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As a popular simulation of photon propagation in turbid media, the main problem of Monte Carlo (MC) method is its cum-
bersome computation. In this work a table-based random sampling simulation (TBRS) is proposed. The key idea of TBRS is to
simplify multisteps of scattering to a single-step process, through randomly table querying, thus greatly reducing the computing
complexity of the conventional MC algorithm and expediting the computation. The TBRS simulation is a fast algorithm of the
conventional MC simulation of photon propagation. It retained the merits of flexibility and accuracy of conventional MC method
and adapted well to complex geometric media and various source shapes. Both MC simulations were conducted in a homogeneous
medium in our work. Also, we present a reconstructing approach to estimate the position of the fluorescent source based on the
trial-and-error theory as a validation of the TBRS algorithm. Good agreement is found between the conventional MC simulation
and the TBRS simulation.

Copyright © 2006 X. Zhang and J. Bai. This is an open access article distributed under the Creative Commons Attribution License,
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1. INTRODUCTION

The study of light propagation in a highly scattering or turbid
medium has attracted growing interest among researchers
around the world because of the potential applications to
medical problems, such as imaging. With the noninvasive na-
ture, the recent developed bioluminescence optical tomog-
raphy (BLT) soon became a hotspot in optical imaging and
shed light on the early detection of pathological changes of
biological tissues. However, there are still some obstacles pre-
venting the realization of this technique, among which the
most serious problem is the strong scattering in biological
tissues. In most published works, a computable model of the
propagation of radiation in tissue, most often the diffusion
approximation, is adopted as appropriate for cases that are
scattering-dominated, that is, where μs � μa. However, an
analytical and direct solution to the diffusion equation or the
Boltzmann transport equation is not practically affordable
due to the computational complexity, except in extremely
simplified situation [1, 2].

Therefore, numerical simulation plays a critical role in
BLT, among which the Monte Carlo (MC) approach is
important for its accuracy and flexibility. Okada et al. used
the MC method to describe the spatial distribution of pho-
ton paths [3]. Li et al. portrayed a simulation for biolumi-

nescent tomography with MC approach [4]. Despite that
most existing MC programs are based on a geometric differ-
ence from the biological tissues [5–10], the main problem of
these works is the cumbersome and time-consuming com-
putations. Therefore, reducing the computing time of MC
method is a crucial problem for further study.

In this paper, we present table-based random sampling
(TBRS) simulation to accelerate the computation, thus en-
hance the efficiency of conventional MC simulation. In
Section 2.1, a conventional MC algorithm for BLT was de-
scribed for accurately simulating the whole process of pho-
tons and obtaining physical quantities, also laying basis to
the TBRS algorithm. In Section 2.2, the TBRS algorithm was
described in detail. Section 3 presents a reconstruction exam-
ple of the fluorescent source with trial-and-error method as a
verification of the TBRS algorithm. Then in Sections 4 and 5
and Discussion, we provide results of conventional MC sim-
ulation and TBRS simulation, as well as their comparisons.

2. METHODOLOGY

2.1. Conventional MC simulation

The conventional MC method is based on randomly con-
structing a set of trajectories [11], which mimic the real
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photon migration process in tissue. The photon propaga-
tion in biological tissues includes the optical process of ab-
sorption, scattering, reflection, and transmission. In a domi-
nantly scattering medium, the azimuthal angle ϕ and deflec-
tion angle θ of moving photons should be obtained from MC
random sampling, in which ϕ is uniformly distributed over
the interval (0, 2π), and cos θ is described by the Henyey-
Greenstein function [12]:

f (cos θ) = 1� g2

2
(
1 + g2

� 2g cos θ
)3/2 . (1)

Here, geometric parameters include the coordinates and
shapes of biological tissues. The Cartesian coordinate system
and a moving spherical system are used with the same ori-
gin. The azimuthal angle ϕ and deflection angle θ are the two
basic parameters in this spherical system. The parameter g
is called anisotropy factor. For biological tissues, the factor
g is rather close to 1, which corresponds to the fact that the
deflection angle tends to be very small.

Once the microscopic scattering model has been estab-
lished, conventional MC methods launch random trajecto-
ries using relevant probability densities. There is no other re-
striction on the simulation process. Now taking a photon’s
transportation for example, the position of the photon is rep-
resented by Cartesian coordinates (x, y, z). The direction of
photon propagation is represented by the directional cosines
(μx,μy ,μz):

μx = sin θ cosϕ,

μy = sin θ sinϕ,

μz = cos θ.

