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ABSTRACT: One use of CO2 as a starting material in organic
transformations is in the synthesis of cyclic carbonates and
polycarbonates. Due to the low reactivity of CO2, this transformation
must be carried out in the presence of an efficient catalyst. Although
several catalytic systems have been developed in the past decade,
reducing the CO2 pressure at which the reaction is carried out remains
one of the main challenges of the process. In this context, in the
present work, we describe the catalytic activity of mixed metal oxides
in the synthesis of cyclic carbonates from CO2 (1 atm) and epoxides at 70 °C. Using these materials as catalysts represents
significant benefits since they are very stable, cost-effective, and can be reused in several reaction cycles.

1. INTRODUCTION
High CO2 emissions from anthropogenic activities directly
impact global warming and climate change.1 The socio-
economic challenge of sustaining current economic growth
while avoiding global climate disruption remains unre-
solved.2−5 One of the main strategies to reduce CO2 emissions
and stabilize its concentration in the atmosphere is carbon
capture and storage (CCS).6 However, simply capturing and
storing CO2 only postpones the problem, while reducing our
supply of carbon feedstock. An alternative is carbon capture
and utilization (CCU),7 which treats CO2 as a valuable
feedstock. CO2, as a starting material, is a thermodynamically
and chemically stable molecule under standard conditions, but
it can react with other chemical feedstocks under specific
conditions (pressure, temperature, catalysis, etc.) to produce
fuels (methane,8−11 methanol,12−15 and ethanol16,17), poly-
mers,18,19 and value-added commodity chemicals.20

From an organic synthesis perspective, CO2 is an ideal,
inexpensive, and abundant one-carbon building block
(C1)21−24 for producing formic acid, acetic acid, higher
alcohols, salicylic acid, urea, carbamates, carbonates, poly-
carbonates, and polycarbamates. Among these compounds,
cyclic carbonates stand out due to their commercial value,25

making them an important and challenging industrial synthetic
target.26 The growth of the global cyclic carbonates market is
driven by the diversification of their applications, including
solvents,24−29 electrolytes for lithium-ion batteries,30−32

lubricants,33 plasticizers,34 surface coatings,35 cleaners,36 and
intermediates in the production of fine chemicals37,38 and
polymers.39−41

Cyclic carbonates are mostly produced by the cycloaddition
of CO2 to epoxides in the presence of a wide range of

catalysts,42 including hydrogen-bond catalysts,43−48 ionic
liquids,49−51 quaternary ammonium salt,52−54 organic poly-
mers,55−58 MOFs,59−62 porous materials,63−67 layered double
hydroxide (LDH),68−71 and metal-based catalysts.72,73

Considering that the use of mild reactions conditions one of
principal challenges in the synthesis of cyclic carbonates,74 we
propose in this study the use of mixed metal oxides (MMOs)
as catalysts in cycloaddition reactions (Scheme 1). The aim is
to carry out the catalytic process under atmospheric CO2
pressure and moderate temperature.75−78 MMOs are materi-
als79−81 that can be obtained by calcination at 500−600 °C
from the corresponding LDH,82−87 which is a brucite-type
o c t a h e d r a l l a y e r w i t h t h e g e n e r a l f o rm u l a
[M2+

1−xM3+
x(OH)2]x+[An−x/nmH2O]x−, where the excess pos-

itive charge, originating from the M2+ to M3+ substitution, is
compensated for by carbonate anions in the interlayer space.
This structure is transformed into an MMO through
dehydration, dihydroxylation, and decarbonization of the
interlayer component. This results in a compact structure
where the oxide ions form a coordination sphere around the
metal ions.88−90 From a catalytic perspective, MMOs are very
efficient materials due to their porosity, relatively large specific
surface area, reactive sites, and high thermal stability.91−97

Meanwhile, the use of MMOs as catalysts in the synthesis of
cyclic carbonates from CO2 has been limited to the use of
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Mg−Al (100 °C and pressure 5 atm)98 and MnBaO and
SnNiO (160 °C and pressure 24.6 atm)99 mixed metal oxides.
The use of other metals in MMOs has not been explored to
date (Scheme 1).

