggest that ESR1 mutations occur more frequently in the advanced setting than
in early BC, that the frequency is higher in more heavily pre-treated endocrine-resistant patients,
and that treatment with aromatase inhibitors may exert a selective pressure favoring the expansion of
ESR1-mutated clones.

4.1. ESR1 Mutations in Advanced Luminal BC: Prognostic and Predictive Biomarker?

A recently published meta-analysis which evaluated 1530 patients with ER+/HER2-negative
metastatic BC suggested that ESR1 mutations detected in ctDNA may serve as a potential prognostic
biomarker in the advanced setting, with ESR1 mutations associated with worse progression-free
survival (PFS) and overall survival (OS) [42]. Regarding specific ESR1 mutations, the authors observed
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that the D538G mutation was associated with a worse prognosis and shorter PFS, whereas the
Y537S mutation was not associated with poor PFS, regardless of treatment received. Furthermore,
all hotspot ESR1 mutations were predictive of resistance to aromatase inhibitors, but not to other
endocrine therapies.

BOLERO-2 is a phase III randomized trial which compared everolimus, an inhibitor of mammalian
target of rapamycin (mTOR), plus exemestane, a steroidal aromatase inhibitor, versus exemestane plus
placebo in patients with metastatic ER+ disease refractory to previous therapy with a non-steroidal
aromatase inhibitor [43]. In a sub-analysis comparing the prevalence of cfDNA ESR1 mutations and
clinical outcome on BOLERO-2, D538G and Y537S mutations were found in 28.8% and 13.3% of
the samples, respectively, with 6% of cases harboring both mutations [44]. Compared to wild-type,
the presence of any of these mutations was associated with more aggressive disease and a decrease
in OS, regardless of previous treatments (ESR1 wild-type, OS = 31.1 months; D538G mutation,
OS = 25.99 months; Y537S mutation, OS = 19.98 months; both mutations, OS = 15.5 months), confirming
the prognostic role of mutational status in the metastatic setting. In the sequencing of primary tumors
derived from 183 women enrolled in BOLERO-2, only 3% harbored an ESR1 mutation; therefore,
no additional analysis was possible to clarify the prognostic role of these mutations in primary
tumors [45]. The incidence of ESR1 mutations occurring in selected completed large clinical trials is
presented in Table 1.

Table 1. ESR1 mutation rate reported in selected metastatic breast cancer trials.

Sample Studies Patients
(n Substudy/Total n on Trial) Comparator Trial Arms Prevalence of ESR1 Mutations

BOLERO-2
(NCT00863655) 541/724

Exemestane +
everolimus vs.

exemestane
28.8%

SOFeA (NCT00253422) 161/723
Fulvestrant +

anastrozole vs.
fulvestrant

39%

PALOMA-3
(NCT01942135) 195/521 Palbociclib + fulvestrant

vs. fulvestrant 25.3%

MONALEESA-2
(NCT01958021) 494/668 Ribociclib + letrozole vs.

letrozole 4%

FERGI (NCT01437566) 153/168 Pictilisib + fulvestrant vs.
fulvestrant 37%

The prognostic role of ESR1 mutations has been also demonstrated by Schiavon and colleagues,
which showed that ESR1 mutations correlated with a shorter PFS in patients exposed to a subsequent
aromatase inhibitor treatment [38]. Interestingly, in this analysis, E380Q mutations, which occur
outside ESR1 LBD, were observed to confer less sensitivity to tamoxifen and fulvestrant treatment,
similar to the Y537S mutant. Using droplet digital PCR (ddPCR), Clatot et al. observed ESR1 D538,
Y537S/N/C mutations in 30.6% of plasma samples derived from patients with metastatic BC which
had progressed after first-line aromatase inhibitor therapy [46]. The presence of ESR1 mutations was
shown to be relative to the length of time exposed to aromatase inhibitors, wherein exposure was more
prolonged in patients with ESR1 mutations than in patients with wild-type ESR1. ESR1 mutations
were found before clinical progression to AI therapy in 75% of cases, suggesting that tracking ESR1
mutations in ctDNA could be useful in following disease changes under the selective pressure of
aromatase inhibitor therapy. Additional data have shown that increases in ctDNA ESR1 mutations
during targeted therapy may predict a shorter duration of post-endocrine treatment efficacy [45].

