Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 9086060, 10 pages
https://doi.org/10.1155/2022/9086060

Research Article

Classification of Multiclass Histopathological Breast Images Using

Residual Deep Learning

Mohamed Meselhy Eltoukhy (,' Khalid M. Hosny (), and Mohamed A. Kassem (©*

'Department of Information Technology, College of Computing and Information Technology at Khulais, University of Jeddah,

Jeddah 21959, Saudi Arabia

Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt
Department of Robotics and Intelligent Machines, Faculty of Artificial Intelligence, Kafrelsheikh University,

Kafr El-Shaikh 33511, Egypt

Correspondence should be addressed to Mohamed Meselhy Eltoukhy; mtokhy@gmail.com

Received 9 May 2022; Revised 21 July 2022; Accepted 29 August 2022; Published 10 October 2022

Academic Editor: Andrea Loddo

Copyright © 2022 Mohamed Meselhy Eltoukhy et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Pathologists need a lot of clinical experience and time to do the histopathological investigation. Al may play a significant role in
supporting pathologists and resulting in more accurate and efficient histopathological diagnoses. Breast cancer is one of the most
diagnosed cancers in women worldwide. Breast cancer may be detected and diagnosed using imaging methods such as his-
topathological images. Since various tissues make up the breast, there is a wide range of textural intensity, making abnormality
detection difficult. As a result, there is an urgent need to improve computer-assisted systems (CAD) that can serve as a second
opinion for radiologists when they use medical images. A self-training learning method employing deep learning neural network
with residual learning is proposed to overcome the issue of needing a large number of labeled images to train deep learning models

in breast cancer histopathology image classification. The suggested model is built from scratch and trained.

1. Introduction

The most common diagnosed cause of death from cancer in
women is breast cancer. Every year about 2.1 million women
have breast cancer worldwide, according to the World
Health Organization (WHO) [1, 2]. Four forms of breast
tissue are present, i.e., normal, benign, in-situ carcinoma,
and invasive carcinoma. Benign tissue leads to small
structural changes in the breast but is not known as cancer
and is not harmful to health in most circumstances. The
malignant tumor usually spreads by another organ, which is
called invasive carcinoma. In-situ carcinoma is in the lobule
system of the mammalian canal and has little effect on any
organ. In-situ carcinoma can be treated if it is diagnosed in
time.

Many methods have been presented for breast cancer
detection [3-7]. In addition, there are many procedures and
modalities for the diagnosis of breast cancer, such as 3-D

Ultrasound (US), X-ray mammography, Positron Emission
Tomography (PET), Computed Tomography (CT), breast
temperature measurement, and Magnetic Resonance Im-
aging (MRI). Pathological diagnoses are sometimes con-
sidered the “golden standard.” To be properly observed and
analyzed, removed tissue can normally be stained where the
most appropriate approach is the Hematoxylin and Eosin.
The hematoxylin teases dark purple nuclei, and other
structures (cytoplasm, stroma, etc.) are pink.

Artificial Intelligence (AI) technology has been growing
rapidly in recent years. Especially, it makes significant
progress in image processing, recognition, analysis, and
computer vision [8]. In histopathological research, Al also
perceived potential advantages. Diagnosis with Al can carry
out tedious focus tests and easily collect useful diagnostic
results from huge data. In the meantime, AI has a high
quantitative analytical capability for histopathological di-
agnosis and can prevent manual analysis-based subjective
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discrepancies. Pathologists may reduce their misjudgment
and increase their work performance in certain ways.

In medical image analysis, deep learning algorithms have
been applied by several researchers [9-11]. Deep learning’s
performance is largely dependent on the availability of many
training samples from which to learn the descriptive feature
mappings of the images, resulting in extremely accurate
classification results [12-15].

Some researchers use breast-density scores as a sign of
early detection of breast cancer. Kallenberg et al. [16] and
Dhungel et al. [17] used the breast-density estimation score
method for the early detection of breast cancer. Many deep
learning approaches can be found in the literature that uses
transfer learning, e.g., [18, 19], to utilize the image features to
classify normal and abnormal regions.

