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Abstract: It has been estimated that 80% of the pre-mRNA undergoes alternative splicing, which
exponentially increases the flow of biological information in cellular processes and can be an attractive
therapeutic target. It is a crucial mechanism to increase genetic diversity. Disturbed alternative
splicing is observed in many disorders, including neuromuscular diseases and carcinomas. Spinal
Muscular Atrophy (SMA) is an autosomal recessive neurodegenerative disease. Homozygous
deletion in 5q13 (the region coding for the motor neuron survival gene (SMN1)) is responsible for
95% of SMA cases. The nearly identical SMN2 gene does not compensate for SMN loss caused by
SMNT1 gene mutation due to different splicing of exon 7. A pathologically low level of survival
motor neuron protein (SMN) causes degeneration of the anterior horn cells in the spinal cord with
associated destruction of x-motor cells and manifested by muscle weakness and loss. Understanding
the regulation of the SMN2 pre-mRNA splicing process has allowed for innovative treatment and the
introduction of new medicines for SMA. After describing the concept of splicing modulation, this
review will cover the progress achieved in this field, by highlighting the breakthrough accomplished
recently for the treatment of SMA using the mechanism of alternative splicing.
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1. Introduction

Splicing is an essential part of pre-mRNA maturation in a eukaryotic cell. That
process consists of excising noncoding intronic sequences from the initial product of gene
transcription and ligating remaining exons before translation to protein [1]. Splicing
reaction is controlled by the spliceosome, the macromolecular ribonucleoprotein complex.
Determination of the beginning and end of the intron, which is marked by the 5’ and 3’
splice sites (5'ss and 3’ss), plays a key role in the splicing mechanism. Specific sequences
are recognized by the spliceosome, the macromolecular ribonucleoprotein structure that
catalyses splicing [2]. An alternatively spliced gene is a source of multiple mRNA isoforms,
which increases coding potential of the eukaryotic genome. Alternative splicing is regulated
by the cis-acting splicing regulatory elements (SREs) that recruit trans-acting factors in
a sequence-unique manner [3]. Trans-acting RNA binding proteins (RBPs) bound to an
intronic or exonic splice enhancer (ISE or ESE) stabilize spliceosome formation and lead
to exon recognition and retention. Analogically RBPs bound to intronic or exonic splice
silencing motifs (ISS or ESS) preclude the formation of the spliceosome and promote exon
removing [4]. The most common RBPs are proteins rich in serine/arginine (SR) rests and
the heterogeneous ribonucleoprotein (hRNP). Due to tissue-specific RBPs bounding, final
products from the same gene primary transcript can be different depending on the tissue.
the tissue-specific RBPs bounding, final products from the same gene primary transcript
can be different depending on the tissue. The binding of these proteins is a variable
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process resulting in diverse combinations of included or excluded introns and exons [5].
SR proteins are responsible for phosphorylation, which regulates their localization and
activity [6]. Oxidative stress affects mutations within splicing regulatory sequences or
disturbed expression of splice factors, which causes a growing number of diseases and
has an emerging role in aging [7-9]. Loss of balance in the splicing process influences the
development of neurodegenerative diseases, renitis pigmentosa, Prader-Willi syndrome,
familial adenomatous polyposis, breast or lung cancer [10-16]. The aim of this review is to
present the novel forms of therapies of spinal muscular atrophy (SMA) based on alternative
splicing regulation mechanisms.