(2)

Here, cos θ = 2ξθ � 1 and ϕ = 2πξϕ, ξθ and ξϕ are uniform
random numbers in (0,1).

The photon has an initial energy of w (termed weight).
When the photon launches from a light source, positional
sampling finds the initial position of the photon, while an-
gular sampling decides the direction of photon transporta-
tion. Then the step size λ, which is a random variable, deter-
mines the next interaction site of this photon. Also it should
be modified if the photon hits the boundary of the ambi-
ent medium. After each scattering, the energy of the pho-
ton will partly be absorbed by medium/tissues. Both λ and
weight loss can be calculated based on the absorption co-
efficient μa, the scattering coefficient μs, and the anisotropy
factor g. Finally, the photon will reach the boundary of the
medium/tissues and may either be reflected or transmitted.
According to the Snell discipline and Fresnel formula,

ni sinαi = nt sinαt , (3)

where αi is the angle of incidence, αt is the angle of trans-
mission, ni and nt are refractive indices of the media where
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Figure 1: Diagram of the simulated cylinder medium with fluores-
cent source and 24 detectors. The center of cylinder was set to co-
ordinates (0, 0, 0). The cylinder has a height of 36 mm and 18 mm
as base radius. Each detector has a radius of 3 mm and centers of
the sensors are on the z-plane of z = 11, z = 0, and z = �11, re-
spectively. Sensors in three layers are numbered clockwisely (1–8,
9–16, 17–24). The fluorescent source (�) was set in r (r can be any
location in the cylinder in our simulation).

the photon incidents from and transmits to. Assuming that
αi is very small, we can obtain a simplified expression of the
internal reflectance R(αi):

R
(
αi
) =

(
n2 � n1

)2

(
n2 + n1

)2 . (4)

Therefore, whether the photon will transmit the boundary or
be internally reflected by the boundary can be determined.

In this paper, both conventional MC simulation and the
TBRS simulation are conducted in a homogeneous medium.
We use a cylinder-shape container to simulate biological tis-
sues like a mouse’s chest. There are 24 sensors on the side
of the cylinder, as shown in Figure 1, the sensors are uni-
formly arranged in three layers. The conventional way to sim-
ulate the input source in a diffusion model is to represent the
source by a diffuse point source located at r in the medium.
The photon that first launched at r will travel through the
medium until it exits the boundaries of the medium. Only a
small part of photons will be received by sensors, so a large
number of photons should be used to make the simulation
results statistically reliable. Yet, the conventional MC model
is fairly time consuming. Thus, an improved MC algorithm,
termed as TBRS simulation, was developed to increase the
efficiency. Also, with the data acquired in the simulation, we
estimated the location of the source.
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Calculate N steps of one photon
and keep record of each position

and direction in a table

Take boundary effect into account

Randomly sample n consecutive
steps from the table and directly

get the photon’s next position and
direction after n steps scattering

Output the states of detectors and
other necessary results

Start

Create a table

Simulating M photons

For a single photon

Determine n

Sample from the table

Result output

End

Figure 2: The flowchart to show the algorithms of TBRS method. Assuming a single-photon transport N steps from the initial position, we
calculate and record the position and direction of each step in a table. M is the total number of photons used in a simulation.

2.2. TBRS simulation algorithm

In the conventional MC method, a single-step iterative func-
tion composed of the formulae derived from H-G function
[12] should be created. We make an iterative operation for
each step movement of one photon to get the next position
and direction of it. Each photon may transport hundreds of
steps before going across the boundary or being received by
detectors. A large number of photons were used in a simula-
tion, so most of the computing time is used in photon scat-
tering. As described in Section 2.1, when a photon transports
from one site to another in one step, the direction and step
size are both random variables generated from the iterative
function. Because the iterative function in the conventional
MC algorithm has already used a set of algebraic equations
instead of the diffusion equation to make the iteration sim-
ple, rather than changing the function, we alternatively con-
sider expediting the simulation by reducing iteration times.