Two other groups performed a post-hoc analysis of ESR1 mutations occurring in clinical trials,
to further elucidate their predictive or prognostic value in ctDNA. The first study is the SoFEA trial,
a phase III randomized controlled trial which compared fulvestrant with or without concomitant
anastrozole to exemestane, in postmenopausal women with ER+/HER2-negative MBC, whose disease
previously progressed on non-steroidal aromatase inhibitors [47]. In a secondary analysis of the SoFEA
trial, ESR1 mutations were detected in 39.1% of baseline plasma sample from 161 patients [48]. Patients
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with ESR1 mutations receiving exemestane had a worse median PFS compared to those receiving
fulvestrant-containing regimens (2.6 months versus 5.7 months; HR, 0.52, 95% CI 0.30–0.92, p = 0.02).
Contrastingly, patients with wild-type ESR1 had a similar median PFS when given exemestane or
fulvestrant (interaction test between treatments and ESR1 status p = 0.07). In another prospective plasma
DNA AI study of 39/83 patients who progressed on first-line AI therapy for advanced disease, ESR1
mutations were detected in plasma approximately 6.7 months before clinical progression on treatment
was discerned [49]. A post-hoc analysis focused on detecting ESR1 mutations in plasma samples
derived from patients recruited in the FERGI study, a randomized, double-blind, placebo-controlled,
phase II trial in which was tested the PI3K inhibitor pictilisib plus fulvestrant versus fulvestrant alone,
in aromatase inhibitor-resistant ER+/HER2-negative MBC [50]. ESR1 mutations were detected in
37% (57/153) of baseline samples of enrolled patients, particularly in those with luminal A BC and
PIK3CA-mutated tumors. However, this analysis did not demonstrate an association between the
presence of ESR1 mutations and clinical outcome [51]. Collectively, these data suggest that ESR1
mutations are predictive for resistance to AI treatment and have a negative prognostic value regardless
of therapy.

4.2. ESR1 Mutations in Patients Treated with CDK4/6 Inhibitors

In a prospective analysis of 155 plasma samples derived from patients with advanced BC, with
plasma samples collected at any time during metastatic disease, ESR1 mutations detected by ddPCR
were found to be less frequent in BC treated with CDK4/6 inhibitors in combination with fulvestrant (113
of 155 patients had ER+/ HER2-negative disease; 34 of these harbored an ESR1 mutation, two patients
treated with combination palbociclib and fulvestrant = 5.9%), than in patients treated with fulvestrant
alone (32 treated with fulvestrant alone = 94.1%; p = 0.01) [39]. Of note, in this prospective analysis,
baseline ESR1 mutations were associated with resistance to prior aromatase inhibitor therapy [41].
The PALOMA-3 trial (NCT01942135) originally compared palbociclib plus fulvestrant versus placebo
plus fulvestrant in women with metastatic disease which had progressed on previous endocrine
therapy [52]. A recently published sub-analysis of PALOMA-3 examined ctDNA derived from 195
patients with paired baseline and end-of-treatment plasma samples [53]. Analysis showed a positive
selection of ESR1 Y537S mutation at the end of treatment in both arms, suggesting a role of this mutation
in conferring resistance to fulvestrant therapy, but not to CDK4/6 inhibition. This in turn suggests
that resistance to fulvestrant itself may be the mitigating factor of resistance to the combination of
palbociclib and fulvestrant, further confirming ESR1 Y537S mutation as a negative predictive biomarker
of fulvestrant response. These data also suggest that palbociclib does not prevent selection of ESR1
mutations, which is in line with previous data in metastatic BC patients treated with palbociclib and
letrozole [54].