2. RESULTS AND DISCUSSION
2.1. Material Synthesis. The MMOs used in this study

were obtained by calcination of the corresponding LDH, which
were synthesized by the coprecipitation technique and
microwave-hydrothermal crystallization. The structures of the
LDHs were confirmed by X-ray diffraction. Figure 1a shows
the diffractograms for LDH M2+/M3+ (Mg2+, Ni2+ and Zn2+/
Fe3+, Al3+, and Cr3+), in which LDH exhibited M2+/M3+

reflections associated with the layered double hydroxide crystal
structure. Planes can be observed at (0 0 3), (0 0 6), (0 1 2),

(0 1 5), (0 1 8), (1 1 0), and (1 1 3). These values are the
same as those described in the literature for these
materials.83,100,101 Then, the LDH was calcined at 550 °C
for 6 h to obtain the respective MMOs with a periclase-like
structure. The plane reflections observed in the diffractograms
at (1 1 1), (2 0 2), and (2 2 0) are typical of MMOs (Figure
1b).102−104

The adsorption of N2 (using the BET method)85 was
employed to quantify the specific surface area (SBET) and
pore size of the materials (Table 1). The LDH samples
exhibited lower porosity and a greater surface area than did the
MMO samples.

2.2. Catalytic Activity. To establish the optimal reaction
conditions, we first focused on studying the effect of the
solvent and halide salt on the reaction conversion and in the
absence of MMOs. Thus, the reaction of CO2 with styrene
oxide 1a to give the corresponding cyclic carbonate 2a was
investigated. Tetrabutylammonium iodide (TBAI) and KI
were used as the halide salts at concentrations of 1 and 100
mol %, with ethanol and acetonitrile as the solvents. Compared
with acetonitrile (Table 2, entries 2−8), better conversions
were obtained with ethanol (Table 2, entries 10 and 11). In the
absence of halide salt, the reaction did not proceed with either
solvent (Table 2, entries 1 and 9). With ethanol as the solvent
and 10 mol % TBAI or KI, cyclic carbonates were obtained in
good conversion (Table 2, entries 2 and 7). The conversion
decreased when the reaction was carried out in ethanol and 1−
7.5 mol % KI (Table 2, entries 4−6). Maximum conversion is
achieved when the reaction is carried out with 1 equiv of halide
salt (Table 2, entries 3 and 8). The use of TBAI or KI is
decisive for the opening of the epoxide and the formation of
halohydrin anion, which is a key intermediate in the catalytic
process as previously demonstrated.105−107 In all reactions,
phenyl-1,2-ethanediol is the main side product (Table 2).
Figure 2 and Figures S7−S14 (Supporting Information) show
the complete kinetics of all reactions in ethanol and
acetonitrile, as analyzed by gas chromatography (GC).

The next step of this work was to study the effect of LDH
and MMO as catalysts in the catalytic process. As shown in
Table 3, the highest conversions were achieved when the
reactions were performed in the presence of KI. In contrast,
conversions decreased significantly in the absence of KI for

Scheme 1. Synthesis of Cyclic Carbonates

Figure 1. XRD patterns of (a) LDH and (b) MMO.

Table 1. Nitrogen Adsorption−Desorption Analysis
Parameters of the Materials

entry material
SBET

(m2·g−1)
pore volume

(cm3·g−1) pore size (Å)

LDH
1 Ni/Cr 97 0.28 36.6
2 Ni/Fe 60 0.3 196
3 Zn/Al 55 0.52 186
4 Ni/Al 70 0.19 92
5 Mg/Cr 96 0.22 77
6 Mg/Al 105 0.53 150
MMO
7 NiCrO 39 0.41 420
8 NiFeO 121 0.41 134
9 ZnAlO 34 0.25 149
10 NiAlO 154 0.75 150
11 MgCrO 290 0.916 55
12 MgAlO 222 0.74 177
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both materials. In comparative terms, between LDH and
MMO, we observed that the calcined materials were more
efficient during the catalytic process, as indicated by the
difference in MMO MgCrO and NiAlO, which achieved 93
and 90% conversion, respectively, after 24 h of reaction (Table
3, entries 5 and 4). Figure 3 shows the reaction kinetics of the
process catalyzed by MgCrO and NiAlO. In both cases, the
maximum conversion is reached after 24 h of reaction.

