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Gastric cancer (GC) poses a significant global health challenge,
ranking fifth in incidence and third in mortality among all ma-
lignancies worldwide. Its insidious onset, aggressive growth,
proclivity for metastasis, and limited treatment options have
contributed to its high fatality rate. Traditional approaches
for GC treatment primarily involve surgery and chemotherapy.
However, there is growing interest in targeted therapies and
immunotherapies. This comprehensive review highlights
recent advancements in GC targeted therapy and immuno-
therapy. It delves into the mechanisms of various strategies,
underscoring their potential in GC treatment. Additionally,
the review evaluates the efficacy and safety of relevant clinical
trials. Despite the benefits observed in numerous advanced
GC patients with targeted therapies and immunotherapies,
challenges persist. We discuss pertinent strategies to overcome
these challenges, thereby providing a solid foundation for
enhancing the clinical effectiveness of targeted therapies and
immunotherapies.
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INTRODUCTION
Gastric cancer (GC) is one of the most prevalent cancers worldwide,
with a significant portion of GC cases occurring in developing coun-
tries, particularly in China.1 The incidence of GC is frequently linked
to factors such as Helicobacter pylori infection, excessive salt con-
sumption, and tobacco use. Moreover, a hereditary predisposition
plays a role in certain instances of GC. GC typically presents insidi-
ously, leading to advanced diagnosis, and the available treatments
have demonstrated limited efficacy, resulting in poor prognoses for
the majority of GC patients.2

Surgical intervention remains the primary treatment for early-stage
GC. However, for patients facing metastatic or advanced stages,
sequential chemotherapy regimens become necessary. Current
research indicates that median overall survival (mOS) for advanced
GC patients is less than 1 year.3 In recent years, targeted therapy
and immunotherapy have emerged as novel treatment options,
showing promise in enhancing the survival rates of GC patients.4–6

Nevertheless, despite these advancements, the overall prognosis for
GC patients remains unfavorable.

As our understanding of GC at the molecular levels continues to
evolve, it has become evident that GC is a highly heterogeneous dis-
ease characterized by distinct pathogenic mechanisms.7 However, our
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understanding of GC remains somewhat constrained, and conse-
quently, there is ample room for improvement in targeted therapy
and immunotherapy for GC.

This review article comprehensively explores the latest advances in
GC targeted therapy, focusing on key signaling pathways, epigenetic
alterations, the tumor microenvironment (TME), and cancer stem
cells. It underscores the clinical relevance of these pathways and dis-
cusses potential strategies to address current challenges. The aim of
this review is to offer further guidance to enhance the effectiveness
of targeted therapies and immunotherapies for GC treatment. Table 1
provides a summary of clinical trials for essential medications.
TARGETING KEY SIGNALING PATHWAYS
Multiple signaling pathways play pivotal roles in the onset and pro-
gression of GC. Targeting these key pathways constitutes a primary
approach in GC targeted therapy. Figure 1 depicts the significant
signaling pathways associated with GC.
Targeting HER2 pathway

Human epidermal growth factor receptor 2 (HER-2) can activate
various downstream pathways such as rat sarcoma (RAS)/mitogen-
activated protein kinase (MAPK) and phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (AKT) through heterodimerization and tyro-
sine kinase autophosphorylation, thus regulating multiple biological
processes.35,36 For HER2-positive metastatic GC patients, the current
standard of care is trastuzumab combined with platinum/fluoropyr-
imidine agents as a first-line therapy.37

Trastuzumab

Trastuzumab, a monoclonal antibody designed to target HER2,
garnered significant attention following the ToGA trial in 2010.
This trial showcased that integrating trastuzumab into first-line cape-
citabine and cisplatin/5-fluorouracil and cisplatin (XP/FP) chemo-
therapy for HER2-positive advanced gastric cancer/gastroesophageal
junction cancer (GC/GEJC) patients led to notable improvements in
mOS and objective response rate (ORR) compared to chemotherapy
alone.4 Consequently, in the same year, the US Food and Drug
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Table 1. Key clinical trials in GC/GEJC targeted therapies and immunotherapies

Year Drugs Co-drugs Phase
Patient
number Experimental vs. controlling Clinical validity (month)

Grade 3/4
TRAE incidence

Lines of
therapy

Guideline
recommendations Reference

2010 trastuzumab XP/FP III 594
trastuzumab + XP/FP
(298) vs. XP/FP (296)

ORR: 47% vs. 35% mOS:
13.8 vs. 11.1

68% vs. 68% 1
CSCO
ESMO
NCCN

Bang et al.4

2018 trastuzumab mDCF II 26
trastuzumab +
mDCF (26)

ORR: 65% mPFS: 13.0
mOS: 24.9

– 1 – Mondaca et al.8

2021
disitamab
vedotin

– II 125 disitamab vedotin (125)
ORR: 24.8% mPFS: 4.1
mOS: 7.9

56.8% 3 CSCO Peng et al.9

2020
trastuzumab-
deruxtecan

– II 187
trastuzumab-deruxtecan
(125) vs. irinotecan/
paclitaxel (62)

ORR: 51% vs. 14% mOS:
12.5 vs. 8.4

– 3
ASCO
ESMO
NCCN

Shitara et al.10

2023
trastuzumab-
deruxtecan

– II 79 trastuzumab-deruxtecan (79) ORR: 42% – 2 –
Van Cutsem
et al.11

2023 zanidatamab CAPOX Ib/II 33
zanidatamab 30 mg/kg +
CAPOX (19) zanidatamab
1.8g/2.4g + CAPOX (14)

ORR: 75.8% mPFS: 16.7 66.7% 1 – Lee et al.12

2014 ramucirumab – III 355
ramucirumab (238)
vs. placebo (117)

mPFS: 5.2 vs. 3.8 – 2 NCCN Fuchs et al.13

2014 ramucirumab paclitaxel III 665
ramucirumab +
paclitaxel (330) vs.
placebo + paclitaxel (335)

mOS: 9.6 vs. 7.4 69% vs. 47% 2

CSCO
ASCO
ESMO
NCCN

Wilke et al.14

2019 ramucirumab FP III 645
ramucirumab + FP
(326) vs. placebo + FP (319)

mPFS: 5.7 vs. 5.4
mOSa: 11.2 vs. 10.7

– 1 – Fuchs et al.15

2021 ramucirumab paclitaxel III 440
ramucirumab + paclitaxel
(294) vs. placebo +
paclitaxel (146)

mPFS: 4.14 vs. 3.15
mOSa: 8.71 vs. 7.92

– 2

CSCO
ASCO
ESMO
NCCN

Xu et al.16

2023 ramucirumab
trastuzumab +
paclitaxel

II 50
ramucirumab +
trastuzumab +
paclitaxel (50)

ORR: 54%
DCR: 96% mPFS: 7.1
mOS: 13.6

– 2 – Kim et al.5

2024 apatinib
camrelizumab +
SOX

I 34 apatinib + SOX (34)
ORR: 76.5% mPFS: 8.4
mEFS: 22.3

52.9% 1 – Chen et al.17

2016 apatinib – III 267
apatinib (176) vs.
placebo (91)

mPFS: 2.6 vs. 1.8
mOS: 6.5 vs. 4.7

– 2 – Li et al.18

2023 apatinib – IV 1999 apatinib (1999)
ORR: 4.4%
DCR: 35.8% mPFS: 2.7
mOS: 5.8

– >1 CSCO Li et al.19

2020 lenvatinib pembrolizumab II 29
lenvatinib +
pembrolizumab (29)

ORR: 69% – 1/2 – Kawazoe et al.20

2022 anlotinib toripalimab II 62
anlotinib +
toripalimab (62)

ORR: 32.3%
DCR: 91.9% mPFS: 8.4%

11.3% 2 – Jiang et al.21

(Continued on next page)
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Table 1. Continued

Year Drugs Co-drugs Phase
Patient
number Experimental vs. controlling Clinical validity (month)

Grade 3/4
TRAE incidence

Lines of
therapy

Guideline
recommendations Reference

2022 bemarituzumab FOLFOX II 155
bemarituzumab +
mFOLFOX6 (77) vs.
placebo + mFOLFOX6 (78)

mPFSa: 9.5 vs. 7.4 32% vs. 36% 1 – Wainberg et al.22

2023 zolbetuximab FOLFOX III 565
zolbetuximab +
mFOLFOX6 (283) vs.
placebo + mFOLFOX6 (282)

mPFS: 10.61 vs. 8.67
mOS: 18.23 vs. 15.54

87% vs. 78% 1
CSCO
ESMO

Shitara et al.23

2021 zolbetuximab EOX II 246
zolbetuximab + EOX
(77) vs. EOX (84)

mPFS: 7.5 vs. 5.3
mOS: 13.0 vs. 8.3

70.1% vs. 64.3% 1 – Sahin et al.24

2017 nivolumab – III 493
nivolumab (330) vs.
placebo (163)

mOS: 5.26 vs. 4.14 10% vs. 4% >2 CSCO Kang et al.25

2022 nivolumab
trastuzumab +
ipilimumab/FOLFOX

II 88

nivolumab + trastuzumab +
ipilimumab (44) vs.
nivolumab + trastuzumab +
FOLFOX (44)

12-mo OS: 57% vs. 70% 82% vs. 88% 1 – Stein et al.26

2022 nivolumab SOX/CAPOX III 724
nivolumab + SOX/CAPOX
(362) vs. placebo +
SOX/CAPOX (362)

mPFS: 10.45 vs. 8.34
mOSa: 17.45 vs. 17.15

58% vs. 50% 1
CSCO
ASCO
NCCN

Kang et al.6

2021 nivolumab
ipilimumab/CAPOX/
FOLFOX

III 2031

nivolumab + CAPOX/FOLFOX
(789) vs. CAPOX/FOLFOX (792)
nivolumab + ipilimumab (409)
vs. CAPOX/FOLFOX (404)

mOS: 13.8 vs. 11.6
11.7 vs. 11.8

59% vs. 44%
38% vs. 46%

1
CSCO
ASCO
NCCN

Janjigian et al.27

2018 pembrolizumab – III 592
pembrolizumab (294) vs.
paclitaxel (276)

mOSa: 9.1 vs. 8.3 14% vs. 35% 2
CSCO
ESMO
NCCN

Shitara et al.28

2023 pertuzumab trastuzumab + FP III 780
pertuzumab + trastuzumab +
FP (388) vs. placebo +
trastuzumab + FP (392)