2. Spinal Muscular Atrophy (SMA)

SMA is a congenital neurodegenerative disorder with an autosomal recessive inheri-
tance, characterized by loss of motor neurons leading to progressive muscle weakness [17].
Knowledge about SMA has changed considerably since the first reports of patients with
this disease, written by Werdnig (1891) [18] and Hofmann (1893) [19]. The SMA incidence is
about 1 in 6000 to 11,000, with a carrier frequency of SMN1 mutations from 2 to 3% (1 in 40)
in the general population [20-22]. In Cuba, a six-year study was conducted to investigate
the prevalence of type I SMA in people of different ethnicities. The results of the study
suggest that type I SMA is less common in the African American group [23]. According to
the statistics of the Polish SMA Foundation, one in 35 inhabitants of Poland carry the SMN1
gene mutation, and the disease phenotype will appear on average in every 7000 children
born in Poland [24]. Based on the progression and variability of symptoms, SMA was
divided into five types, from congenital lethal (SMAO) to adult onset (SMA4) [25]. The
clinical phenotype of SMA is heterogeneous, ranging from severe to mild. It is generally
divided into three main subtypes: Type I (also called Werdnig Hoffmann disease), Type
II, and Type III (also called Kugelberg Welander disease). However, these phenotypes are
viewed more as a continuum rather than as separate subtypes, and further subtypes are
sometimes observed at both ends of the spectrum. Type 0 SMA is a very severe form with
onset in utero, limited, or missing movements, contractures, and a requirement for assisted
mechanical ventilation at birth and death before six months of age, while Type IV SMA is a
mild late (adult) form that has a normal life span [20,21].

In most cases this disease develops due to mutations in the gene SMNT1 (survival of
motor neuron 1), SMN T, telomeric, located on chromosome 5q13.2 [26]. The majority
of the patients (92-95%) have a homozygous deletion of SMN1 [20,21]. The intragenic
mutations within SMN1 are responsible for the remaining 5% of cases [27]. In some severe
cases of SMA, loss of the NAIP (neuronal apoptosis protein inhibitor), GTF2H2A (general
transcription factor IIH, p44), and SERF1A (small EDRK-rich factor 1A, H4F5A) genes are
also observed [28-33]. A study by Ahn, Eun Ji et al. on a group of 33 Korean patients
suggests that coexisting deletions of SMN1 and NAIP are connected with earlier onset of
symptoms and poor prognosis in SMA patients [34]. The transcription of SMN1 produces
a functionally complete mRNA that encodes SMN protein. Significantly fewer SMN
proteins come from the SMN2 gene. Only 10-15% of total SMN2 transcripts are full-length
mRNA [35]. Thus, SMIN2 is identical to SMN1, except for a single C-T substitution in
exon 7. This substitution promotes 80 to 85% splicing during transcription and consequent
exon 7 deletion [35]. The SMN2 genes are not functionally equivalent. The ability of
the SMN2 gene to modify the course of the disease is regulated by epigenetic factors
that, through DNA methylation, have the ability to silence the gene. In patients with
different types of SMA, differences in methylation levels are observed at positions —296
and —290 in the island 2 CpG of SMN2. A milder disease course correlates with lower
methylation levels [36]. It is worth noting that truncated mRNA causes similarly truncated
non-functional proteins. Patients with SMA lack SMN1 and therefore they depend on
the residual SMN2 production of a functional SMN protein for « function of the motor
neuron and subsequent survival [21]. The SMN protein is localized in all eukaryotic
cells and has been shown to have a pivotal role in homeostatic cellular pathways in all
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cells [37]. According to hypotheses, the SMN protein in the cytoplasm was shown to have
an important role in the transport of mRNA through axons and transport of containing
b-actin ribonucleoprotein complexes. Another hypothesis states that the SMN protein
takes part in synthesis of small nuclear RNA (snRNA) and therefore plays a key role
in the formation of a spliceosome that removes introns from pre-mRNA into functional
mRNA [38,39]. As motor neurons are sensitive to malfunctioning of the spliceosome
directly or indirectly through misspliced mRNAs, any damage to motor neurons results in
the development of dysfunctions in proteins essential for neuronal function [21].

3. Mechanisms of SMN2 Splicing Regulation Targeted by Therapeutics

In human cells, there are two nearly identical genes responsible for SMN protein
production. The presence of two SMN genes is attributed to large tandem chromosomal
duplication [40]. In the region of this duplication, on the long arm of chromosome 5 (5q13.2)
lie four protein-encoding genes: SMN, NAIP, GTF2H2A, and SERF1A. The duplicated genes
are identical to their partner gene (SERF1B), differ in a low number of nucleotides (SMN2)
or are pseudogenes (YGTF2H2B and YNAIPAS) [41]. Both SMN genes consist of 10 exons
(1,2A,2B,3-6,6B,7,8). It is worth noting that Exon 6b is a new discovery and is generated by
exonification of the Alu element in intron 6 [42]. Under certain conditions such as starvation,
hypoxia, or oxidative stress, transcription of these genes may proceed differently [8,43].
Factors that regulate SMIN levels and modify transcription are tissue-specific [44].