The efficiency of the MgCrO catalysts is compared with
results previously in the literature for the synthesis of 2a in the
presence of others MMOs as catalysts.98,99 As shown in Table
4, similar conversions were obtained when the reaction was

carried out in the presence of MgAlO,98 MnBaO, or SnNiO.99

However, the main differences lie in the pressure and
temperature at which the cycloaddition reaction takes place.
In this case, we achieved a high conversion at atmospheric
pressure, thus demonstrating that our catalytic system is
efficient under mild reaction conditions.

Table 5 shows a comparison of the catalytic activity based
on the turnover number (TON) and turnover frequency

Table 2. Reaction Conditions Investigated for the Synthesis
of Cyclic Carbonatesa

conversion %b

entry solvent halide halide salt loading (mol %) 1a 2a 3a

1 EtOH 95 1 4
2 EtOH TBAI 10 35 62 3
3 EtOH TBAI 100 23 75 2
4 EtOH KI 1 69 30 1
5 EtOH KI 5 53 45 2
6 EtOH KI 7.5c 37 60 3
7 EtOH KI 10 29 68 3
8 EtOH KI 100 21 76 3
9 MeCN 95 0 2
10 MeCN TBAI 10 87 8 3
11 MeCN KI 10 72 25 1

aReaction conditions: epoxide 1a (1 mmol), halide salt (0.01 or 1
mmol), solvent (1 mL), CO2 (1 atm), 24 h and 70 °C. bConversions
relative to the epoxide starting material calculated by GC relative to
the biphenyl internal standard. c7.5 mmol % is equivalent to 10%
weight loading.

Figure 2. Kinetics of the reaction analyzed by GC.

Table 3. Synthesis of Cyclic Carbonate 2a in the Presence of
LDH or MMOa

2a conversion %b 2a conversion %b

entry LDH KI 0% KI 10% MMO KI 0% KI 10%

1 Ni/Cr 20 78 NiCrO 35 86
2 Ni/Fe 3 75 NiFeO 14 80
3 Zn/Al 8 76 ZnAlO 16 82
4 Ni/Al 42 79 NiAlO 51 90
5 Mg/Cr 53 81 MgCrO 61 93
6 Mg/Al 5 69 MgAlO 15 82

aReaction conditions: epoxide 1a (1 mmol), LDH or MMO (weight
10% loading), KI (0.1), EtOH (1 mL), CO2 (1 atm), 24 h and 70 °C.
bConversions relative to the epoxide starting material calculated by
GC relative to the biphenyl internal standard.

Figure 3. Reaction kinetics to obtain 2a in the presence of MgCrO
and NiAlO.

Table 4. Comparison in the Efficiency of the MgCrO
Catalysts and Previous MMOs Used in the CO2
Cycloaddition to Styrene Oxide 1a

MMOs as catalyst

parameter MgCrO MgAlOa MnBaOb SnNiOb

cocatalyst KI
solvent EtOH DMF DMF DMF
pressure (atm) 1 5 24.6 24.6
temperature (°C) 70 100 160 160
conversion (%) 93 92 90 87
reference this work 75 76 76

aSynthesized from Mg/Al LDH.98 bSynthesized by the coprecipita-
tion method.99

Table 5. Comparison of Catalytic Activity of Selected
Heterogenous Catalysts for the Reaction of CO2 with
Styrene Oxide 1a under Mild Conditions

catalyst
CO2
(atm)

T
(°C) TON TOF ref

LDH Mg/Cr 1 70 69.3 2.89 this work
MMO MgCrO 1 70 13.4 0.56 this work
polyurethane PU-BTP 1 60 5.2 0.60 108

polyurethane SG-Au-
BPT

1 60 10.0 1.10 108

MOF Eu(BTB)(phen) 1 70 27.9 2.30 109
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(TOF) of the MgCrO catalysts and other reported
heterogeneous catalysts. For this comparison, we selected
heterogeneous catalysts that were used under mild reaction
conditions (CO2 1 atm and 70 °C), similar to those employed
in the present work. The values obtained for our catalyst were
comparable to those obtained with polyurethane base catalysts
PU-BTP and SG-Au-BPT,108 as well as those obtained when
the reaction is performed in the presence of an Eu-MOF as a
catalyst.109 TON and TOF for all catalysts, including library
and recycled materials, are shown in Tables S3−S5
(Supporting Information).