ORR: 57.0% vs. 48.6%
mPFS: 8.5 vs. 7.2
mOS: 18.1 vs. 14.2
mDOR: 10.2 vs. 8.4

80.5% vs. 74.2 1
CSCO
ASCO
NCCN

Tabernero et al.29

2023 pembrolizumab FP/CAPOX III 1579
pembrolizumab + FP/CAPOX
(790) vs. placebo +
FP/CAPOX (789)

mOS: 12.9 vs. 11.5 60% vs. 51% 1

CSCO
ASCO
ESMO
NCCN

Rha et al.30

2023 pembrolizumab
trastuzumab +
FP/CAPOX

III 698
pertuzumab + trastuzumab +
FP/CAPOX (350) vs. placebo +
trastuzumab + FP/CAPOX (348)

mPFS: 10.0 vs. 8.1
mOSa: 20.0 vs. 16.8

58% vs. 51% 1
CSCO
ASCO
NCCN

Janjigian et al.31

2021 sintilimab CAPOX III 650
sintilimab + CAPOX (327) vs.
placebo + CAPOX (323)

ORR: 65.1% vs. 58.7%
mOS: 15.2 vs. 12.3

59.8% vs. 52.5% 1 CSCO Xu et al.32

2023 tislelizumab FP/CAPOX III 546
tislelizumab + FP/CAPOX (274)
vs. placebo + FP/CAPOX (272)

ORR: 50.4% vs. 43.0%
mPFS: 7.2 vs. 5.9
mOS: 17.2 vs. 12.6

64.7% vs. 62.9% 1 CSCO Moehler et al.33

2023 sugemalimab CAPOX III 479
sugemalimab + CAPOX (241)
vs. placebo + CAPOX (238)

ORR: 68.6% vs. 52.7%
mPFS: 7.62 vs. 6.08
mOS: 15.64 vs. 12.65

31.1% vs. 28.7% 1 – Zhang et al.34

aNo statistical difference.
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Figure 1. Main signaling pathways and fundamental factors in GC

The major signaling pathways and crosstalk of EGFR, HER2, FGFR2, HGF/c-Met, PI3K/AKT/mTOR, PD-1, CTLA4, and TIGIT pathways are illustrated. The specific

mechanism of the LAG-3 signaling pathway has not been fully elucidated. This figure was created with Biorender.com.
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Administration (FDA) granted approval for trastuzumab in combina-
tion with chemotherapy as a first-line treatment option for HER2-
positive GC/GEJC patients. Pertuzumab, another monoclonal anti-
body targeting HER2, operates through a mechanism distinct from
that of trastuzumab. Its combination with trastuzumab, forming a
4 Molecular Therapy: Oncology Vol. 32 September 2024
dual HER2-targeted therapeutic approach, has shown considerable
efficacy in breast cancer treatment.38 However, the JACOB trial
explored this dual HER2-targeted therapy as a first-line treatment
for advanced GC/GEJC, but the results did not meet expectations
as anticipated.29
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Studies indicate that more than two-thirds of patients with initially
HER2-positive cancer experience treatment failure with trastuzu-
mab-based therapy, possibly due to the loss of HER2 expression.
Consequently, reassessing HER2 expression following trastuzumab
treatment holds significance in treatment planning.39 Additionally,
findings also suggest that resistance to traditional HER2-targeted
therapies may stem from the co-overexpression of HER3 and
HER2, along with their collaborative signaling. Thus, targeting
HER3 could be a potential strategy to prevent anti-HER2 resis-
tance.40–42

Trastuzumab-deruxtecan, disitamab vedotin

Targeted HER-2 antibody-drug conjugates (ADCs) such as trastuzu-
mab-deruxtecan (T-DXd) and disitamab vedotin have shown excel-
lent efficacy in the multi-line treatment of advanced/unresectable
GC patients.9–11 However, the T-DXd exhibited a significantly higher
rate of adverse reactions, including myelosuppression and interstitial
lung disease.10 A related phase III clinical trial is currently ongoing to
further evaluate its efficacy and safety profile. Based on data from a
phase II clinical study, disitamab vedotin received its initial approval
in China on June 8, 2021 for the treatment of locally advanced or met-
astatic GC patients with HER2 overexpression who had undergone at
least two prior systemic chemotherapy regimens.43 A real-world
study revealed that disitamab vedotin combined with immune check-
point inhibitors (ICIs) had significant superior efficacy as a third-line
treatment in patients with advanced or metastatic GC (ORR 36.0% vs.
10.0%).44 A clinical study is currently underway (NCT05980481) to
evaluate the combination of disitamab vedotin with toripalimab,
along with either chemotherapy or herceptin, as a first-line treatment
for HER2-positive advanced GC.

KN026

KN026, a novel bispecific antibody targetingHER2, possesses the abil-
ity to bind simultaneously to two distinct HER2 epitopes.45 An
exciting phase II clinical trial demonstrated its potential as a second-
line treatment for patients with high HER2 expression in GC/GEJC.
In the HER2-high cohort, KN026 achieved the ORR of 56%, with
themedian duration of response (mDOR) of 9.7months. Importantly,
KN026 exhibited significant anti-tumor efficacy in patients with
HER2-positive disease progression following trastuzumab treatment,
suggesting its potential for overcoming resistance to trastuzumab.46

This underscores the promise of KN026 in addressing trastuzumab
resistance. An associated phase III clinical trial (NCT05427383) and
a clinical trial investigating the combination of ZW25, a bispecific anti-
body targeting HER2, with trastuzumab as a first-line treatment for
patients with advanced HER2-positive GC/GEJC are currently
ongoing. Data presented at the 2023 European Society for Medical
Oncology (ESMO) conference indicated that the median progres-
sion-free survival (mPFS) reached 16.7 months, further highlighting
the potential of these approaches in HER2-positive GC treatment.12

Targeting VEGF/VEGFR pathway

Vascular endothelial growth factor (VEGF) acts as a key regulator of
angiogenesis.47 The VEGF family acts through VEGF receptors
(VEGFRs).48 Specifically, VEGFA binds to VEGFR2, triggering endo-
thelial cell proliferation and initiating cell migration via the RAS-
RAF-MAPK-ERK signaling pathway.49 In tumor tissues, VEGF stim-
ulates endothelial cells, promoting new blood vessel formation.50

Studies have consistently linked higher VEGF expression with poorer
patient prognosis.51 Thus, targeting VEGF/VEGFR to impede tumor
angiogenesis emerges as a promising strategy in GC treatment.

Ramucirumab

Ramucirumab, a humanized monoclonal antibody targeting
VEGFR2, was evaluated in the REGARD trial in 2014 as a monother-
apy for patients with advanced GC/GEJ adenocarcinoma whose dis-
ease progressed after first-line chemotherapy. The results showed a
significant improvement in mOS in the ramucirumab group
compared to the placebo group.13 In the same year, another phase
III clinical study, RAINBOW, revealed that, in patients with GC,
the combination of ramucirumab and paclitaxel yielded superior out-
comes compared to a placebo combined with paclitaxel (mOS 9.6 vs.
7.4 months and mPFS 4.4 vs. 2.9 months).14 The REGARD and
RAINBOW trials demonstrated significant efficacy and manageable
safety profiles of ramucirumab, leading to FDA approval for its use
either as monotherapy or in combination with paclitaxel as a sec-
ond-line treatment for GC. In 2023, a trial revealed highly satisfactory
outcomes with the combination of trastuzumab, ramucirumab, and
paclitaxel in patients with HER2-positive advanced GC/GEJ adeno-
carcinoma who had previously undergone first-line treatment
(response rate 54%, mPFS 7.1 months, mOS 13.6 months).5 The
combination of ramucirumab with chemotherapy has demonstrated
significant efficacy as a second-line treatment.52 In 2023, the China
Society of Clinical Oncology (CSCO) guidelines recommended the
combination of ramucirumab with paclitaxel as the preferred sec-
ond-line treatment for advanced metastatic GC.

Apatinib

Apatinib, a selective tyrosine kinase inhibitor (TKI) developed in
China,53 has demonstrated efficacy as a monotherapy in the treat-
ment of advanced refractory GC in which previous chemotherapy
had failed. Compared to patients in the placebo group, those treated
with apatinib exhibited significantly improved mPFS andmOS.18,19,54

These findings led to the approval of apatinib by the National Medical
Products Administration (NMPA) in 2014 for the treatment of GC/
GEJ adenocarcinoma that has progressed after second-line chemo-
therapy. In 2023, a phase II clinical study reported promising findings
regarding the combination of sintilimab, apatinib, and chemotherapy
in patients with advanced GC/GEJ adenocarcinoma. The regimen
demonstrated notable anti-tumor activity and manageable safety,
indicating potential as a treatment option for this patient popula-
tion.55 In 2024, a phase I clinical trial demonstrated the efficacy of
combining apatinib with camrelizumab and chemotherapy as a
first-line treatment for advanced GC/GEJC. Among the 34 enrolled
patients, 10 underwent surgery, while those who did not undergo sur-
gery achieved an impressive overall survival (OS) of 19.6 months.17

Numerous ongoing clinical trials are exploring the combination of
apatinib with various chemotherapy regimens for the treatment of
Molecular Therapy: Oncology Vol. 32 September 2024 5
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GC. These trials aim to further evaluate the efficacy and safety of this
combination therapy and may provide valuable insights into its po-
tential role in the management of GC.