The key to our improved algorithm is to simplify multi-
steps scattering to a single-step process. Now assume that
the photon is in one site, then, after n steps, its position
and scattering direction become two random variables which
have certain distributions determined by the single-step iter-
ative function. To obtain such a distribution quickly, a table-
based random sampling method was proposed as shown in
Figure 2. At the beginning, we assume that a photon is in the
initial position. Then we simulate N steps of its transporta-
tion in a boundless reference medium with conventional MC
method. The results obtained form a table which contains
the position and direction of the photon in each step. All the
N positions and directions are listed in order from the ini-
tial step to the last. For any consecutive n (n � N) steps
in the N steps of photon movement, they suggest a possible

state of continuous-n-step transportation. There are in sum
(107

� n + 1) different states containing enough possibilities
of the continuous-n-step transportation of one photon. Here
we will introduce an n-calculation. Now assume a photon is
in site 1, its position and direction after n steps are randomly
distributed. What we do is to randomly take out continu-
ous n steps from the table to mimic the photon’s movement.
This is defined as a random sampling process in the TBRS
method. With the n steps taken from the table, the change
of position and direction (denoted by coordinates x, y, z,
and ϕ, θ) from the initial to the end within these n steps is
obtained. Then this change is added to the position and di-
rection of simulating photon in site 1, thus the position and
direction of this photon after n steps, which we define as site
2, can be directly calculated. Therefore, the calculation of n
separate steps of photon transportation is replaced by just
querying the table once, regardless of the position and direc-
tion of the photon where we start the n-calculation. Once
the position and direction of the photon in site 2 are ob-
tained, the n-calculation described above will be repeated to
obtain site 3, site 4, and so forth. Theoretically, unless the
photon crosses the media boundary during the n steps, this
algorithm can be applied to calculate the next position of any
photon transporting n steps from one position. Real simula-
tion has showed that TBRS method can greatly increase the
computing speed to several times of that of the conventional
MC method in different applications.

Then we discuss how to determine N , the size of the
table. The larger the N value is, the lower repetition rate
of the data stored in that table is. See Figure 3, when N
ranges from 102 to 107, we take out some N values (100, 200,
300, . . . , 1000, 2000, . . . , 1000000, 2000000, . . . , 107). For each
N , we simulate 107 photons using the TBRS method (assume
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Figure 3: TBRS simulation results with different table sizes. N de-
notes the table size. Curve A and Curve B denote the maximized
and minimized numbers of photons received among the 24 sensors
in the simulations.
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Figure 4: An experimental way to determine n: the relationships
between D and n in different conditions. n denotes the number of
steps a photon travels, and D denotes the distance between the po-
sition of the photon and the nearest media boundary. The range of
a single step is constrained to 5, so line 1 begins at D = 5.

the source is in (3,�4, 5), in the phantom shown in Figure 1).
In each simulation, the maximized and minimized numbers
of photons received among the 24 detectors can be derived,
forming Curve A and Curve B. Apparently, when N ranges
from 102 to 104, both Curve A and Curve B fluctuate greatly.
When N becomes larger, the curves go stable. It shows that
as far as N is larger than a certain value (here is 104), the
simulation results become stable, with little influence from
the size of the table. This dividing value is experimentally de-
termined, as shown in Figure 3. Be aware that the dividing
values vary according to different simulation environments
(phantom properties, optical properties, etc). We should use
the experimental method explained in this paragraph to de-

termine those values. Theoretically, the table size N can be
any value that is greater than the dividing value.

The value of n is another important factor to influence
the effectiveness of the TBRS algorithm. Ideally we want to
maximize n to accelerate the computing as much as possi-
ble, but the prerequisite is that the photon will not cross the
boundary during the n steps of scattering. Now we discuss
how to take the boundary into account by selecting an appro-
priate n. Assume that the scattering photon is now in one po-
sition, and the distance between this position and the nearest
media boundary is D. To make sure there will be no cross-
bound phenomenon during the next n steps, the most direct
way to determine n is using n = D/λ. Therefore, n is a con-
stantly changing variable. Every time we determine a pho-
ton’s position and direction after n steps by randomly sam-
pling the table, we should first determine an optimal n with
this formula. Then the time of n scatterings in the conven-
tional MC simulation can be replaced by the time of querying
the table, which is much less, relatively.