With these results in hand, we focused on studying the
reaction trend with other epoxides. Table 6 shows the results

of the cycloaddition reactions of CO2 to the epoxides
corresponding to cyclic carbonates 2b−2d. The six different
MMOs were evaluated, confirming that MgCrO and NiAlO
are the most effective catalysts for achieving high yields (Table
6).

Scheme 2 shows a proposed mechanism for the cyclo-
addition reaction using MMO and KI as catalysts. The reaction
begins with the activation of CO2 on the MMO surface (acid−
base sites)110 by the metals,111 leading to the formation of
intermediate A. Meanwhile, metals on the MMO surface act as
Lewis acid sites, facilitating the activation of epoxide 1a via
intermediate B. Subsequently, the ring of intermediate B is
opened by a nucleophilic attack on the less sterically hindered
carbon by KI, producing intermediate C.101−107,112 Alkylcar-
bonate D is formed after a reaction between B and C. Finally,
intermediate D is the direct precursor of cyclic carbonate 2a.

2.3. Reuse of the MgCrO-Mixed Oxide. To evaluate the
recyclability of MgCrO in the synthesis of 2a, two reactivation
processes were applied to the material. In the first process, after
separation of the material from the reaction mixture, the
material was dried at 100 °C for 24 h. The second process
included calcination at 500 °C for 5 h in an O2 atmosphere.
After the first reuse, we observed that the catalyst that was
reactivated at a high temperature (500 °C) retained its activity,
with the reactions still proceeding with a high yield (2a 90%).
MgCrO can be recycled at least three times without significant
losses in the catalytic activity (Figure 4). This result contrasts

with that observed when the MMO was only dry at 100 °C,
where the conversion decreased significantly due to the loss of
catalytic activity of MgCrO. This significant difference is
probably due to the presence of organic material at the
catalytic sites, which is eliminated after calcination at 500 °C to
recover the catalytic properties of the MMO (Figure 4, red
column, yield 87%).

To confirm the homogeneity of the catalyst in the reuse
reactions, the structures of materials were verified by XRD
before use. Figure 5 shows the plane reflections observed in the
diffractograms at (1 1 1), (2 0 2), and (2 2 0), which are the
same as the original catalyst.

Furthermore, to confirm the structure of the catalyst after
use, we compared the original catalyst with the catalyst before
reuse using FTIR, SEM, and EDX (Figure 6). The FTIR
spectra of original catalyst and catalyst before reuse show
bands in the wavenumber range of 500−800 cm−1 correspond-
ing to the vibration of metal oxygen bonds in both materials.
The absence of the band at 1321 and 1397 cm-1 (CO3

2−)
confirms that the calcination proceeded favorably (Figure 6a).

Table 6. Scope of the MMO-Catalyzed Cycloaddition
Reactiona

aReaction conditions: epoxide 1 (1 mmol), MMO (weight 10%
loading), KI (0.1), EtOH (1 mL), CO2 (1 atm), 24 h and 70 °C.
bYields of the isolated product after chromatographic purification.

Scheme 2. Proposed Mechanism for the Cycloaddition of
CO2 and Epoxides Employing MMO and KI as Catalysts

Figure 4. Reuse of MgCrO in the catalytic reaction to obtain 2a. The
catalyst was dried or calcined after each use.
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The SEM images of both materials showed similar
agglomerates (Figure 6b). Finally, SEM-EDX analysis revealed
the presence of Mg and Cr in both catalysts (Figure 6c). These
results confirm that the material remains homogeneous after
being used, recovered, and calcined at 500 °C.