Anlotinib, lenvatinib, regorafenib

Clinical research has demonstrated that TKIs such as anlotinib, len-
vatinib, and regorafenib, which target VEGFR, exhibit enhanced
efficacy when combined with immunotherapy. These agents can syn-
ergize with immunotherapy through various mechanisms, potentially
enhancing the anti-tumor immune response and improving treat-
ment outcomes.56–58 The safety and efficacy of these TKIs, in
conjunction with immunotherapy, have been extensively docu-
mented in numerous clinical trials, underscoring their potential as
groundbreaking treatment approaches.20,21,59 These findings suggest
that such combination therapies hold promise for improving out-
comes in GC, paving the way for more effective and personalized
treatment strategies. A phase III clinical trial (NCT04879368) is
further exploring this promising avenue of cancer therapy.

Targeting the HGF/c-Met pathway

C-Met, encoded by the proto-oncogene MET, functions as a tyrosine
kinase receptor for hepatocyte growth factor (HGF). The interaction
between HGF and c-Met plays a crucial role in regulating various as-
pects of tumor biology, including cell growth, invasion, metastasis,
and angiogenesis.60 Research indicates that overactivation of the
HGF/c-Met pathway is implicated in the development and metastasis
of advanced GC and is associated with poor prognosis in GC pa-
tients.61,62 Consequently, targeting the HGF/c-Met pathway holds
promise as a potential therapeutic strategy for MET-dependent GC.

Rilotumumab

Rilotumumab is a monoclonal designed to target HGF and its recep-
tor MET. In a phase II clinical trial, the efficacy and safety of rilotu-
mumab were evaluated in combination with the ECX chemotherapy
(epirubicin, cisplatin and capecitabine) regimen in patients with
advanced GC/GEJC. The results showed an improvement in mPFS
in the rilotumumab group compared to the placebo group (5.7 vs.
4.2 months), with better outcomes observed in patients with MET-
positive tumors.63 Despite promising results in earlier phases, a sub-
sequent phase III clinical trial of rilotumumab was halted by an inde-
pendent data monitoring committee.64 This decision suggests that
further investigation is needed to fully understand the role of MET
in tumor development and to optimize therapeutic strategies target-
ing this pathway. Several clinical trials exploring MET-targeted ther-
apies in GC have not yielded satisfactory results, highlighting the
complexities and challenges associated with targeting this pathway
in clinical practice.

Volitinib

Volitinib, a TKI targeting c-MET, has shown promising anti-tumor
efficacy in preclinical studies, particularly in GC patient-derived
xenograft (PDX) models with c-MET dysregulation.65 However, its
effectiveness has yet to be validated in clinical trials. Currently, a
phase II clinical trial investigating the treatment of MET-amplified
6 Molecular Therapy: Oncology Vol. 32 September 2024
gastric/GEJ cancer patients with volitinib is underway
(NCT04923932). This trial aims to evaluate the safety and efficacy
of volitinib in this patient population and may provide valuable in-
sights into its potential as a therapeutic agent for GC.

Indeed, neither monotherapy nor combination therapies targeting
HGF/c-Met have demonstrated significant efficacy in treating GC.
Research has uncovered that c-MET exhibits nonkinase functions
as well. Thus, directly blocking c-MET phosphorylation with anti-
bodies or TKIs can trigger kinase reactivation, reassembly, and the
emergence of resistance mechanisms.62,66,67 However, strategies
involving mRNA interference of MET transcription have demon-
strated inhibitory effects on tumor cells and are currently under
investigation in research studies. These approaches hold promise
for suppressing c-MET signaling and overcoming resistance mecha-
nisms in cancer therapy.68,69 Moreover, studies have highlighted
MET amplification as a significant mechanism for acquired resistance
to various TKIs, including epidermal growth factor receptor (EGFR)
inhibitors.70–72 Therefore, targeted MET therapy holds promise as a
second-line treatment for patients who have developed acquired
resistance to EGFR-TKIs. Thus, combining MET-targeted treatment
with EGFR inhibitors may represent a more effective approach to
overcome resistance and improve treatment outcomes in GC.
MCLA-129 is a bispecific antibody designed to target both EGFR
and c-MET simultaneously. Clinical trials investigating its use in
various solid tumors, including GC, are currently underway
(NCT04868877).

These trials aim to evaluate the safety and efficacy of MCLA-129 and
may provide valuable insights into its potential as a therapeutic option
for patients with GC, particularly those with acquired resistance to
EGFR-TKIs.

Targeting the mTOR-related pathway

The mammalian target of rapamycin (mTOR) belongs to the PI3K-
related kinase family.73,74 Disruption of mTOR signaling plays a
pivotal role in tumorigenesis, angiogenesis, cell growth, and metas-
tasis. mTORC1, one of the mTOR complexes, acts as an effector
downstream of many frequently mutated oncogenic pathways that
are overactivated in various cancers, including GC.75 Therefore, the
mTOR-related pathway represents a potential target for GC
treatment.

Everolimus

Everolimus, an oral mTOR inhibitor, has shown promise in the treat-
ment of advanced GC patients who have received prior treatment,
with a disease control rate (DCR) of 56%.76 However, clinical trials
investigating the combination of everolimus with chemotherapy did
not achieve satisfactory results.77,78 Hence, identifying biomarkers
associated with the efficacy of everolimus in GC patients may
hold the key to improving survival outcomes. Several studies suggest
that phosphorylated S6 (pS6) Ser240/4 could serve as a potential
biomarker, but further research is necessary to validate this
hypothesis.79

http://www.moleculartherapy.org
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Targeting the FGF/FGFR2 pathway

Fibroblast growth factor receptor 2 (FGFR2) is a transmembrane
tyrosine kinase receptor that plays a crucial role in regulating cell pro-
liferation, survival, migration, and angiogenesis.80 Dysregulation of
the FGF/FGFR2 signaling pathway can impact the development
and progression of various cancers by activating the downstream
PI3K-AKT and MAPK-ERK pathways.81,82 Research has shown
that FGFR2 amplification occurs in 2%–11% of GCs.83 In GC,
FGFR2 amplification is frequently associated with more aggressive
subtypes, leading to poorer prognosis.84 Consequently, FGFR2 repre-
sents a promising target for the treatment of GC, and therapies aimed
at inhibiting FGFR2 signaling may hold potential for improving out-
comes in patients with GC, particularly those with FGFR2-amplified
tumors.

Bemarituzumab

Bemarituzumab, also known as FPA144, represents the world’s first
humanized monoclonal antibody targeting FGFR2b.22 It has demon-
strated single-agent efficacy and good tolerability in advanced gastro-
esophageal adenocarcinoma (GEA) patients, with no significant
overlapping toxicities observed with standard chemotherapy drugs
such as platinum-based agents or fluoropyrimidines.85 In 2022, the
FIGHT trial revealed that, compared with the placebo group, the
mPFS in the bemarituzumab group did not significantly differ (9.5
vs. 7.4 months). However, the mOS in the bemarituzumab group
was extended by 5.7 months.22 Currently, phase III clinical trials
are underway to investigate the combination of bemarituzumab and
nivolumab for the treatment of GC (NCT05052801, NCT05111626).

Pemigatinib

Pemigatinib is a selective inhibitor targeting the FGFR family, capable
of inhibiting the tyrosine kinase activity of FGFR. In 2020, it received
FDA approval, marking it as the first targeted therapy for cholangio-
carcinoma (CC).86 Studies have suggested that the FGFR3/AKT axis
represents one of the mechanisms contributing to the escape pathway
leading to resistance to trastuzumab in GC.87 The FiGhTeR trial, a
phase II clinical trial (EudraCT 2017-004522-14), is currently assess-
ing the safety and activity of pemigatinib in patients with HER2 tras-
tuzumab-resistant GC.88 This trial aims to provide insights into the
potential role of pemigatinib as a treatment option for GC patients
who have developed resistance to trastuzumab therapy.

Targeting the TF pathway

Tissue factor (TF) is a transmembrane glycoprotein that serves as a
major initiator of both endogenous and exogenous coagulation under
normal physiological conditions.89–91 However, in recent years,
research has shown that TF is frequently overexpressed in malignant
tumor tissues, including GC, and is often associated with poor histo-
logical differentiation.92 TF can form a complex with factor VIIa,
termed the TF-VIIa complex, which activates protease-activated re-
ceptor 2 (PAR2) signaling, thereby playing a critical role in tumor
growth, invasion, metastasis, and angiogenesis. Additionally, TF-
mediated cancer-related coagulopathies are closely linked to the for-
mation of the TME and tumor progression. Given its pivotal role in
both coagulation and tumor biology, TF has emerged as an attractive
therapeutic target. However, targeting TF alone may pose challenges
due to its essential role in hemostasis, potentially leading to severe
coagulation abnormalities.

Tisotumab vedotin

Tisotumab vedotin, an ADC, has demonstrated the ability to impact
TF FVIIa-dependent intracellular signaling, thereby exerting anti-tu-
mor activity, while not affecting procoagulant activity. This unique
mechanism of action allows tisotumab vedotin to target tumor cells
specifically without disrupting normal hemostasis. Notably, tisotu-
mab vedotin has shown promising efficacy in the treatment of cervical
cancer,93 leading to its FDA approval for cervical cancer treatment in
2021.94 This success of tisotumab vedotin in treating cervical cancer
has indeed demonstrated the feasibility of targeting TF in solid tu-
mors. However, there is a lack of clinical evidence regarding its use
specifically in GC treatment.

TARGETING KEY MOLECULES
Targeting CLDN18.2

Claudin18.2 (CLDN18.2) is a member of the claudin protein family
and plays a crucial role in regulating tissue permeability, transcellular
transport, and signal transduction processes.95 In normal tissues,
CLDN18.2 is exclusively expressed in the tight junctions of differen-
tiated gastric mucosal epithelial cells and is concealed within tight
junction supramolecular complexes. However, in GC, disruption of
polarity in GC cells exposes the CLDN18.2 epitope, making it a tu-
mor-specific antigen.96,97 Research has indicated that CLDN18.2
expression is higher in diffuse-type GC patients compared to intesti-
nal-type GC patients. This suggests that strategies targeting
CLDN18.2 may achieve better efficacy in diffuse-type GC.98 Thus,
CLDN18.2 represents a promising therapeutic target in the context
of GC, and further research into CLDN18.2-targeted therapies may
lead to the development of more effective treatment strategies for
GC patients.