However, is there a better way to determine n, an op-
timal n that is as large as possible to achieve better effi-
ciency of the TBRS algorithm? In fact, the simulation re-
sults using n = D/λ are good enough to prove the superi-
ority of the TBRS algorithm. Yet experiential data can help to
slightly improve the efficiency of our TBRS method by get-
ting a more optimal n. In the established table, the distance
of randomly distributed any continuous n steps can be ob-
tained (n = 1, 2, . . . ,N). For n = 1, 2, . . . ,N , there will be
maximized distance and mean distance for each n steps. In
Figure 4, Line 1 represents the relationship between D and n
when n assuming the photon attains maximized distance for
every n steps, thus the space below Line 1 will be “safe” with
no cross-bound phenomenon. Line 2 represents the relation-
ship between D and n when n assuming the photon attains
minimized distance for every n steps. Here, Curve 2 seems to
be much smoother than Curve 1. In fact, both Curve 1 and
Curve 2 are formed by discrete values. But for Curve 2, when
n increases, the distance increment is much smaller, making
the curve very “continual.” Then consider n as a variable of
D in real simulation, say n = F(D). In order to avoid cross-
bound phenomena and attain higher efficiency, the function
F(�) is set as illustrated by Line 3. The lower part of Line 3 is
close to the Line 2 to maximize n, and the higher part of Line
3 is close to Line 1 to avoid any cross-bound phenomenon.
Line 3 is only an experiential curve based on some prelimi-
nary simulation results, which can surely be replaced by some
alternatives. However, any attempt to increase n is at the risk
of losing accuracy of the simulation results. TBRS is a validat-
ing numerical method, in which n should be appropriately
determined with the assurance of its accuracy.

3. RECONSTRUCTION

The studies of inverse problems of bioluminescence opti-
cal diffusion include the reconstruction of optical parame-
ters and reconstruction of fluorescent sources. Our work is
sorted to the latter. In this work, reconstruction of fluores-
cent source served as a verification of the feasibility of our
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TBRS algorithm. Here the key to the reconstruction is the
concept of trial and error. A TBRS simulation is performed
prior to reconstruction. With the numbers of photons re-
ceived by all the 24 detectors obtained from the simulation as
input states, detailed information about the simulation envi-
ronment (including the shape, size, and optical parameters of
the medium), size, and shape of detectors shown in Figure 1,
we can start the reconstruction process and estimate the po-
sition of sources in the 3D medium with fine precision.

A stepwise searching was used for source location estima-
tion. We set the origin (0, 0, 0) in the Cartesian system as the
initial searching position. Then, we do several TBRS simula-
tions of 1000 to 50000 photons that launched this position.
Comparing the input states with the data acquired in this
TBRS simulation, we can get the next modified searching po-
sition through a set of calculations. Then the calculations are
performed again and again to get new searching positions.
Use (x, y, z) to denote the searching position, the increments
in x, y direction can be calculated by the following formulae:

(dx)i = R� cos
(
ϕi
)
� x,

(dy)i = R� sin
(
ϕi
)
� y,

Δx = x step�
24∑

1

⎛

⎝ (dx)i√
(dx)2

i + (dy)2
i

⎞

⎠� t(Δdeti)
xy ,

Δy = x step�
24∑

1

⎛

⎝ (dy)i√
(dx)2

i + (dy)2
i

⎞

⎠� t(Δdeti)
xy ,

(5)

where ϕi is the rotation angle of the center of ith detector,
i = 1, 2, . . . , 24. x step and txy are both position increments
constant in the x, y direction. Δdeti denotes the difference
between the normalized input number of photons of the ith
detector and the normalized number of photons received by
this detector in one searching, i = 1, 2, . . . , 24. Here “normal-
ized” means number of photons received by the ith detector/the
total number of photons. In our reconstruction, x step = 1,
txy = 7.5.

The increment of z(Δz) is

Δzs =
(

Sumup

Summid
+

Sumup

Sumdown

)

�

(
Sumdown

Summid
+

Sumdown

Sumup

)

,

Δzr =
(

Sumr
up

Sumr
mid

+
Sumr

up

Sumr
down

)

�

(
Sumr

down

Sumr
mid

+
Sumr

down

Sumr
up

)

,

Δz = tz �
(
Δzr � Δzs

)
,

(6)

where Sumup, Summid, and Sumdown denote the total pho-
tons received by the detectors of the upper layer, the middle
layer, and the lower layer in the input states, while Sum

γ
up,

Sum
γ
mid, and Sum

γ
down denote the photons received by each

layer of detectors in one searching. tz is the increment con-
stant in z direction, which is used to adjust the step size of
searching. After a number of searches, a favorable position
of source with which the simulation results are closest to the
input states will be obtained, based on a given limit of error.

4. RESULTS

Our implementation was based on the C++ language, so the
computation speed is generally tolerable.