The key difference between these genes lies in the splicing of exon 7. The amino
acids encoded in exon 7 are responsible for SMN stability as they determine the crucial
C-terminus of the protein. In the SMIN2 gene due to alternative splicing, exon 7 is more
often skipped, resulting in more of the truncated, partially functional and unstable SMNA7
protein than full-length SMN [45,46]. The primary reason exon 7 is excluded is C-to-T
substitution at position 6 of exon 7 (C6U) (Figure 1). Mutation or deletion of the SMN1 gene
is a major cause of spinal muscular atrophy, through deficiency of SMN [39]. Restoring
exon 7 inclusion has therapeutic benefits proven in mouse models [47].

------------

............

mRNA | EXONS 1-5 6 7 8 EXONS 1-5 6 8

Figure 1. Splicing of SMN genes.

Mechanisms regulating exon 7 splicing are good potential therapeutic targets. The
best described to date splicing factors, binding directly to exon 7 splicing enhancer regions
SE1 and SE2 are serine/arginine-rich splicing factor 1 (SRSF1) and transformer 2 protein
homolog B (Tra2B) [48]. The best-known negative regulators of exon 7 splicing are hetero-
geneous nuclear ribonucleoprotein A1l (hnRNP A1) [49] and src-associated substrate in
mitosis 68 (Sam68) [50]. C6U substitution results in hnRNA A1 or Sam68 being bound to
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SE1 in place of the positive regulator. Exon 7 exclusion can also occur through binding of
hnRNP A1 to SE2 sequences or the intronic silencer sequence N1 (ISS-N1) [51] (Figure 2).
Other factors showing altering splicing activity include SRp30c [52], TDP-43 [53], TIA1 [54],
hnRNP Q [55], hnRNP G [56].
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Figure 2. Mechanism of regulation of SMN1 and SMN2 gene splicing by splicing factors.

Exon 7 skipping may be caused by increased activity of a regulatory sequence located
at the 3’ end of exon 7, called terminal stem loop 2 (TSL2). It exhibits inhibitory activity,
probably by competing with U1 snRNP for a binding site [57]. The inhibitory effect of TSL2
was confirmed by observing the effect of U40G or A54C substitution on exon 7 splicing.
Separately, they disrupted TSL2 by promoting exon 7 incorporation, but combined they
reproduced the structure of TSL2 and thus inhibition of exon 7 splicing [58]. Modification
of splicing through TSL2 requires further study. It can be a good target for screening small
molecules [59].

In 2006, Singh et al. discovered an ISS SMN2 intron-7 in the human SMN1/2 gene,
named ISS-N1 [60]. ISS-NT1 is a sequence located immediately downstream of the 5'ss
of exon 7. It is 15-nt long and binds positions 10 to 24 of intron 7, producing a strongly
inhibitory effect on exon 7 inclusion [61]. Interestingly, ISS-N1 deletion reduced the
requirement for positive cis-elements in exon 7 inclusions, an effect similar to the A54G
mutation [51]. Blocking ISS-N1 with low concentrations of antisense oligonucleotide (ASO)
effectively increased SMN protein levels in studies in mouse models or fibroblasts collected
from SMA patients. This demonstrates the high availability and binding efficiency of
ISS-N1 for this group of compounds [47]. Importantly, modifying alternative splicing of
SMN?2 by targeting ISS-N1 is already used by the ASO drug nusinersen (Spinraza) in the
first approved therapy to treat SMA [62].

A more specific target for ASO than ISS-N1 appeared to be the GC-rich sequence
(GCRS), which spans from the 7th to 14th position of intron 7 overlapping ISS-N1. Studies
on SMA type I patient cells and severe SMA mouse models demonstrated the efficacy of
8-mer ASO binding to GCRS, which not only elevated SMN levels but also increased the
levels of Gemin 2 and Gemin 8 factors involved in snRNP biogenesis and Tra2-1 and
hnRNP Q, responsible for proper RNA splicing [63,64].