Zolbetuximab

Zolbetuximab is a monoclonal antibody targets CLDN18.2.99 The re-
sults of the MONO trial have indicated that zolbetuximab monother-
apy demonstrates favorable anti-tumor activity in patients with
advanced GC/GEJ adenocarcinoma who are positive for CLDN18.2.
Additionally, there appears to be a potential correlation between
CLDN18.2 expression levels and treatment efficacy. Preclinical
studies have suggested that chemotherapy drugs have the potential
to enhance antibody-dependent cellular cytotoxicity (ADCC) medi-
ated by zolbetuximab. This finding indicates that the combination
of zolbetuximab with chemotherapy may represent a promising
treatment approach for GC/GEJ adenocarcinoma.100,101 The
SPOTLIGHT trial and GLOW trial, phase III clinical trials, evaluated
the efficacy of zolbetuximab in combination with chemotherapy as a
first-line treatment for HER2-negative advanced GC/GEJ adenocarci-
noma. The trial results demonstrated a significant extension in mPFS
and mOS compared to the placebo group.23,102 These results from
trials such as SPOTLIGHT and GLOW indeed suggest that
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zolbetuximab in combination with chemotherapy offers favorable ef-
ficacy as a first-line treatment for advanced GC. These findings have
led to the inclusion of zolbetuximab plus chemotherapy in the 2023
CSCO guidelines as a recommended first-line treatment for GC.
Moreover, the combination of zolbetuximab with immunotherapy
represents another promising treatment approach for GC. The
ongoing ILUSTRO trial (NCT03505320) is investigating the efficacy
and safety of zolbetuximab in combination with nivolumab in the
first-line treatment of GC. This trial aims to assess the potential syn-
ergistic effects of combining zolbetuximab with immune checkpoint
inhibition, which could provide additional benefits to patients with
advanced GC. The results of this trial will be crucial in determining
the role of zolbetuximab-based combination therapies in the evolving
landscape of GC treatment.

Osemitamab

Osemitamab is a second monoclonal antibody that targets
CLDN18.2, similar to zolbetuximab. However, osemitamab features
an optimized Fc segment design, which enhances the affinity of the
antibody for tumor cells. This modification leads to stronger ADCC
and complement-dependent cytotoxicity (CDC) effects. Notably,
this approach has shown particular effectiveness in GC cells with
low to moderate CLDN18.2 expression levels. Current clinical studies
are underway to investigate the efficacy and safety of combining ose-
mitamab with capecitabine and oxaliplatin (CAPOX) chemotherapy
as a first-line treatment for solid tumors, including GC/GEJ cancers.
As of January 2023, in the GC/GEJC patient cohort, ORR was 66.7%,
and DCR reached 97.6%, demonstrating promising therapeutic po-
tential.103 Additionally, preclinical studies have demonstrated that
treatment with osemitamab in a mouse model of CLDN18.2-positive
but PD-L1-negative GC PDXs led to an upregulation of PD-L1
expression. This finding provides a theoretical basis for combining
osemitamab with immunotherapy in the treatment of GC.104 To
further evaluate this combination strategy, a phase III clinical trial
is currently underway (NCT06093425). This trial aims to investigate
the efficacy and safety of osemitamab in combination with chemo-
therapy and immunotherapy as a first-line treatment for GC. The re-
sults of this trial will provide valuable insights into the potential ben-
efits of combining osemitamab with multiple treatment modalities for
GC patients.

Givastomig

Givastomig (also known as ABL111, TJ-CD4B) is a bispecific anti-
body designed to target CLDN18.2 and 4-1BB. In the TME of GC pa-
tients, 4-1BB-positive (4-1BB+) T cells are naturally present. By uti-
lizing a 4-1BB agonist such as urelumab, givastomig aims to
effectively boost the proliferation, differentiation, and cytotoxicity
of CD8+ T cells, thereby enhancing their ability to combat tumor
cells. However, this systemic immune activation can result in severe
adverse reactions.105 In contrast, givastomig operates by facilitating
4-1BB costimulation in a CLDN18.2-dependent manner. This unique
mechanism confines the immune response to the TME. By doing so,
givastomig aims to limit immune activation and associated adverse
effects to the TME, thereby reducing the risks of hepatotoxicity and
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systemic immune reactions linked to the drug. This localized immune
reaction not only demonstrates outstanding anti-tumor effectiveness
but also instills a long-lasting memory response against the tumor.106

Currently, phase I clinical trials of givastomig in advanced solid tu-
mors, including GC, are underway (NCT04900818). These trials
aim to assess the safety, tolerability, pharmacokinetics, and prelimi-
nary efficacy of givastomig in patients with advanced solid tumors.

CT041

Chimeric antigen receptor T cell (CAR-T) therapy, initially successful
in treating hematological malignancies, is now being explored as a
novel approach for solid tumor therapy. CT041 represents a signifi-
cant advancement in this field, as it is a genetically engineered autol-
ogous T cell expressing a CAR specifically targeting CLDN18.2. An
analysis of mid-term results from a phase I clinical trial has shown
promising outcomes for CT041 in CLDN18.2-positive GC patients
who have undergone multiple prior treatments. These results indicate
good efficacy and acceptable safety profiles, highlighting the potential
of CAR-T therapy targeting CLDN18.2 in GC treatment.107 Further-
more, numerous CAR-T cell therapies focused on CLDN18.2 are
currently progressing through clinical trials across different phases.

Targeting CLDN18.2 has emerged as a promising approach in GC
therapy. Various therapeutic modalities aimed at CLDN18.2, such
as monoclonal antibodies, bispecific antibodies, and CAR-T cells,
are demonstrating significant promise in the treatment of advanced
GC. These innovative therapies are paving the way for more effective
management of this challenging disease.

PARP inhibitors

DNA repair deficiencies are common hallmarks of cancer, and poly(-
ADP-ribose) polymerase (PARP) plays a pivotal role in the DNA
repair process. Among various forms of DNA damage, DNA dou-
ble-strand breaks (DSBs) are particularly lethal.108 After treatment
with PARP inhibitors (PARPis), normal cells can still repair DSBs
through homologous recombination repair (HRR). However, in can-
cer cells with homologous recombination deficiency (HRD), such as
those with BRCAmutations, DSBs can only be repaired through alter-
native, error-prone mechanisms such as non-homologous end
joining (NHEJ). This limited DNA repair capacity can ultimately
cause the death of cancer cells.109,110

Olaparib

Olaparib, an oral PARPi, has garnered attention for its role in treating
cancers with DNA repair deficiencies. Studies suggest that the ataxia
telangiectasia mutated (ATM) protein serves as a crucial activator in
the double-strand DNA damage response. Approximately 22% of
metastatic GC patients exhibit low-level ATM expression.111,112

However, the phase III GOLD study did not yield statistically signif-
icant improvements in survival with the addition of olaparib to
paclitaxel, neither in the overall population nor in the ATM-negative
metastatic setting.113 Additionally, studies indicate that individuals
highly sensitive to platinum-based chemotherapy may respond
more favorably to PARPis.114 In addition, research highlights that

http://www.moleculartherapy.org


www.moleculartherapy.org

Review
tumor hypoxia can lead to HRD.115 A phase I trial combining ramu-
cirumab-induced tumor hypoxia with olaparib in treated metastatic
GC/GEJC improved ORR, progression-free survival (PFS), and OS
over historical ramucirumab alone, although outcomes did not
meet expectations.116

IMMUNOTHERAPY
Immune checkpoints act as regulators in the cellular immune
response, exerting a “braking” role to prevent excessive activation
of immune cells. However, some tumors exploit these checkpoints
to evade immune surveillance and attack, leading to immune escape.
ICIs target specific molecules on immune cells or tumor cells, disrupt-
ing the inhibitory signals of immune checkpoints. This interference
helps to reverse the immunosuppressive environment within
tumors, enabling the immune system to recognize and eliminate can-
cer cells. FDA-approved immunotherapies, including inhibitors of
programmed cell death 1 (PD-1) and its ligand (PD-L1), as well as
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) inhibitors,
have demonstrated promising results in cancer treatment by unleash-
ing the ability of immune system to fight cancer.

PD-1/PD-L1-targeted therapies

PD-1, primarily expressed on various immune cells, plays a critical
role in immune regulation by providing a signal to terminate immune
activity upon binding with its ligand.117 Targeting PD-1 has emerged
as a promising approach for cancer treatment.

Nivolumab

Nivolumab is a human anti-PD-1 monoclonal antibody. The results
from the CheckMate 649 trial demonstrated that combining nivolu-
mab with chemotherapy as a first-line treatment for advanced GC/
GEJ adenocarcinoma led to improved mOS at 14.4 months compared
to 11.1 months with chemotherapy alone. Additionally, the combina-
tion therapy showed enhanced mPFS at 7.7 months compared to
6 months with chemotherapy alone, while maintaining manageable
safety profiles.118 In 2021, based on the positive results from the
CheckMate 649 trial, nivolumab gained FDA approval for its use in
combination with fluoropyrimidine and platinum-based chemo-
therapy as a first-line treatment option for patients with advanced
or metastatic GC.37

Clinical trials investigating nivolumab in combination with targeted
therapy are also ongoing. A phase II trial has revealed that adding ni-
volumab to the combination of trastuzumab and chemotherapy as the
initial treatment for HER2-positive esophagogastric adenocarcinoma
(EGA) patients can significantly enhance both PFS and OS.26 This
combination therapy approach has the potential to further improve
outcomes for patients with HER2-positive GC. In 2023, a phase II
clinical trial assessed the efficacy and safety of regorafenib in combi-
nation with nivolumab and FOLFOX (5-fluorouracil, oxaliplatin, and
leucovorin) chemotherapy as a first-line treatment for advanced
esophagogastric adenocarcinoma, demonstrating good anti-tumor
activity (mPFS of 13.0 months) and manageable safety, regardless
of PD-L1 combined positive score (CPS) status.119 These findings un-
derscore the importance of exploring novel combinations of targeted
therapy and immunotherapy to improve outcomes for patients with
advanced GC.