Comparison between the conventional MC simulation and
the TBRS simulation

Various phantom and in vivo experiments [4, 13] have ver-
ified that the conventional MC method is capable of pro-
viding accurate predictions of photon propagation in turbid
medium. We can therefore compare their results with out-
comes from the TBRS method, in an attempt to verify our al-
gorithm. In both MC simulations, the number of photons we
used is 107, the absorption coefficient and reduced scattering
coefficient are 0.025 mm�1 and 2 mm�1, and the anisotropy
factor g is 0.8. Figures 4 and 5 illustrate the comparison be-
tween the conventional MC simulation and the TBRS sim-
ulation when the fluorescent source was, respectively, put
in (0, 0, 0) and (5,�6, 9). Along the x-axis, coordinate i de-
notes the ith detector, i=1, 2, . . . , 24. In both Figures 6 and
7, y coordinate denotes the number of photons. As shown
in Figures 6 and 7, the results generated by these two MC
simulations were very close to each other. We also recorded
computing time in both simulations. On an IBM compatible
PC with 1.86 GHz CPU, 1 G RAM, and Windows XP operat-
ing system, the average running time of the TBRS simulation
was 1183 seconds with source in (0, 0, 0), 1267 seconds with
source in (5,�6, 9), while it costs 3272 seconds and 3266 sec-
onds by the conventional MC simulation, respectively.

The influence of phantom size

Because the sampling length n relates to the distance between
the photon and the media boundary, when the phantom size
becomes larger, the superiority of the TBRS algorithm be-
comes greater. Figure 8 represents the influence of phantom
size on the simulation time. The curve depicts the change of
simulation time when R changes from 15 to 60. R is the ra-
dius of the cylinder, which is equal to half the height of the
cylinder.

Estimation of source location

With the number of photons received by each of the 24
sensors from TBRS simulation, the location of the fluores-
cent source can be estimated. Assume that the fluorescent
source was in (5,�6, 9) in the TBRS simulation, the stepwise
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Figure 6: Photons received by the 24 sensors with source in (0, 0, 0).

searching process is shown in Figure 9. Once the error is be-
low 0.05, the searching process is terminated. The estimated
source location was (4.969554,�5.910204, 8.807371).

5. DISCUSSION

In Figures 6 and 7, as can be seen, there are good agree-
ments between the results with the conventional MC algo-
rithm and the TBRS algorithm for different locations of the
fluorescent source. Meanwhile, the average running time of
the TBRS simulation is much less than the conventional MC
simulation. Simulations with different geometric media and
fluorescent sources were conducted with the TBRS, and we
still obtained results in accordance with those of the conven-
tional MC simulation. Thus, the TBRS algorithm will signif-
icantly increase efficiency compared to the conventional MC
method. The randomicity of TBRS is guaranteed by selecting
appropriate N , n, and have a reliable mechanism to generate
random numerical values.

The superiority of TBRS algorithm, theoretically, is the
reduced computing complexity. Further work will focus
on simplifying the computing process in this algorithm to
get quantum reduction of the simulation time, with the
maintenance of accuracy. Using a table still requires some
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Figure 7: Photons received by the 24 detectors with source in
(5,�6, 9).

mathematical calculation work, which has a negative effect
on the efficiency of TBRS. So efforts are needed to simplify
some parts of the TBRS.

There are other questions which might be raised, for ex-
ample as follows. Is the TBRS still useful in a heterogeneous
media with intermedium boundary? The answer is positive.
A merit of the TBRS algorithm is that it can adapt to different
geometric mediums, except that the determination of n be-
comes more complicated in heterogeneous media, for there
is a higher occurrence of cross-bound phenomena during n
scatterings of one photon with more existing boundaries. It
is possible that n will be restrained to a smaller value so that
the efficiency of TBRS may suffer a tiny decrease. Yet gen-
erally, the potential applications of TBRS in heterogeneous
media/biological tissues are promising. In our further work,
simulations and phantoms will be conducted to verify this
assertion. Reconstruction of the fluorescent source, in this
work, is a validation of the simulation results of the TBRS al-
gorithm. We used a method derived from trial-and-error the-
ory, which was easy to understand and implement. The dis-
advantage of this method was that it required a priori knowl-
edge of the optical properties of reference media. Further
improvement or other useful algorithms need to be proposed
to solve the problem.
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Figure 8: How the phantom size influences the simulation time.
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