It has been shown that PFS in patients receiving fulvestrant plus palbociclib in PALOMA-3 was
longer than those receiving fulvestrant alone, regardless of ESR1 mutation status [53]. Additionally,
patients with ESR1 mutations treated with the combination had a better outcome than patients with
ESR1 mutations receiving fulvestant monotherapy, suggesting that mutational status had a prognostic
but not predictive value. In further support of their prognostic role, baseline tumor ESR1 mutation
rates were found to be lower among long-term responders in both PALOMA-3 trial arms [55]. A recent
analysis of plasma samples collected at baseline, cycle 1 day 15, and at the end of treatment (EOT)
from patients recruited to PALOMA-3 showed that ESR1 mutations had a greater suppression by
fulvestrant plus placebo compared to PIK3CA mutations but does not predict improvement in PFS
on fulvestrant [56]. However, ESR1 mutations that developed under selective aromatase inhibitor
pressure were frequently subclonal, therefore limiting the potential for their dynamics to predict
clinical outcome. Of note, in this study, changes in ESR1 mutation abundance on treatment relative to
baseline could not predict PFS in patients treated with palbociclib. Comparing ESR1 mutation between
baseline and EOT, 25.8% of ESR1 mutant patients showed undetectable levels of mutations at the
EOT. Patients with ESR1 mutation clearance at day 15 more frequently showed no detectable levels of
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mutations at the EOT. Intriguingly, clearance at the EOT occurred more frequently in patients receiving
palbociclib compared to placebo [56]. Analysis of mutations in PIK3CA, another possible biomarker,
was also undertaken. PIK3CA mutations have been reported to be an early event in ER+ breast cancer
and are found in more than 30% of ER+ primary treatment-naïve breast cancers. The frequency of
PIK3CA mutations does not change under the pressure of endocrine treatments or the development of
endocrine resistance and metastatic disease [22,57]. A decrease in PIK3CA ctDNA level after 15 days
of treatment predicted a better PFS on palbociclib and fulvestrant treatment [56].

Recently published data evaluating OS in an exploratory analysis of PALOMA-3 showed that in
patients receiving combination therapy, those with ESR1 mutations had a longer OS compared to those
with ESR1 wild-type, albeit without reaching statistical significance (11.0 versus 4.7 months; p = 0.60).
In this study, OS was similar in patients with or without PIK3CA mutations [58]. Analysis of ctDNA
samples derived from patients enrolled in MONALEESA-2 detected ESR1 in only 4% of cases; too
low an incidence to reliably correlate to clinical outcome on ribociclib (Table 1) [58]. MONALEESA-2
is a phase III trial, which tested ribociclib plus anastrozole versus anastrozole alone, in first-line
treatment of postmenopausal patients with either de novo ER+/HER2-negative MBC or with previously
early-stage disease that progressed at least 12 months subsequent to the last dose of adjuvant AI
therapy. This inclusion criteria therefore selected patients with a high likelihood of endocrine-sensitive
disease (given the absence of prior drug exposure in the de novo patients, and a durable response in
those previously exposed). As such, it is not surprising that a low percentage of ESR1 mutations was
observed in this cohort.

Overall, these data suggest that baseline ESR1 and PIK3CA mutations do not hold predictive value
as biomarkers for CDK4/6 inhibitor therapy [50]; however, dynamic changes in mutational ctDNA on
treatment could itself be a biomarker of response or resistance to CDK4/6 inhibitor treatment [56].

5. Potential New Therapeutic Agents and Strategies

New SERMs or SERDs (with or without CDK4/6 inhibition) or high-dose tamoxifen or fulvestrant
may represent possible therapeutic strategies to overcome resistance linked to ESR1 mutations. A short
summary of the properties of new compounds under development is presented in Table 2, and has
also been discussed in greater detail elsewhere [59]. Completed and ongoing clinical trials involving
potential new agents and strategies are presented in Table 3. Among these new compounds are
bazedoxifene [60] and brilanestrant [61], with pre-clinical studies demonstrating efficacy in inhibiting
cellular growth in models harboring ESR1 mutations. Bazedoxifene—a third generation SERM with
SERD activity—effectively arrested BC cell growth, regardless of whether cells were sensitive or resistant
to prior tamoxifen treatment. Bazedoxifene administration triggers a proteasomal degradation of ER
by altering its conformation [60]. Similarly, brilanestrant, a novel selective SERD, has demonstrated
strong inhibitory activity in tamoxifen-sensitive and -resistant metastatic BC cells [62,63]. Recently,
Bahreini et al. conducted pre-clinical testing of the new orally-active SERD AZ9496 and brilanestrant.
Both were able to inhibit growth in ESR1 wild-type and ESR1-mutated BC cells, including Y537S
mutants [30]. Additionally, AZ9496 also reduced cell growth in xenograft models with ESR1 D538G
mutations [64]. This study highlighted the need to include assessment of specific mutations, given that
each mutation is different—in particular, Y537S mutations may require higher doses of drugs to reach
full inhibition [64].
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Table 2. New oral anti-estrogen compounds.