The combination therapy of nivolumab with ipilimumab has also
demonstrated promising activity in advanced GC/GEJC. Despite be-
ing comparable to chemotherapy alone in terms of mOS, the combi-
nation therapy resulted in significantly reduced adverse reactions.27

Currently, for patients with HER2, PD-L1, or CLDN18.2-negative tu-
mors, finding effective treatment options remains a critical challenge.
However, there is hope on the horizon with ongoing research into
combination therapies. One such promising approach involves
combining nivolumab with lenvatinib and chemotherapy. This com-
bination therapy is currently being investigated in phase III clinical
trials (NCT04662710), offering a potential avenue for improving out-
comes for patients with advanced GC/GEJ cancer who do not respond
to traditional targeted therapies.

Pembrolizumab

Pembrolizumab is a humanized PD-1 monoclonal antibody that is
distinct from nivolumab. Its efficacy is particularly notable in tu-
mors that exhibit PD-L1 positivity. Additionally, studies have
highlighted the potential benefits of pembrolizumab treatment
for patients with microsatellite instability-high (MSI-H) GC.
MSI-H status has emerged as a promising biomarker for identi-
fying patients who may derive greater benefit from pembrolizumab
therapy in the context of advanced GC/GEJ adenocarcinoma. The
toxicity profile of pembrolizumab does not significantly overlap
with the standard GC chemotherapy regimens, thus suggesting a
potential for good tolerability when combined with chemo-
therapy.28,120,121 In 2023, the phase III KEYNOTE-859 trial exam-
ined the effectiveness of pembrolizumab combined with chemo-
therapy as a first-line treatment for GC/GEJ adenocarcinoma.
The results indicated a significant improvement in mOS for the
pembrolizumab group compared to chemotherapy alone (12.9 vs.
11.9 months), with manageable safety profiles.30 This underscores
the potential of pembrolizumab to enhance treatment outcomes
when used in combination therapy for GC, while also maintaining
manageable safety profiles. Following the positive outcomes
observed in the KEYNOTE-859 trial, the FDA granted approval
to pembrolizumab in November 2023. This approval allows for
the use of pembrolizumab in combination with chemotherapy as
a first-line treatment option for patients diagnosed with advanced
GC/GEJ adenocarcinoma.

The combination of pembrolizumab with targeted therapy is also be-
ing explored. According to the third interim analysis of the phase III
KEYNOTE-811 trial, the addition of pembrolizumab to the trastuzu-
mab and chemotherapy regimen resulted in a notable improvement
in mOS (20.0 vs. 16.8 months). This enhancement was particularly
significant among patients with positive PD-L1 expression.31 In sum-
mary, the combination of pembrolizumab with targeted therapy and
chemotherapy presents promising prospects.
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Tislelizumab, sintilimab, sugemalimab

Other PD-1 monoclonal antibodies, including tislelizumab and sinti-
limab, have achieved promising efficacy in the treatment of GC. The
RATIONALE 305 and ORIENT-16 trials evaluated the efficacy of ti-
slelizumab or sintilimab in combination with chemotherapy as a first-
line treatment for advanced GC, with satisfactory results.33,32 Based
on data from these studies, tislelizumab and sintilimab have both
been CSCO approved in combination with chemotherapy as one of
the first-line treatment options for advanced GC, particularly benefi-
cial for HER2-negative patients. Sugemalimab is a PD-L1monoclonal
antibody. The GEMSTONE-303 trial demonstrated that combining
sugemalimab with the CAPOX chemotherapy regimen significantly
increased the ORR to 68.6%, highlighting the potential of PD-L1
monoclonal antibodies in the treatment of GC.34

AK104

AK104 (also known as cadonilimab) is a bispecific antibody that targets
both PD-1 and CTLA-4. Ongoing clinical trials aim to assess the effec-
tiveness and safety of AK104 when combined with mXELOX/XELOX
chemotherapy regimens (capecitabine and oxaliplatin) as a first-line
treatment for advanced GC/GEJ adenocarcinoma (NCT03852251).
Although results from these trials are pending, there is anecdotal evi-
dence of a patient with HER-2-positive advanced GEJ cancer achieving
complete remission following treatment with PD-1/CTLA-4 bispecific
immunotherapy in combination with chemotherapy.122 This case un-
derscores the potential clinical advantages of this strategy, indicating
its viability as a first-line treatment option for HER-2-positive patients.
However, substantial clinical trials are necessary to corroborate these
observations. Currently, a phase III clinical trial investigating AK104
as a first-line treatment for advanced GC/GEJ adenocarcinoma is in
progress (NCT05008783). In addition, there are limited treatment op-
tions for second-line therapy inGC/GEJCpatientswhohaveprogressed
following immunotherapy combined with chemotherapy. A phase III
study (NCT06341335) is evaluating the efficacy of AK104 in combina-
tion with pulocimab (a VEGFR2 monoclonal antibody) and paclitaxel
in treating GC/GEJC adenocarcinoma patients who have failed immu-
notherapy and chemotherapy. According to data presented at the
American Society of Clinical Oncology (ASCO) 2024 conference, the
ORR and DCR showed improvement compared to the placebo group
(pulocimab and paclitaxel), suggesting that AK104 may be a potential
treatment option to overcome resistance to immunotherapy.123
CTLA4-targeted therapies

CTLA-4 plays a crucial role in regulating T cell activation by binding
to its ligands. It operates in conjunction with CD28, a costimulatory
molecule involved in T cell activation, to maintain immune homeo-
stasis. When CTLA-4 is upregulated, it suppresses the expression of
interleukin-2 (IL-2) and IL-2 receptors, causing T cell arrest in the
G1 phase of the cell cycle. Inhibitors of CTLA-4 block its interaction
with ligands, thereby diminishing its inhibitory function on T cells.
Moreover, since both CTLA-4 and CD28 share ligands CD80 and
CD86, inhibiting CTLA-4 not only reduces its suppressive effects
but also increases the availability of CD28 ligands. This dual action
10 Molecular Therapy: Oncology Vol. 32 September 2024
activates autoreactive T cells and alters the homeostasis of regulatory
T cells (Tregs).124

Ipilimumab

Ipilimumab is a fully human anti-CTLA-4 monoclonal antibody. A
phase II clinical trial (CheckMate-032) evaluated the efficacy and
safety of the combination of ipilimumab and nivolumab in the treat-
ment of metastatic esophagogastric cancer (EGC). The results re-
vealed that the combination of ipilimumab and nivolumab achieved
an mOS of 6.9 months with an ORR of up to 24%. These findings sug-
gest that the ipilimumab and nivolumab combination exhibits signif-
icant anti-tumor activity and manageable safety in refractory EGC
cases.125 A phase III clinical trial is currently in progress for the treat-
ment of HER2-negative advanced GC using a combination of nivolu-
mab, ipilimumab, and chemotherapy (NCT05144854).

LAG-3-targeted therapies

Lymphocyte activation gene-3 (LAG-3), also referred to as CD223, is
an immune checkpoint molecule primarily found on T lymphocytes.
It exerts a negative regulatory effect on T cell activity by interacting
with its ligand, and its expression is linked to tumor progression.126

The expression of LAG-3 extends to a variety of solid tumors,
including GC, making it a potential target for cancer therapy.

Relatlimab

Relatlimab, a monoclonal antibody targeting LAG-3, has demon-
strated efficacy and safety in the treatment of melanoma.127 However,
its efficacy in GC is yet to be established, prompting the launch of a
phase II clinical trial. This trial aims to evaluate the potential advan-
tages of relatlimab in combination with nivolumab as a frontline ther-
apy for patients with GC/GEJ cancer and is currently ongoing
(NCT03662659).

TIGIT-targeted therapies

T cell immunoreceptor with immunoglobulin and immunoreceptor
tyrosine-based inhibitory motif domains (TIGIT) is an immune
checkpoint expressed on lymphocytes.128 Its interaction with ligands
triggers signaling pathways that affect immune cell function. Addi-
tionally, TIGIT suppresses T cell costimulatory signals mediated by
CD226 or CD96, exerting an immunosuppressive effect.129 Studies
indicate that TIGIT is upregulated in various solid tumors, including
GC, and its elevated expression is linked to poorer prognosis in pa-
tients with advanced GC.130,131

Tiragolumab

Monoclonal antibodies aimed at TIGIT have proved effective in rein-
stating T cell function and exhibiting anticancer properties. Tiragolu-
mab, in particular, emerges as a potent TIGIT inhibitor, as shown by
the CITYSCAPE trial, which demonstrated its favorable therapeutic
outcomes when paired with the PD-L1 antibody atezolizumab in
non-small cell lung cancer. Furthermore, tiragolumab has shown
the ability to bolster the efficacy of atezolizumab.132 The combination
of tiragolumab and atezolizumab (a PD-L1 monoclonal antibody)
holds promise as a potentially effective treatment approach.
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Currently, a phase II clinical trial is in progress to explore the efficacy
of tiragolumab in combination with atezolizumab and chemotherapy
for advanced GC (NCT04933227).

Neoadjuvant treatment

Immunotherapy is revolutionizing the approach to neoadjuvant
treatment for locally advanced GC, introducing a novel strategy to
improve outcomes. While the chemotherapy-focused CROSS trial
observed a pathologic complete response (pCR) rate of 23%, recent
years have seen a significant increase in clinical research exploring
the combined use of immunotherapy and chemoradiation for treating
locally advanced GC in the neoadjuvant setting. These studies have
produced promising results, summarized succinctly in Table 3. Clin-
ical investigations demonstrate that combining immunotherapy with
chemotherapy offers substantial benefits in treating GC/GEJC,
notably enhancing rates of pCR and major pathological response
(MPR). However, standalone immunotherapy as a neoadjuvant treat-
ment appears to be less effective. Although this combination may
result in higher rates of adverse reactions, the use of biomarkers to
select patients can optimize benefits. Notably, pembrolizumab shows
promising outcomes in MSI-H patients, with higher PD-L1 CPS and
plasma PD-L1-expressing extracellular vesicles correlating with
improved pCR outcomes133–136 Table 2 provides a comprehensive
summary of clinical trials pertaining to neoadjuvant immunotherapy
in the context of GC/GEJC.