GCRS participates in the formation of a 5 strand of a unique RNA structure called
the internal stem formed by long-distance interactions (ISTL-1). 279-nts divides the two
8-bp ISTL1 strands. The last position of ISTL-1 and the first position of ISS-N1 is the C
residue located at the 10th intronic position (10C) [65]. Interestingly, an experiment was
conducted by targeting ISS-N1 with ASOs of equal length (14-mer). F-14 binding to the
first nucleotides of ISS-N1, including 10C, promoted exon 7 inclusion, while L-14 targeting
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the terminal positions of ISS-N1 without 10C had the opposite effect, promoting exon 7
exclusion [66]. ISTL-1 has been shown to negatively regulate exon 7 splicing independently
of snRNP A1l. Destabilization of ISTL-1 induces abolition of long-distance interaction (LDI)
mediated by C10. ASO-mediated sequestration of the 3’ strand of ISTL-1 and upstream
sequences form ISS-N2, which results in correction of alternative splicing and restoration
of full-length SMN secretion [66,67].

Sequences flanking exon 7 such as Element 1 located in intron 6 also appear to be
promising therapeutic targets. Element 1 is a cis-element that is an extended inhibitory
sequence located upstream of the 3'ss exon 7 [68]. The effect of promoting full-length SMN
expression was demonstrated by targeting Element 1 with morpholino ASOs in mouse
models [69].

4. Antisense Oligonucleotides

A novel approach to the therapy of SMA and other genetically determined diseases is
represented by the use of ASO [70]. ASOs are short (about 15-30 nucleotides in length),
single-stranded molecules of chemically modified nucleic acids or nucleotide analogs that,
on the basis of complementarity, recognize and bind target sequences in RNA through
Watson-Crick base pairing [71,72]. Depending on the binding site, ASOs affect transcript
inactivation or splicing, leading to changes in exon content [73]. ASOs are designed to pair
bases and form a steric block for binding splicing factors to pre-mRNAs. RNA alters the
recognition of splicing sites by the spliceosome, leading to a change in the normal splicing
of the target transcript [72]. Modified sequence-dependent ASOs can appropriately lead
to the exclusion or inclusion of an exon that would have been excised, as is the case in
SMA [72].

This relies on exon 7 appearing in the mature SMN?2 transcript. It is necessary to
block the action of the intron folding silencer. Antisense oligonucleotides recognize, on
the basis of nitrogenous base complementarity, precisely this SMN2 pre-mRNA fragment
and sterically block its recognition by appropriate proteins. This prevents the formation of
a complex that would inhibit detection of the exon/intron boundary. Subsequently, the
split between exon 7 and intron 7 is detected, resulting in the incorporation of exon 7 into
the mature transcript [74]. The use of appropriate ASOs to treat spinal muscular atrophy
allows exon 7 to be incorporated into the transcript of the SMN2 gene.

The first drug approved for the treatment of SMA was nusinersen (Spinraza TM) [75].
Its discovery took place in 2010 [76]. It is an antisense oligonucleotide that binds to the
splicing inhibitory sequence of intron 7. Nusinersen is an 18-mer oligonucleotide in which
the sugar-phosphate backbone has been chemically modified [77]. Nusinersen comple-
mentary hybridizes to ISS-N1 to block hnRNP recruitment, resulting in the inclusion of
exon 7 incorporation into the SMN?2 transcript, resulting in higher levels of fully functional
SMN protein [78] (Figure 3). This protein is associated with SMA. As the amount of SMN
protein increases, the degeneration of motor neurons stops and the disease progresses [78].
This influences a patient’s longer survival, better motor function and faster achievement
of milestones. Nusinersen does not cross the blood-brain barrier and therefore requires
intrathecal administration. The half-life of the drug is 163 days, and doses must be repeated
throughout life [79]. Monitoring in patients of thrombocyte count, prothrombin time,
partial thromboplastin time, and urinalysis results is necessary during nusinersen therapy
because it can lead to thrombocytopenia and coagulation disorders, and is nephrotoxic [80].
It can be used to treat all types of SMA [81]. Another breakthrough in the treatment of
SMA was the December 2016 approval by the American Food and Drug Administration of
the medicine nusinersen (SpinrazaTM), also known as ISIS-SMNRXx or ISIS [82]. If a patient
does not reach an advanced stage of muscle atrophy, appropriate physiotherapy and multi-
disciplinary care in combination with nusinersen can produce a significant improvement
in the condition of the treated patient [83,84] (Table 1).
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Table 1. Comparison of potential and the newest targets for ASOs in SMA therapy.