Agent Agent Class Mechanism of Action Pharmacokinetics

Basedoxifene [60,65] SERM/SERD hybrid
Binds to ERα with high affinity;

regulates ERα turnover
(“SERD-like” profile)

Major metabolic pathway: Hepatic
glucuronidation, Little-to-no cytochrome

P450-mediated metabolism
Half-life: 30 h

Major route of elimination: Gastrointestinal

Brilanestrant [62] SERD Degrades ERα and interrupts ERα
signaling No available published data

Lasofoxifene [66,67] SERM
Binds to ERα, induces

conformational changes of ERα,
preventing coactivator recruitment

major metabolic pathway: P450-mediated
metabolism (CYP2C9)

Half-life: 116–150 h
Major route of elimination: Gastrointestinal

AZD9496 [68,69] SERD

Degrades ERα; binds and
down-regulates mutant ERα,
including D538G and Y537S

mutations

Major metabolic pathway:
P450-mediated metabolism

(CYP2C8)
Half-life: Rapid and biphasic decline

following peak (0.99–1.99 h)
Major route of elimination: Gastrointestinal

SAR439859 [70] SERD
Binds ERα, inducing a

conformational change that results
in ERα degradation

No available published data

Elacestrant [71] SERD

Dose-dependent ER degrader,
inhibits estradiol-dependent
induction of ER target gene

transcription and cell proliferation
in BC cells with wild-type and

Y537S, D538G mutant ERα.

No available published data

H3b-5942 [72] SERCA

Inactivates both wild-type and
Y537S-mutated ERα by targeting

Cys530, inducing a unique
antagonist conformation

No available published data

Abbreviations: SERM, selective estrogen receptor modulator; SERD, selective estrogen receptor down-regulator;
SERCA, selective estrogen receptor covalent antagonists; SERM/SERD hybrid, ERα, estrogen receptor alpha; BC,
breast cancer.

Table 3. Completed and ongoing trials in ER+/HER2-negative metastatic breast cancer with a focus
on ESR1 mutational status and new selective estrogen receptor down-regulator (ClinicalTrials.gov
accessed on 21 October 2019).

Agent Study Design Estimated
Enrollment Primary Endpoint(s) Status

AZD9496 (NCT02248090) Phase I,
open-label 45 Activity, tolerability, and

safety of treatment Completed

Tamoxifen (NCT030045653) Phase I,
open-label 32 CBR at 16 weeks Completed

Basedoxifene
(NCT02448771)

Phase Ib/II,
open-label 36 CBR at 24 weeks Active, not

recruiting
Palbociclib plus
AI/fulvestrant

(NCT03079011)

Phase III,
open-label 800

Safety until
randomization/efficacy from

randomization

Active, not
recruiting

Elacestrant (NCT02338349) Phase I,
open-label 57 Dose-limiting toxicity Active not

recruiting

Elacestrant (NCT02650817) Phase Ib,
open-label 16 Effect of ER binding after

elacestrant treatment
Active not
recruiting

Elacestrant versus endocrine
therapy (NCT03778931)

Phase III,
open-label 466 PFS in patients with ESR1

mutations Recruiting

SAR439859 as monotherapy
or plus palbociclib

(NCT03284957)

Phase I/II,
open-label, non

randomized
224

Safety and efficacy of
SAR439859 as monotherapy

and in combination with
palbociciclib

Recruiting

SAR439859 (NCT04059484) Phase II,
open-label randomized 282 PFS Recruiting

Abbreviations: CBR, clinical benefit rate; PFS, progression free survival.