TME-TARGETED THERAPY
The TME is a complex and integrated system consisting predomi-
nantly of diverse immune cells, cancer-associated fibroblasts
(CAFs), endothelial cells, stromal cells, and the extracellular matrix
(ECM). In the past, the TME was mainly considered as a bystander
in tumor development, but an increasing body of research has re-
vealed the pivotal role of the TME in tumor initiation, progression,
and metastasis.140

Targeting CAFs

CAFs constitute a crucial component of the TME, exerting significant
influence on tumor growth, invasion, and metastasis.141 Glypican-3
(GPC3), a member of the heparan sulfate proteoglycan family, is
anchored to the cell membrane through phosphatidylinositol. Inter-
estingly, studies have revealed high expression of GPC3 in both
CAFs and hepatoid adenocarcinoma of the stomach (HAS). High
GPC3 expression in CAFs is associated with GC progression and
poor prognosis. Moreover, GC with high GPC3-expressing CAFs
display insensitivity to in vivo PD-1 blockade therapy.142,143 Downre-
gulating GPC3 expression in GC has shown promise in inhibiting tu-
mor metastasis, altering the tumor immune microenvironment, and
improving the efficacy of PD-1 blockade therapy. Thus, GPC3
emerges as a promising target in the treatment of GC.

Targeting TAMs

Tumor-associated macrophages (TAMs) are pivotal immune cells
present within the TME, playing a central role in cancer-related inflam-
matory responses.144 Current strategies primarily focus on depleting
TAMs or shifting their phenotype from M2 to M1. The colony-stimu-
lating factor 1 (CSF-1)/CSF-1 receptor (CSF-1R) pathway plays a sig-
nificant role in the transformation of TAMs from the M1 phenotype
to the M2 phenotype.145 Inhibiting TAMs directly by blocking CSF-
1/CSF-1R signaling is a promising therapeutic method. Several clinical
trials are underway, evaluating monoclonal antibodies and tyrosine ki-
nase inhibitors targeting CSF-1/CSF-1R at various stages. Additionally,
tumor cells can recruit monocytes expressing the CCR2 receptor to the
tumor site by releasing CCL2. Elevated CCL2 levels are linked with un-
favorable outcomes in different cancers. Targeting the CCL2-CCR2
axis presents another innovative strategy for inhibiting TAMs.

Targeting the ECM

The ECM is composed of various proteins and interacts with cells to
transmit extracellular signals that can alter cellular phenotypes.146,147

The remodelingof theECMcan induce alterations in themicroenviron-
ment, thereby fostering cancer progression and metastasis.148 The E26
transformation-specific (ETS) transcription factor ELK3 plays a pivotal
role in regulating the expression of genes related to ECM remodeling,
facilitating the dissemination of cancer cells.149 Furthermore, ELK3 is
highly expressed in GC patients and is associated with poor prog-
nosis.149 Thus, ELK3 represents a potential target for GC therapy.

EPIGENETIC-TARGETED THERAPY
Cancer is characterized by widespread changes in epigenetic modifi-
cations, which play a crucial role in the transformation of normal cells
into malignant ones. These alterations involve various epigenetic pro-
cesses, notably DNA methylation, histone modifications, and RNA
regulation. Dysregulation in these processes contributes significantly
to the development and progression of cancer.150

DNA methyltransferase inhibitors

The methylation status of the genome is primarily regulated by DNA
methyltransferase (DNMT) and DNA demethylases.151 Moreover,
prior studies have highlighted that aberrations in DNMT status are
linked with tumorigenesis.152 Excessive and abnormal activation of
DNMTs can result in the silencing or inactivation of tumor-suppres-
sor genes (TSGs), ultimately promoting the development of GC.
Therefore, DNMT represents a potential target for GC treatment.

5-Azacitidine (Vidaza) is a cytidine analog that can reduce DNMT1
levels within cells, thereby inhibiting DNA methylation. In a phase
I clinical study, preliminary evidence indicated that incorporating
5-azacitidine into neoadjuvant epirubicin, oxaliplatin, and capecita-
bine (EOX) therapy for locally advanced resectable esophageal/gastric
adenocarcinoma (GAC) could potentially augment the efficacy of
chemotherapy. Moreover, this treatment regimen demonstrated
good tolerability among patients.153

Histone modification inhibitors

LSD1 inhibitors

Histone lysine specific demethylase 1 (LSD1), also referred to as
KDM1A, plays a pivotal role in regulating gene expression by cata-
lyzing the demethylation of H3K4me1/2 and H3K9me1/2.154,155
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Table 2. Clinical trials of neoadjuvant therapy for GC/GEJC

Year Drugs Co-drugs NCT number (phase)
Patient
number Experimental vs. controlling Clinical validity (month)

Grade 3/4
TRAE
incidence Reference

2024 pembrolizumab
cisplatin-based
chemotherapy

NCT03221426 (III) 804
pembrolizumab +
chemotherapy (402) vs.
placebo + chemotherapy (402)

mPFSa: 44.4 vs. 25.3
mOSa: 60.7 vs. 58.0
R0a: 80% vs. 75%

78% vs. 74% Shitara et al.134

2022 pembrolizumab chemoradiotherapy NCT02730546 (Ib/II) 31
pembrolizumab +
chemoradiotherapy (31)

pCR: 22.6%
R0: 90.3%

54.8% Zhu et al.133

2024 camrelizumab apatinib + SOX NCT03878472 (II) 25
camrelizumab + apatinib +
SOX (25)

pCR: 15.8%
MPR: 26.3%
R0: 82.6%

8% Li et al.136

2023 camrelizumab ramucirumab + SOX NCT04208347 (III) 360 SOXRC (180) vs. SOX (180)
pCR: 18.3% vs. 5.0%
MPR:51.1% vs. 37.8%
R0: 98.7% vs. 94.2%

36.3% vs.
16.3%

Li et al.137

2022 camrelizumab chemoradiotherapy NCT03631615 (II) 36
camrelizumab +
chemoradiotherapy (31)

pCR: 33.3%
MPR: 44.4%
R0: 91.7%

77.8% Tang et al.138

2022 nivolumab – JapicCTI-183895 (I) 31 nivolumab (31)
pCR: 3.2%
MPR: 16.7%
R0: 90%

29%
Janjigian
et al.27

2023 sintilimab
radiotherapy + S-1
and nab-paclitaxel

ChiCTR1900024428
(II)

34
sintilimab + radiotherapy +
S-1 and nab-paclitaxel (34)

pCR: 18.3%
mDFS: 17.0%
mEFS: 21.1%

50% Wei et al.139

2024 toripalimab SOX/XELOX NCT04250948 (II) 108
toripalimab + SOX/XELOX
(54) vs. SOX/XELOX (54)

pCR: 22.2% vs. 7.4%
MPR:44.4% vs. 20.4%
R0: 92.6% vs. 94.4%

35.2% vs.
29.6%

Yuan et al.135

aNo statistical difference.
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Additionally, it demethylates non-histone proteins, such as p53 and
DNA methyltransferase 1 (DNMT1).156,157 LSD1 is overexpressed
in various cancer types, including GC, and promotes tumor growth
and immune evasion through multiple mechanisms.158–160 Interest-
ingly, LSD1 can suppress the immunogenicity of tumor cells, facili-
tating immune escape immune escape.161,162 LSD1 can also impede
the migration, infiltration, and cytotoxicity of CD8+ T cells as well
as the polarization of M1 macrophages.163–166 Studies have demon-
strated that LSD1 inhibitors not only inhibit the tumor growth but
also activate and enhance the immune response. This suggests their
potential as adjunct therapies to PD-1 ICIs.162,167 Therefore, LSD1
can emerge as a highly promising target for GC treatment.

HDAC inhibitors

Histone deacetylases (HDACs) constitute a class of enzymes capable
of removing acetyl groups from lysine residues, thereby regulating the
structure and function of histones and chromatin, ultimately control-
ling DNA expression.168 Research indicates that HDAC overexpres-
sion is common across various cancer types. HDACs can induce
deacetylation of both histone and non-histone proteins, leading to
functional impairment and playing a pivotal role in cancer progres-
sion.169 HDAC inhibitors (HDACis) have the potential to restore
the acetylation equilibrium within cells, thereby reinstating the
normal expression and function of various proteins. This ability im-
pedes tumor development and progression. Vorinostat, an orally
administered HDACi, was subject to evaluation in a phase II clinical
12 Molecular Therapy: Oncology Vol. 32 September 2024
trial assessing its efficacy when combined with the XP chemotherapy
regimen in advanced GC patients. The trial outcomes indicated that,
in comparison to historical data from patients solely treated with the
XP chemotherapy regimen, the addition of vorinostat did not signif-
icantly enhance patient prognosis. Moreover, the combination ther-
apy was associated with increased toxicity levels.170

Tucidinostat, also known as chidamide, is a selective inhibitor of
HDACs that specifically target HDAC1, HDAC2, HDAC3, and
HDAC10. Despite lacking clinical evidence supporting its application
in GC treatment, ongoing clinical trials are investigating its efficacy.
Specifically, a clinical trial (NCT05163483) is currently underway to
explore the potential of tucidinostat when administered in combina-
tion with a PD-1 inhibitor and bevacizumab for the treatment of
advanced GC/GEJ cancer.

ncRNA inhibitors

Numerous studies have indicated that high expression of oncogenic
non-coding RNAs (ncRNAs) plays a crucial role in the development
of many cancers, including GC.171,172 Targeting these oncogenic
ncRNAs to suppress their expression emerges as a potential therapeu-
tic strategy in GC treatment. Small interfering RNA (siRNA) stands
out as a promising method for downregulating ncRNA expression.
By precisely binding to the corresponding mRNA through base pair-
ing, siRNA achieves specific inhibition of oncogenic ncRNAs. Addi-
tionally, antisense oligonucleotides (ASOs) and miRNA sponges
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represent alternative approaches for inhibiting ncRNAs.173 Despite
these promising avenues, methods for targeting ncRNAs in GC treat-
ment have not yet undergone clinical validation.