Aim of the Study

Mechanism of Action

Results

References

Therapeutic effect of short ASO
on two mouse models of SMA:
1 healthy, adult Smn heterozygous
mice containing human SMN?2
and 5058-Hemi SMA mice

Blocking GCRS

Restoring the correct splicing of
exon 7 and consequently the
production of full-length SMN.
Proving efficacy of short ASOs in
pathology and expanding the
range of ASO-based substances
for use in SMA therapy

Keil et al. [64] 2014

Variable mechanisms regulating
splicing of exon 7 in

Targeting ISS-N1

Increasing SMN level by
stimulating exon 7 inclusion by
sequestration of ISS-N1
Increasing SMN and Gemin2
levels with disruption of the 3/
strands of ISTL1 and ISTL2

2 SMA-patient-derived GM03813 Targeting ISS-N2 caused with ISS-N2 blocking Singh et al. [85] 2015
cell line Long distance interactions
between intron sequences are
crucial in understanding the
mechanism of disrupted SMA
splicing.
SMN? splicing modification to
produce full-length SMN
o . One of the compounds bein
. Elndmg p ot?r}hal tested, ElMOE)/l 1, has the &
Improvement of ASO targeting intronic splicing tential to b
3 Element 1 in SMNA7 mouse silencer—El in potential to becomea Osman et al. [69] 2016
stand-alone ASO in the clinic,
model upstream of exon 7 but it is criti
SMN?2 utit is critical to deyelop
combination therapy with drugs
that act on other SMA
pathomechanisms.
Evaluation of the tolerability, Initiating exon 7 inclusion
safety, pharmacokinetics, and resulting in full-length SMN
clinical efficacy of nusinersen in . expression ..
cohort of 28 c}}iildren with type Targeting ISS-N1 No safety isIs)ues found with 9 Chiriboga et al. [86] 2016
2 and type 3 SMA aged 2-14 mg nusinersen dose, supporting
years study of higher dose.
A small peripheral increase in
SMN alleviates SMA symptoms
in a gender-specific
. manner—restoration of
irﬁrso(rjliifii:l(t:?ll;%s::z)grgsesi‘e peripheral SMN production has
5 Targeting ISS-N2 a significant impact on testicular Howell et al. [87] 2017

full-length SMN expression in
allele C (C/C) mice model

function.Targeting deep intron

sequences is effective and has

great therapeutic potential, so
there is a need for further
research into this strategy.

Locked nucleic acid
(LNA)-based antisense
6 oligonucleotides (LNA/DNA
mixmers) as therapeutic strategy
using SMA patient fibroblasts

Targeting ISS-N1

LNA/DNA mixmer-based
antisense oligonucleotide may
be a potential candidate for SMA
therapy.

Touznik et al. [88] 2017
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Table 1. Cont.