Lasofoxifene is another new SERM associated with positive pre-clinical data. Laine and colleagues
have assessed the efficacy of lasofoxifene in pre-clinical models [66]. Mice were injected with three
different MCF7 variants (MCF7 wild type Y537S, and D538G) and treated with vehicle, fulvestrant,

ClinicalTrials.gov
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or three different doses of lasofoxifene (1, 5, 10 mg/kg; 5 days/week). Compared to fulvestrant,
lasofoxifene was more effective at 5 and 10 mg/kg in the Y537S tumor. Further studies have also
tested novel combination strategies incorporating new SERDs or SERD hybrids (SSH) as single
agents, or in combination with CDK4/6 inhibitors in ESR1-mutated MCF7 cells and animal models,
demonstrating that such a combination approach may prolong the length of treatment response,
compared to single-agent therapy [37].

A recently completed phase I clinical trial tested AZD9496 in advanced ER+/HER2-negative BC
(NCT02248090). The primary endpoint was to find the maximum tolerated dose, and to assess safety
and drug activity in patients with and without ESR1 mutations. Early modifications in circulating
tumor cells (CTCs) and ctDNA of patients recruited to that trial have recently been reported, assessing
the significance that these changes may have in relation to the pharmacodynamics and efficacy of
AZD9496 [68]. Patients who had ≥5 CTCs per 7.5 mL of whole blood at baseline had worse PFS than
those with <5 CTCs per 7.5 mL (p = 0.0003). ESR1 mutational status at baseline was not associated with
prognosis, whereas persistence of high ESR1 mutational ctDNA at day 15 of treatment with AZD9496
was related to worse PFS (p = 0.0007).

Another phase Ib/II single arm clinical trial has been conducted in patients with ER+/HER2-negative
MBC, assessing the efficacy of palbociclib given in combination with basedoxifene (NCT02448771).
Participants were required to have had progressive disease after one or more lines of endocrine therapy,
and up to two chemotherapy lines in the metastatic setting to be considered eligible for study entry.
All patients (N = 36) were CDK4/6 inhibitor-naïve. Preliminary analyses showed a clinical benefit rate
of 39% at 24 weeks, with the combination proving to be well-tolerated. Analysis of ctDNA is not yet
available (Table 2).

Pre-clinically, SAR439859, a new oral non-steroidal SERD, has shown potent ER-degrading and
-antagonist activity that results in strong inhibition of ER signaling in various ER+ BC cell lines,
including cell models harboring ESR1 mutations [70]. An ongoing trial is testing the activity and safety
of SAR439859 in postmenopausal patients with ER+ MBC, both as a single agent and in combination
with palbociclib (NCT03284957). A further phase II study is ongoing to evaluate the efficacy of
SAR439859 compared to physician’s choice therapy, in pre- and postmenopausal women with ER+

MBC (NCT04059484).
Elacestrant is a SERD which has been shown to induce degradation of ER, inhibit ER-mediated

signaling and growth of ER+ BC cell lines in vitro and in vivo, and inhibit tumor growth in multiple
patient-derived xenograft (PDX) models, including demonstrable anti-tumor activity both when
applied as a single agent and in combination with palbociclib in two PDX BC models harboring ESR1
mutations [73]. Currently, elacestrant is under clinical investigation in postmenopausal women with
ER+ MBC in two phase 1 studies. The first is a dose escalation/expansion study (NCT02338349),
and the second will assess the efficacy of elacestrant and its effect on pharmacodynamic endpoints,
including an evaluation of its influence over the availability of ER binding sites in MBC lesions assessed
with 16α-18F-Fluoro-17β-Estradiol positron emission tomography imaging (NCT02650817). The last
is EMERALD (NCT03778931), an international multicentre phase III study, which will compare the
efficacy and safety of elacestrant to physician’s choice endocrine monotherapy (an AI or fulvestrant) in
patients with ESR1-mutated ER+/HER2-negative metastatic BC.