CSC TARGETED THERAPY
An increasing body of research indicates that cancer stem cells (CSCs)
are associated with tumor initiation, recurrence, and metastasis. CSCs
typically arise from non-malignant stem or progenitor cells. Several
signaling pathways, including Notch, WNT, Hedgehog, and Hippo
cascades, are intimately linked to stem cell homeostasis and func-
tion.174 The involvement of these pathways in CSC regulation offers
novel opportunities for cancer treatment strategies.

Targeting the Notch signaling pathway

The Notch signaling pathway is one of the pathways associated with
cancer initiation most frequently disrupted. It plays a role in various
biological features of cancers, including CSC phenotypes, angiogenesis,
metastasis, and tumor immune evasion.175 Dysregulation of Notch is
also linked to resistance to multiple drugs. Approaches to modulate
Notch pathway activity encompass both chemical and immune target-
ing of NOTCH receptors, Delta ligands, and g-secretase.176–178 Despite
its significant role in cancer, research regarding the involvement of the
Notch pathway in GC treatment remains limited.

Targeting the Wnt/b-catenin signaling pathway

The Wnt-b-catenin pathway plays a crucial role in regulating cell pro-
liferation, differentiation,maintenance of gastric epithelial homeostasis,
and maintaining the pluripotency of adult stem cells.179 Aberrant acti-
vation of theWnt/b-catenin pathway contributes to themaintenance of
CSC properties, thus contributing to tumor development and progres-
sion.180 Given that over half of GC patients show dysregulated Wnt/
b-catenin signaling,181–183 targeting this pathway holds promise for
the treatment of GC.

ETC-159

ETC-159, an oral inhibitor of porcupine homolog (PORCN), can effec-
tively suppress b-catenin gene activity, thereby inhibiting Wnt/b-cate-
nin signaling. Ongoing clinical trials are assessing the safety and toler-
ability of ETC-159 as a monotherapy and in combination with
pembrolizumab for the treatment of advanced solid tumors
(NCT02521844).

DKN-01

DKN-01, a humanized IgG4 monoclonal antibody, functions by tar-
geting the secreted protein Dickkopf-1 (DKK1) to block the Wnt/
b-catenin signaling pathway. Studies have shown that treatment
with DKN-01 results in an increase in PD-L1 expression in myeloid-
derived suppressor cells (MDSCs).184 As a result, a phase IB clinical
study was conducted to evaluate the efficacy and safety of combining
DKN-01 with pembrolizumab in the context of GC/GEJ cancer. The
resultswere highly promising, particularlywithin the subset of patients
exhibiting high DKK1 expression.185 The treatment demonstrated
notable anti-tumor effects and maintained manageable safety profiles,
highlighting the promise of combining DKK1 and PD-1 monoclonal
antibodies. Additionally, a phase II clinical trial (NCT04363801) is
currently underway, exploring the potential of DKN-01 in combina-
tion with tislelizumab and chemotherapy as a treatment option for
advanced GC/GEJ cancer, whether in the first- or second-line setting.

Targeting the Hedgehog signaling pathway

The Hedgehog signaling pathway plays a critical role in tissue regener-
ation, immune regulation, and organ development.186 Dysregulation of
the Hedgehog pathway can lead to excessive tissue growth, contrib-
uting to tumor development. There is evidence suggesting a connection
between disruptions in the Hedgehog pathway and the onset and pro-
gression of GC.187 Vismodegib (GDC-0449), a Smoothened (SMO) in-
hibitor, has been approved by the FDA for the treatment of advanced
basal cell carcinoma and acts by inhibiting Hedgehog signaling.188

However, clinical trials exploring its efficacy in GC (NCT00982592)
have not yielded satisfactory results. Taladegib (ENV-101), another
SMO inhibitor, is currently undergoing phase II clinical research to
evaluate its safety and effectiveness in advanced solid tumor patients
harboring PTCH1 loss-of-function mutations (NCT05199584).

Targeting the Hippo signaling pathway

The Hippo signaling pathway is crucial for tissue regeneration, im-
mune responses, and organ development.When this pathway becomes
dysregulated, it can result in uncontrolled tissue growth and the devel-
opment of tumors. The keymediators of Hippo pathway effects include
the transcriptional effectors yes-associated protein (YAP1) and TAZ,
which regulate gene expression by modulating the activity of the tran-
scriptional enhancer factor TEF-1 (TEAD) transcription factor fam-
ily.189 Elevated expression of YAP1 has been reported in both esopha-
geal cancer (EC) and GC tissues, where it contributes to tumor
development and resistance to chemotherapy.190–194 The overexpres-
sion of YAP1 is an adverse prognostic indicator in GC.195 Approxi-
mately 45% of advanced GAC patients experience peritoneal carcino-
matosis (PC), which is associated with poor prognosis. Recent
studies have revealed high levels of YAP1 expression in PC tumor cells,
imparting them with characteristics of CSCs. YAP1 appears to play a
pivotal role in the peritoneal dissemination of GC.196 This evidence
suggests that YAP1 is a promising target for GC treatment. Verteporfin,
typically used as a photosensitizer in photodynamic therapy, also func-
tions as a YAP inhibitor. It works by disrupting YAP activity, thereby
interfering with the interaction between YAP and TEAD and conse-
quently blocking the inhibition of Hippo pathway signaling. Interest-
ingly, preclinical studies have demonstrated that verteporfin can reduce
the tumorigenic properties of gastric CSCs and inhibit tumor growth in
patient-derived xenograft models.197 These findings highlight targeting
YAP1 as a potential strategy for treating GC. However, further clinical
trials are necessary to validate its efficacy in GC patients.

Conclusions

This article provides an overview of drugs used for GC targeted
therapies and immunotherapies, as depicted in Figure 2. We have also
compiled a summary of ongoing key clinical trials for targeted and im-
munotherapies, alongwith the current application status of various tar-
geted therapy strategies for GC/GEJC, as delineated in Tables 3 and 4.
Molecular Therapy: Oncology Vol. 32 September 2024 13
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Figure 2. Overview of GC/GEJC targeted therapies and immunotherapy drugs
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At present, targeted and immune therapies represent the forefront of
GC treatment, offering promising prospects for patient survival in clin-
ical settings. However, GC, marked by its heterogeneity and intricate
mechanisms, involves multiple pathways influencing its progression.
Unfortunately, the existing repertoire of targets and drugs falls short
in meeting the therapeutic needs for GC comprehensively. There is
an urgent need for the development of additional therapeutic targets
to enhance specificity and ensure a wider range of GC patients can
benefit. Overcoming resistance to targeted and immune therapies re-
quires in-depth research into the underlying resistance mechanisms,
enabling proactive counteraction or prevention. Moreover, the signif-
icant challenge of adverse reactions associated with targeted and im-
mune therapies looms large. Many of these adverse reactions stem
fromoff-target effects. Consequently, there is a dual imperative: invest-
ment in drug development to produce medications with minimal side
effects andmaximal efficacy, and intensified fundamental research into
tumor-specific antigens (TSAs).

Additionally, the combination of targeted therapy with chemotherapy
or targeted and immune therapies has displayed promising anti-tu-
14 Molecular Therapy: Oncology Vol. 32 September 2024
mor effects in GC treatment. Evaluating the efficacy and safety of
diverse treatment combinations holds paramount importance in the
current landscape of GC treatment. Simultaneous targeting of multi-
ple pathways emerges as a promising approach for GC treatment.
Given the complexities of tumor development, multi-targeted treat-
ments often yield superior outcomes, as shown by commercially
available multi-kinase inhibitors such as sorafenib and regorafenib.
Moreover, bispecific antibodies such as KN026 and givastomig have
shown significant efficacy in GC treatment. The success of CAR-T
cell therapy in hematological malignancies has provided valuable in-
sights for GC treatment. With ongoing research into CAR-T cell ther-
apy for solid tumors, a new era of cancer treatment has dawned. We
are confident that the continuous discovery of novel treatment targets
will lead to a growing array of highly effective targeted therapies for
GC, ultimately triumphing over this deadly disease.
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Table 3. Current significant clinical trials for GC/GEJC

NCT number Study title Related drugs
Primary outcome
measures Phases Enrollment

Study design (allocation,
intervention model,
masking, primary purpose) Start date

NCT04704934

Trastuzumab Deruxtecan for Subjects With
HER2-Positive Gastric Cancer or Gastro-
Esophageal Junction Adenocarcinoma After
Progression on or After a Trastuzumab-
Containing Regimen (DESTINY-Gastric04)

trastuzumab-deruxtecan OS 3 490

randomized
parallel
none
treatment

2021/5/21

NCT05980481
A Study of RC48-ADC Combination Therapies as
First-line Treatment in Advanced Metastatic
Gastric Cancer

RC48-ADC safety (adverse event) 2, 3 60

randomized
parallel
none
treatment

2023/8/30

NCT04714190
A Study of RC48-ADC in Local Advanced or
Metastatic Gastric Cancer With the HER2-
Overexpression

RC48-ADC OS 2, 3 351

randomized
parallel
none
treatment

202one-third/24

NCT05427383
KN026 in Combination With Chemotherapy in
the Second Line Treatment of HER-2 Positive
Advanced or Metastatic Gastric Cancer