Aim of the Study

Mechanism of Action

Results

References

Mechanisms influencing

Induction of exon/intron 7
retention

ASOs-induced intron retention.  Targeting SMN2 exon 8  Model probably not useful for
7 ASOs impact on transcript and to slowing SMA patients. May prove Flynn et al. [89] 2018
protein expression in SMA transcription beneficial in diseases in which
patient fibroblasts protein repression is crucial for
therapy, e. g., cancers
Safety and efficacy of nusinersen Children with later-onset SMA
administration in children with showed a significant
8  cohort of 126 children with SMA Targeting ISS-N1 improvement in motor function Mercuri et al. [90] 2018
who had symptom onset after 6 after nusinersen administration
months of age compared to control group.
Safety and efficacy of nusinersen . Early Screening ar}d
. . . implementation of nusinersen
in the pre-symptomatic period . .
. therapy in the presymptomatic
or at the onset of symptoms in eriod significantly increases the
9 cohort of 25 children with Targeting ISS-N1 P & 4 De Vivo et al. [91] 2019
. . chances for successful therapy
genetically diagnosed
SMA at a median follow-up of 2 and further normal motor
9 vears pots development of the child treated
y for SMA.
. Improving motor function and
Effects of nusinersen on the reventing ocmotoneuron loss
10 behavior of Cajal bodies (CBs) in Targeting ISS-N1 P & Berciano et al. [47] 2020

SMNAY7 mice

Selective restoring of SMN
expression in the spinal cord

Figure 3. Nusinersen therapeutic mechanism.

5. Small Molecules

A project led by PTC-Roche (PTC Therapeutics, South Plainfield, New Jersey and
Hoffmann-La Roche, Basel, Switzerland) to identify an orally available molecule to treat
SMA began about a decade ago. Both groups identified small molecules and reported
three orally delivered compounds, namely SMN-C1 (isocoumarin), SMN-C2 (coumarin),
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and SMN-C3 (pyridopyrimidinone derivative); each promoted exon 7 inclusion from
SMN?2 [92]. Small molecules can exhibit high selectivity, affecting the modulation of RNA
folding of only one or a few genes, among the many thousands of genes expressed in
cells [93]. Most drugs are inhibitors of enzyme proteins or receptors. It is worth noting
that it is possible to obtain modulators of interactions in RNA-RNA and RNA-protein
complexes [94]. Risdiplam is being developed by Roche, PTC Therapeutics Inc and the SMA
Foundation for the treatment of SMA. In August 2020, the European Medicines Agency
(EMA) approved the use of risdiplam to treat patients with the SMN1 gene mutation [95].
This experimental drug manifests high selectivity for modulation of RNA folding against
the SMN?2 transcript. It affects the alternative splicing of a small pool of other genes, such
as FOXM1, MADD or STRN3 [94,95]. Risdiplam is not a substrate for the transport protein
MDR1, and thus crosses the blood-brain barrier well. It is properly distributed in the
CNS and peripheral tissues of mice, rats, and monkeys after single or repeated oral or
intraperitoneal administration. Risdiplam also increased levels of functional SMN protein
in the CNS and peripheral tissues of mouse models of SMA [96].

Risdiplam is a highly potent SMN2 splicing modifier that increases exon 7 inclusion in
SMN2 mRNA transcripts in in vitro assays and in transgenic mouse models of SMA [95-97].
Risdiplam binds to the SMN2 transcript at two sites—the exonic splicing enhancer 2
(ESE2) in exon 7 and 5’ss of intron 7, thereby dislocating hnRNPG and enhancing 5'ss
recognition and binding by U1snRNP. This results in exon 7 not being excised from the
transcript and the full SMN protein being able to be synthesized [94,98]. Risdiplam can
also increase the binding of far upstream element binding protein 1 (FUBP1) and KH-
type splicing regulatory protein (KHSRP) splicing modulators to the SMN2 pre-mRNA
complex, activating SMN2 splicing [99]. Some of the first preclinical studies have shown
that risdiplam can reach the central nervous system and peripheral organs in vivo and
can lead to significant increases in SMN protein levels in blood, brain, and muscle, with
increased survival in various mouse models of SMA [100,101]. The advantage of this
drug is the oral route of administration [102]. Preclinical studies allow for hypothesizing
the possibility of a therapeutic effect also in tissues other than the nervous system [102].
This is particularly important because numerous studies in human and animal models
indicate that SMA may be considered a multisystem disorder with involvement of the
neuromuscular junction, gastrointestinal tract, cardiovascular system, and lung and liver
tissues [103,104]. According to the Food and Drug Administration (FDA), on 7 August
2020 risdiplam was approved for the treatment of spinal muscular atrophy in adults and
children 2 months of age and older [105]. A recent study analyzing the administration of
risdiplam to infants from 1-7 months of age (type 1 SMA) has led to increased expression
of functional SMN protein in the blood [100].