The experimental agent H3B-5942 belongs to a class of orally-available ER covalent antagonists
(SERCA). In vivo, H3B-5942 has shown antitumor activity as a single agent in BC xenograft models with
ESR1 wild-type and harboring ESR1 Y537S mutations that was superior to fulvestant treatment [71].
The efficacy of H3B-5942 increased when given in combination with CDK4/6 inhibitors and mTOR
inhibitors in ESR1 wild-type and ESR1 mutant BC models [71]. PADA -1 (“Palbociclib and Circulating
Tumor DNA for ESR1 Mutation Detection”) (NCT03079011) is an ongoing trial designed to evaluate the
efficacy of a switch in ET (AI changed to fulvestrant) combined with palbociclib at the time that ESR1
mutations are detected in ctDNA on treatment [72]. This randomized, open-label, multicenter, phase III
trial is enrolling patients to receive an AI plus palbociclib as first-line therapy for ER+/HER2-negative
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MBC. Patients are screened for ESR1 mutations in ctDNA at regular intervals whilst on treatment.
Patients who have increased ctDNA ESR1 mutations in the absence of demonstrable progressive disease
are randomized (1:1) to one of two arms: No change to existing therapy until disease progression as per
RECIST criteria (Arm A), or a switch in endocrine therapy from an AI to fulvestrant, with palbociclib
continued (Arm B). Furthermore, cross-over of 80 patients from Arm A following progression is
mandated by the study protocol. This study will clarify if ESR1 holds a predictive and a prognostic
value in patients treated with CDK4/6 inhibitors.

Given the pre-clinical observation that ESR1-mutated disease may retain some sensitivity to
tamoxifen or fulvestrant (albeit at a higher dose), re-challenging with these agents using different
dosages or schedules may be attempted therapeutically. The CONFIRM study demonstrated that
prolonged survival was associated with higher fulvestrant doses [74]; as such, it may be privy to
investigate if high doses of fulvestrant can inhibit the growth of tumors that harbor ESR1 mutations [75].
A small phase II clinical study has tested the safety and tolerability of high-dose tamoxifen in patients
with prostate cancer (160 mg/m2/day) [76]. This regimen was well-tolerated, aside from Grade
3 neurotoxicity that occurred in 29% of patients, which was found to be rapidly reversible and
adequately managed with dose modification. Furthermore, the efficacy and safety of tamoxifen 100
mg/day in metastatic breast cancer is currently being evaluated in a recently completed phase II trial
(NCT03045653). These may establish a pathway to clinically test higher doses of tamoxifen in patients
with ESR1-mutated BC.

6. Conclusions

A major challenge remains in overcoming endocrine resistance in metastatic ER+ disease. ESR1
mutations are recognized as a mechanism of endocrine therapy failure. ESR1 mutations are infrequently
seen in primary BC, occurring at a rate below 5%. However, in advanced BC, ESR1 mutations occur
at a frequency between 20 and 40%, dependent on assay techniques, and relative to the number of
treatments lines received in the advanced setting.

ctDNA has potential for the non-invasive monitoring of tumor mutational status over time and
treatments [38], and as such, collecting and analyzing plasma samples in patients with metastatic
disease could prove useful in observing disease behavior [41]. Early changes in circulating tumor DNA
(ctDNA) levels may reflect early response to treatment, but the impact of tumor heterogeneity is still
unknown [56]. Several studies have identified hotspot mutations in LBD ESR1 (Y537S, D538G, and
E380Q), which confer constitutive ligand-independent activity. Pre-clinical studies suggest that BC cells
harboring LBD ESR1 mutations confer partial resistance to tamoxifen and fulvestrant in vitro [2,28].
Moreover, other data suggest that LBD ESR1 mutations confer complete resistance to aromatase
inhibitor treatment [22].

ESR1 mutations may be seen as a novel biological predictor of endocrine resistance. Indeed,
in several research studies conducted in BC patients, the presence of ESR1 mutations predicted poor
response to AI treatment, yet contrastingly, only Y537S mutations conferred relative resistance to
fulvestrant treatment. Available data suggest that baseline ESR1 mutations do not hold predictive
value as biomarkers for CDK4/6 inhibitor therapy [53]; however, the dynamic changes in mutational
ctDNA on treatment may be a biomarker of response or resistance to CDK4/6 inhibitor treatment.
Ongoing trials are required to clarify the role of ESR1 mutational status in patients treated with
CDK4/6 inhibitors plus ET. Overall, ESR1 mutations reflect an unfavorable prognostic value, regardless
of treatment. New SERDs and SERMs are under investigation to overcome endocrine resistance.
Pre-clinical studies of these drugs demonstrated efficacy in inhibiting cancer cell growth in models
harboring ESR1 mutations. These novel treatments can overcome resistance related to ESR1 mutations,
potentially offering a new therapeutic option for patients with ER+/HER2 negative MBC in the future.
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