3. CONCLUSIONS
In conclusion, our experimental investigation of the reaction of
CO2 with epoxides to give the corresponding cyclic carbonate
showed that mixed metal oxides can be efficient catalysts in the
overall process. We demonstrated that MgCrO and NiAlO
were the most active MMOs and that the presence of KI or
TBAI as catalysts and ethanol as the solvent was decisive for
achieving high yields of cycloaddition under atmospheric
pressure at 70 °C.

4. EXPERIMENTAL SECTION
4.1. General Information. Styrene oxide, propylene oxide,

1,2-epoxybutane, glycidol, potassium iodide, sodium carbonate,
sodium hydroxide, magnesium nitrate hexahydrate, aluminum
nitrate nonahydrate, zinc nitrate hexahydrate, chromium
nitrate nonahydrate, nickel nitrate hexahydrate, and iron
nitrate nonahydrate were purchased from Sigma-Aldrich.
Anhydrous solvents were obtained from a Dow-Grubbs type
system (Pure Solv MD, Innovative Technology) and/or
Sigma-Aldrich. Flash chromatography was performed using
silica gel (40−60 μm) in glass columns. The NMR spectra
were obtained using a Bruker Ascend-400 (400 MHz)
spectrometer. Chemical shifts (δ) are reported in ppm and
coupling constants (J) are given in hertz (Hz). GC/MS data
were collected with the Agilent HP6890 series GC system,
using an Agilent HP5973 mass selective detector operating in
EI mode and an Agilent HP-5MS column (30 m × 0.32 mm ×
0.25 μm). Gas chromatography was conducted using an
Agilent HP 6890 Series Gas Chromatography system equipped
with an FID detector and was employed an Agilent DB-624
column (30 m × 250 μm × 1.4 μm).

Powder X-ray diffraction (XRD) was carried out using a
Stoe Stadi-P Cu diffractometer with Cu Kα1 (using 40 kV and
30 mA). The chemical composition of MMOs was recorded
using SEM-EDX images, and emission spectra were obtained
with a Zeiss SUPRA 55 VP scanning electron microscope at 10
kV, employing a 300× secondary electron detector. The pore
sizes, specific pore volume, and specific surface area of the
LDH and MMO materials were determined using ASAP 2020
adsorption equipment. The nitrogen adsorption−desorption
isotherm was carried out at liquid nitrogen temperature.
Specific surface areas were measured using the multipoint
Brunauer−Emmett−Teller (BET) method. The corresponding
specific pore volume and pore sizes were determined using the
BJH method.62

4.2. Synthesis of Layered Double Hydroxide. Two
solutions are prepared: solution 1: metal(II) nitrate (0.1 mol, 3
equiv) and metal(III) nitrate (0.03 mol, 1 equiv) were
dissolved in H2O (45 mL). Solution 2: sodium carbonate (0.09
mol) and sodium hydroxide (0.35 mol) were dissolved in H2O
(70 mL). Solution 2 was added dropwise (over 2 h) to solution
1, forming a gel. The reaction mixture was heated at 60 °C for
24 h. The suspension was vacuum filtrated and washed with
hot H2O at 70 °C. The solid was dried in an oven for 24 h at
100 °C.83,113

4.3. Synthesis of Mixed Metal Oxides. The calcined
materials were obtained by heating the as-synthesized LDHs at
550 °C in a tubular furnace under N2 flow for 6 h, with a
heating rate of 120 °C per hour. Black solids stable in air were
obtained and characterized by XRD.114

4.4. Catalytic Experiments. In a typical experiment, a 50
mL oven-dried Schlenk tube fitted with a stirrer bar and a
septum was evacuated and backfilled with CO2. KI (10 mmol
%), biphenyl (0.1 mmol), styrene oxide 1a (1 mmol), and 2
mL of solvent and/or catalyst were added while stirring at 70
°C for 24 h under 1 atm pressure. The progress of the reaction
was analyzed hourly by GC. The MMO was then removed by
centrifugation and washed with CH2Cl2 (5 × 2 mL). The
combined organic extracts were evaporated, yielding the
corresponding reaction mixture.

4.5. GC Analysis. GC samples were analyzed using an
Agilent HP 6890 Series GC system with an FID detector and

Figure 5. XRD patterns for MgCrO after reactivation at 500 °C.