Branaplam is another small molecule, administered orally, that modulates SMN2
splicing with high specificity. It is currently in Phase 2 clinical trials [101,106]. It has been
shown to modulate splicing, increase full-length SMN protein levels, and increase survival
in a mouse model of severe SMA [107]. The mechanism of action is similar to risdiplam.

To the best of our knowledge, two more molecules PK4C9 and TEC-1, according to
recent reports, increase exon 7 SMN2 inclusion with high specificity [59,101,107]. TEC-1
permeabilizes the central nervous system and confers therapeutic efficacy in a mouse model
of SMA [59,108]. PCK4C9 targeting the TSL2 tri-loop appeared to cover the “3'-cluster,” a
negative element identified by in vivo selection of the entire exon 7 [109,110] (Table 2).
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Table 2. Comparison of potential and the newest targets for small molecules in SMA therapy.

Aim of Study

Mechanism of Action

Results

References

Identification and
optimization of a pyridazine
class of orally bioavailable,
small molecules enhancing
inclusion SMN exon 7 in
mice.

Stabilization of U1 snRNP
and SMN2 pre-mRNA
complex
Enhancing selectively the
binding affinity of U1l
snRNP to 5'ss.

Modification of splicing through
small sequence-specific molecules
can be used in various
splicing-related diseases.

Palacino et al. [107] 2015

Orally deliverable small
molecules correcting
alternative splicing of the
SMN?2 gene exon 7 in SMA
A7 mice, SMA patient
fibroblasts and rats

Enhancing of the
Ul—pre-mRNA interaction
at the 5’ splice site of
SMN?2 intron 7.

Reduction of disease
manifestations and a significant
increase in the median survival

time in models after tested
molecules administration
Supporting the development of an
orally administered small
molecule for the treatment of
patients with SMA

Woll et al. [111] 2016

SMN-C1 in the context of
preclinical data for the clinic
and further therapeutic
3 development of this series of
molecules for the treatment
of SMA tested in SMNA7
mice model.

Increasing the levels of
spliceosomal and U7
snRNAs.
Correcting RNA
processing defects induced
by SMN deficiency.

Lower dose SMN-C1 increases
long-term survival of SMNA7
mouse model with partially
corrected phenotype.
Higher dose of SMN-C1 results in
increased body weight, longer
survival, and in addition,
improved SMN-dependent RNA
processing, spinal cord
histopathology, and
neuromuscular junctions.

Zhao et al. [112] 2016

Improvement of coumarin and
isocoumarin series,
optimization of the

pyridopyrimidinone series in

4  C/C-allele SMA mouse model,
SMA patient fibroblasts, spinal
motor neurons SMA type I
and II, and patient-derived
induced pluripotent stem cells.

Induction of alternative
splicing of SMIN2 to exon 7
inclusion.

Discovery of selective small
molecules that modify alternative
splicing.

Ratni et al. [113] 2016

New advanced chemotype of
5  asmall molecule discovered
with SMA A7 mice model.

Modification of SMIN2
alternative splicing to
increase SMN levels.

Discovery of the two orally
administrated SMN?2 splicing
modifiers.

Pinard et al. [114] 2017

Identification of a pyridazine
SMN2 pre-mRNA splicing
modulator and optimization
to branaplam in SMNA7
mouse model and SMA
patient fibroblasts.

Stabilization of the
interaction between the
spliceosome and SMN2

pre-mRNA.

Branaplam treatment increased
full-length SMN RNA and protein
levels and extended survival.

Cheung et al. [115] 2018

SMN-C2 and SMN-C3
promoting binding FUBP1
7 and KHSRP to the SMN2
pre-mRNA complex in 293T
cells.

SMN-C2—binding to the
AGGAAG SMN2
pre-mRNA exon 7

SMN-C3—hypothetically

targets a sequence of RNA

on or close to exon 7 or a

splicing regulatory protein
or protein complex that is
specific to exon 7.