KN026 PFS,OS 2, 3 286

randomized
parallel
single
treatment

2022/4/7

NCT03889626
The Maintenance Treatment of Apatinib/
Capecitabine Versus Observation in Advanced
Gastric Cancer

apatinib PFS 3 242

randomized
parallel
none
treatment

2019/3/22

NCT04385550

A Study of Anlotinib Hydrochloride Capsule
Combined With AK105 Injection in Subject With
Advanced Gastric and Gastro-oesophageal
Junction Adenocarcinoma

anlotinib OS 3 528

randomized
parallel
none
treatment

2020/5/20

NCT04879368
RegoNivo vs. Standard of Care Chemotherapy in
AGOC

regorafenib OS 3 450

randomized
parallel
none
treatment

2021/6/1

NCT05620628
Ph2 Study of Savolitinib and Durvalumab
(MEDI4736) Combination in Advanced MET
Amplified Gastric Cancer (VIKTORY-2)

savolitinib (volitinib) PFS, OS 2 25

randomized
single group
none
treatment

2023/1/5

NCT04923932
Savolitinib for Treating Gastric Cancer and
Esophagogastric Junction Adenocarcinoma
Patients

savolitinib (volitinib) ORR, PFS, AE 2 75

randomized
single group
none
treatment

2021/7/27

NCT05322577

A Study Evaluating Bemarituzumab in
Combination With Other Anti-cancer Therapies
in Subjects With Previously Untreated Advanced
Gastric or Gastroesophageal Junction Cancer

bemarituzumab DLT, TEAE, OR 1 80

NA
sequential assignment
none
basic science

2022/5/17

NCT05052801
Bemarituzumab or Placebo Plus Chemotherapy in
Gastric Cancers With Fibroblast Growth Factor
Receptor 2b (FGFR2b) Overexpression

bemarituzumab OS 3 516

randomized
parallel
double
treatment

2022/3/7

(Continued on next page)
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Table 3. Continued

NCT number Study title Related drugs
Primary outcome
measures Phases Enrollment

Study design (allocation,
intervention model,
masking, primary purpose) Start date

NCT05111626

Bemarituzumab Plus Chemotherapy and
Nivolumab Versus Chemotherapy and Nivolumab
for FGFR2b Overexpressed Untreated Advanced
Gastric and Gastroesophageal Junction Cancer

bemarituzumab OS 3 528

randomized
parallel
double
treatment

2022/3/14

EudraCT 2017-004522-14

A phase II trial of the FGFR inhibitor INCB054828
in patients with advanced esophageal-gastric
junction (EGJ)/Gastric cancer trastuzumab
Resistant: the FiGhTeR trial

pemigatinib PFS-12w 2 –

NA
single group
none
treatment

2019/01/30

NCT05997459

A Single Arm, Phase II Exploratory Clinical Study
of Pemitinib in Advanced Gastric Cancer With
Previous Standard Therapy Failure the FGFR
Variant

pemigatinib PFS 2 23

randomized
single group
none
treatment

2023/8/25

NCT05019794

A Phase IIa of Infigratinib in Subjects With Locally
Advanced or Metastatic Gastric Cancer or
Gastroesophageal Junction Adenocarcinoma With
FGFR2 Amplification or Other Advanced Solid
Tumors With Other FGFR Alterations

infigratinib ORR 2 80

NA
parallel
none
treatment

2020/05/13

NCT04581473
Study to Evaluate the Efficacy, Safety and
Pharmacokinetics of CT041 Autologous CAR
T-cell Injection

CT041
incidence of TEAEs,
MTD, PFS

1, 2 192

randomized
parallel
none
treatment

2020/10/23

NCT04900818
Study of TJ033721 in Subjects With Advanced or
Metastatic Solid Tumors

TJ033721 (givastomig)
DLTs, severity of
AEs, MTD, MAD

1 102

NA
sequential
none
treatment

2021/6/29

NCT06093425

A Phase 3, Randomized, Double-blind, Placebo-
controlled Study Evaluating Combination of
TST001, Nivolumab and Chemotherapy as First-
Line Treatment in Subjects With Claudin18.2
Positive Locally Advanced or Metastatic Gastric or
Gastroesophageal Junction (Gastric/GEJ)
Adenocarcinoma

TST001 (osemitamab) PFS 3 950

randomized
parallel
single
treatment

2023/10/31

NCT04495296

A Phase I/IIa Clinical Study to Evaluate the Safety,
Tolerability, Pharmacokinetics and Preliminary
Efficacy of TST001 - Claudin18.2 Monoclonal
Antibody in the Treatment of Locally Advanced or
Metastatic Solid Tumors

TST001 (osemitamab)
DLTs, severity of AEs,
MTD, RP2D, MAD

1/2a 320

NA
parallel
none
treatment

2020/08/13

NCT04868877

A Phase 1/2 Study Evaluating MCLA-129, a
Human Anti-EGFR and Anti-c-MET Bispecific
Antibody, in Patients With Advanced NSCLC and
Other Solid Tumors

MCLA-129 MTD, RP2D, ORR 1, 2 380

NA
parallel
none
treatment

2021/4/28

NCT05144854

A Study to Evaluate the Efficacy and Safety of
ONO-4538 in Combination With Ipilimumab and
Chemotherapy in Chemotherapy-naïve
Participants With HER2-negative Unresectable

nivolumab OS 3 626

randomized
parallel
none
treatment

2021/11/5
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Table 3. Continued

NCT number Study title Related drugs
Primary outcome
measures Phases Enrollment

Study design (allocation,
intervention model,
masking, primary purpose) Start date

Advanced or Recurrent Gastric Cancer (Including
Esophagogastric Junction Cancer)

NCT04662710

Efficacy and Safety of Lenvatinib (E7080/MK-
7902) Plus Pembrolizumab (MK-3475) Plus
Chemotherapy in Participants With Advanced/
Metastatic Gastroesophageal Adenocarcinoma
(MK-7902-015/E7080-G000-321/LEAP-015)

pembrolizumab PFS, OS 3 890

randomized
parallel
none
treatment

2020/12/30

NCT05008783
A Study of AK104 in the First-line Treatment of
Locally Advanced Unresectable or Metastatic
G/GEJ Adenocarcinoma

AK104 OS 3 588

randomized
parallel
quadruple
treatment

2021/9/17

NCT06341335
A Study of AK104/Placebo Plus AK109/Placebo
And Paclitaxel in Gastric or Gastroesophageal
Junction Adenocarcinoma

AK104 PFS, OS 3 506

randomized
parallel
quadruple
treatment

2024/06/19

NCT04923932
Savolitinib for Treating Gastric Cancer and
Esophagogastric Junction Adenocarcinoma
Patients

savolitinib ORR 2 75

NA
single group
none
treatment

2021/7/27

NCT05640609
Capeox Regimen Combined With Sintilimab and
Bevacizumab for Gastric Cancer

sintilimab appropriate dose, ORR 1, 2 57

NA
single group
none
treatment

2023/3/10

NCT05152147

A Study of Zanidatamab in Combination With
Chemotherapy Plus or Minus Tislelizumab in
Patients With HER2-positive Advanced or
Metastatic Gastric and Esophageal Cancers

tislelizumab PFS, OS 3 714

randomized
parallel
none
treatment.

2021/12/2

NCT04843709
A Study of MRG004A in Patients With Tissue
Factor Positive Advanced or Metastatic Solid
Tumors

MRG004A MTD, RP2D, AEs, ORR 1, 2 181

NA
single group
none
treatment

2021/7/26

NCT05163483
Tucidinostat Plus PD-1 Inhibitor and
Bevacizumab for Advanced Esophagus Cancer,
AEG, Gastric Cancer

tucidinostat ORR 2 87

NA
single group
none
treatment

2022/7/1

NCT05007106
MK-7684A With or Without Other Anticancer
Therapies in Participants With Selected Solid
Tumors (MK-7684A-005) (KEYVIBE-005)

vibostolimab ORR, PFS 2 610

randomized
parallel
none
treatment

2021/9/16
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Table 4. Current status of different targeted therapy strategies for GC/

GEJC

Targets Drug Status
Approved for
GC/GEJC

HER2

trastuzumab clinically applied
FDA, EMA,
NMPA

trastuzumab-
deruxtecan

clinically applied FDA, EMA

disitamab vedotin clinically applied NMPA

trastuzumab-
emtansine

clinical trial phase 3 –

KN026 clinical trial phase 3 –

VEGF/VEGFR

ramucirumab clinically applied
FDA, EMA,
NMPA

apatinib clinically applied NMPA

anlotinib clinical trial phase 3 –

lenvatinib clinical trial phase 2 –

regorafenib clinical trial phase 3 –

HGF/c-Met

rilotumumab no Active Trials –

volitinib clinical trial phase 2 –

MCLA-129 clinical trial phase 2 –

mTOR everolimus no Active Trials –

FGF/FGFR2
bemarituzumab clinical trial phase 3 –

pemigatinib clinical trial phase 2 –

TF tisotumab vedotin preclinical –

CLDN18.2

zolbetuximab clinical trial phase 3 –

osemitamab clinical trial phase 3 –

givastomig clinical trial phase 1 –

CT041 clinical trial phase 2 –

PARP olaparib clinical trial phase 2 –

PD-1/PD-L1

nivolumab clinically applied
FDA, EMA,
NMPA

pembrolizumab clinically applied
FDA, EMA,
NMPA

sintilimab clinically applied NMPA

tislelizumab clinically applied NMPA

dostarlimab clinically applied FDA

camrelizumab clinical trial phase 3 –

toripalimab clinical trial phase 2 –

sugemalimab clinical trial phase 3 –

AK104 clinical trial phase 3 –

CTLA4 ipilimumab clinical trial phase 3 –

LAG-3 relatlimab clinical trial phase 1 –

TIGIT tiragolumab clinical trial phase 2 –

Epigenetics

5-azacitidine
(Vidaza)

no active trials –

vorinostat no active trials –

tucidinostat
(chidamide)

clinical trial phase 2 –

(Continued)

Table 4. Continued

Targets Drug Status
Approved for
GC/GEJC

CSC

ETC-159 clinical trial phase 1 –

DKN-01 clinical trial phase 2 –

taladegib clinical trial phase 2 –

TME – laboratory –
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