Figure 6. Comparation of the origin catalyst and catalyst before reuse.
(a) FTIR, (b) SEM, and (c) EDX.
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an Agilent DB-624 column (30 m × 250 μm × 1.4 μm). The
temperature method was carried out as follows: for 1 min, it
was kept at 50 °C, ramping up to 250 °C at a rate of 20 °C/
min, and hold at 250 °C for 15.5 min, with a gas flow rate of
3.0 mL/min at 10 psi. Calibration curves were carried out to
determine product yields using commercial samples with
biphenyl as an internal standard (IS). Standard solutions of
styrene oxide and biphenyl in acetonitrile were prepared at
concentrations of 0.05−0.75 M, and their response was
measured in terms of peak area (Table S1 and Figures S2
and S3).

4.6. Characterization Data. 4.6.1. 2a. 1H NMR (CDCl3,
400 MHz): δ 7.41−7.45 (m, ArH, 3H), 7.34−7.37 (m, ArH,
2H), 5.67 (t, J = 7.9 Hz, 1H), 4.79 (dd, J = 8.1, 8.6 Hz, 1H),
4.33 (dd, J = 7.8, 6.9 Hz, 1H). 13C NMR (CDCl3, 100 MHz):
δ 154.7 (O−CO2), 135.8 (Cipso), 129.7 (2×ArCH), 129.2
(ArCH), 125.8 (2×ArCH), 77.9 (CH), 71.1 (O−CH2).
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4.6.2. 2b. 1H NMR (CDCl3, 400 MHz): δ 6.40 (ddd, JHH =
0.88, 4.08 Hz, JHF = 65.8 Hz, 1H, CHF), 4.65 (ddd, JHH = 4.0,
10.8 Hz, JFH = 33.0 Hz, 1H), 4.56 (ddd, JHH = O.88, 10.8 Hz,
JFH = 21.6 Hz, 1H). 13C NMR (CDCl3, 100 MHz): δ 155.2
(O−CO2), 104.5 (d, CHF), 70.5 (d, CH2). 19F NMR (CDCl3,
376 MHz): δ − 44.50 (ddd, J = 21.0, 33.0, 65 Hz).116

4.6.3. 2c. 1H NMR (CDCl3, 400 MHz): δ 4.82 (dqu, J =
3.2, 6.64, 9.9 Hz, 1H), 4.54(dd, J = 8.36, 16.72 Hz, 1H), 4.48
(dd, J = 2.64, 8.32 Hz, 1H), 4.01 (ddd, J = 3.0, 5.7, 18.5 Hz,
1H), 3.74 (ddd, J = 3.4, 7.0, 19.8 Hz, 1H), 2.53 (t, J = 5.4,
1H). 13C NMR (CDCl3, 100 MHz): δ 156.7 (O−CO2), 76.6
(CH), 66.6 (O−CH2), 61.7 (CH2).

117

4.6.4. 2d. 1H NMR (CDCl3, 400 MHz): δ = 4.77 (sextet, J
= 1.04, 6.24, 13.6, 19.88 Hz, 1H), 4.47 (t, J = 7.72 Hz, 1H),
3.93 (dd, J = 7.2, 8.48 Hz, 1H), 1.37 (d, J = 6.28 Hz, 3H,
CH3). 13C NMR (CDCl3, 100 MHz): δ = 155.2 (O−CO2),
73.7 (CH), 70.7 (O−CH2), 19.2 (CH3).

118

4.6.5. 2e. 1H NMR (CDCl3, 400 MHz): δ 4.60 (tqu, J =
1.0, 5.7, 13.7 Hz, 1H), 4.45 (t, J = 7.9 Hz, 1H), 4.00 (dd, J =
6.9, 8.4 Hz, 1H), 1.68 (qudd, J = 1.84, 7.4, 6.8, 14.1, 21.2 Hz,
2H, CH2), 0.91 (t, J = 7.4 Hz, 3H). 13C NMR (CDCl3, 100
MHz): δ = 155.2 (O−CO2), 78.1 (O−CH), 69.1 (O−CH2),
26.7 (CH2), 8.3 (CH3).
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