Small molecules complementary
to nucleic acids modulate
pre-mRNA splicing and can have
a therapeutic influence on SMA.
Future studies should concern
recognition sequence of FUBP1
and KHSRP and their contribution
in splicing regulation.

Wang et al. [99] 2018
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Table 2. Cont.

Aim of Study

Mechanism of Action

Results

References

Tolerance and safety testing
of RG7800 in clinical trials in
8  cohort of Male subjects aged
2345 years, thirteen patients

Modification of splicing
toward promoting
full-length SMIN expression
and downregulating

RG7800 is safe and well tolerated,
and that the level of SMN after oral
administration increases by twofold

over the baseline concentration
which may be associated with

Kletzl et al. [116] 2019

with SMA, aged 13-53 years. SMNA?. future therapeutic benefits,
hSafety, tlc().lera:bﬂlty, d The tested doses of risdiplam were
p hal;ﬁaco dme 1;181' an ¢ well tolerated and safe, and
phatmacodynamics o . s produced the desired effect of
risdiplam in cohort of 25 Highly specific for increasine full-leneth SMN2
9 adult males, aged 1845 pre-mRNA SMN?2 splicing re—%nRN A legvels Sturm et al. [117] 2019
years. modifier P

Itraconazole effect on the
pharmacokinetics of
risdiplam.

CYP3A inhibitors in the form of
itraconazole have little effect on
the pharmacokinetics of risdiplam.

Preclinical characterization
and prospects of TEC-1 using

Binding to purine-rich
regions within exon 7
Interaction with the major

Low risk of acute or chronic side
effects
Promising for the long-term

10 SMAA7 mice and SMA groove of the RN//% du.pllex treatme.nt of patlents with SMA Ando et al. [2] 2020
atient fibroblasts generated by the 5’ splicing Potentially higher therapeutic
P ' site of exon 7 and Ul window compared to the SMN-C
snRNA17 series.

Increasing SMN and SRSF1 levels

Drugs that boost the . . . and decr.easmg l.evel of.hnRNPl
minigene reporter signal Promoting the inclusion of with moxifloxacin Konieczny and Artero
11 SMN2 exon7 in a The effects of moxifloxacin need to

within the context of
Drosophila motor neurons

dose-dependent manner

be tested in murine models as a
potential SMA therapy or scaffold
for other variant molecules.

[118] 2020

6. Future Prospects

The advancement of SMA therapies has allowed many patients to survive and improve

their lives. Current drugs focus on replacing the SMN1 gene (onasemnogene abeparvovec)
or changing SMN?2 splicing (nusinersen, risdiplam). Work is currently underway on a
complementary treatment independent of SMN. This applies, for example, to neuropro-
tective drugs, nerve connection stabilizers, myostatin inhibitors, or activators of muscle
function [106,119-121] (Figure 4). Many studies also emphasize the importance of early
diagnosis and treatment implementation, even presymptomatically. Efforts should be
made to develop effective neonatal screening for SMA and to update treatment regimens
due to the evolving phenotype of the disease [122-124]. Currently, the most important
modifier of SMA is the SMN2 copy number; however, it has been noticed that patients
with the same SMN2 copy number show a difference in the disease phenotype. Work
is currently underway to find new biomarkers of disease evolution [125-127]. It is also
important to provide multidisciplinary care for treated children [128,129].
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Figure 4. Combined SMN-independent and SMN-dependent therapy as future direction in SMA therapy.

7. Conclusions

The use of the molecular basis of SMA by drugs such as nusinersen, Zolgensma, and
risdiplam has brought significant benefits to patients with this fatal disease. Modification of
exon 7 alternative splicing turns out to be a key mechanism and target for further research.
Current research proves that this therapeutic strategy can effectively increase the level of
the SMN protein and, as a result, reduce the course of the disease. Early diagnosis and
initiation of treatment in the patient allow for the extension of lifespan and the achievement
of milestones. Work is underway on the implementation of other compounds in SMA
therapy that bind to factors involved in the regulation of splicing.
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