Researchers in [20] use multistage fine-tuned CNN by
utilizing multistage transfer learning for multi-view regions
of interest (ROIs) to classify the masses into malignant and
benign classes. Another study [21] proposed a hybrid
multistage fully convolutional network (FCN) be combined
with conditional random field (CRF) for the detection of
masses in multi-view mammogram images.

Breast histopathology analysis is the gold standard for
diagnosing breast cancer. Deep learning-based classification
methods using breast histology images have made the
analysis process simple and fast in recent years. The first
deep learning approach using the BreaKHis was originally
published by Spanhol et al. [22]. Bayramoglu et al. [23]
proposed a deep learning method to classify histopathology
images without considering the magnification factors. An-
other deep learning multi-classification model was proposed
by Han et al. [24]. The proposed class structure-based
Deep Convolutional Neural Network (CSDCNN) as an end-
to-end 51 recognition method adopts a hierarchical repre-
sentation with feature space constraints that maximize the
Euclidean distance of interclass labels. A CNN-based so-
lution is also presented by Das et al. [25]. They employ
pretrained CNN transfer learning for specific breast histo-
pathology features and majority voting using random
multiviews at multi-magnification. Zhi et al. [26] proposed
an ensemble model containing three custom Convolutional
Neural Network (CNN) classifiers using transfer learning.
Motlagh et al. [27] have examined different Inception
models and ResNet architectures on digital cancer images,
including BreaKHis. Aiming to prepare the data for further
feature extraction and classification, the authors have ap-
plied color map selection and data augmentation as pre-
processing steps. Wang et al. [28] proposed a dependency-
based lightweight convolutional neural network (DBLCNN)
for the multi-classification task of breast histopathology
images.

To generate and choose pseudo-labeled samples for
categorizing breast cancer histopathology images, Asare
et al. [29] integrated self-training and self-paced learning.
For the multiclass classification of breast digital pathological
images (normal tissue, benign lesion, ductal carcinoma in-
situ, and invasive cancer), Mi et al. [30] proposed a two-stage
architecture based on a deep learning approach and a
machine learning method. To improve color separation and

Computational Intelligence and Neuroscience

contrast, Alkassar et al. [31] proposed a method that
comprises normalizing the hematoxylin and eosin stains.
Then, using two deep structure networks based on DenseNet
and Xception, two categories of novel features—deep and
shallow features—are recovered. To get the optimum per-
formance, a multiclassifier method based on the maximum
value is used.

To refine the network using histopathological images,
Boumaraf et al. [32] applied the deep neural network
ResNet-18 to breast histology images. The block-wise fine-
tuning procedure is the foundation of the transfer learning
approach. For the binary classification of breast pathological
images, Zerouaoui and Idri [33] created and assessed
twenty-eight hybrid architectures combining seven current
deep learning techniques for feature extraction (DenseNet
201, Inception V3, Inception ResNet V2, MobileNet V2,
ResNet 50, VGG16, and VGG19) and four classifiers (MLP,
SVM, DT, and KNN). Liu et al. [34] proposed a breast cancer
histopathological image classification method. They utilized
ResNet-18, SENet, and maximum mean difference in their
models to classify images.

In conclusion, although deep learning methods show
significant improvements in detection and classification
accuracies, the reduction of false-positive is still a challenge
in breast cancer diagnosis. The motivation is to clarify the
ability of the deep learning method to classify histopatho-
logical breast cancer. In addition, the histopathological
image would help improve the sensitivity and specificity of
the CAD systems. The proposed method can be summarized
as described in Section 2. Section 3 discusses the obtained
results while the ablation study is discussed in Section 4. The
conclusions of the study are presented in Section 5.

2. Proposed Method

The histopathology breast images required an automatic
classification system because of the complex nature of these
images. Histopathology images are colored images that
make the traditional techniques inappropriate for successful
classification. Histopathology images are in the RGB color
space. So, color information is essential to distinguish be-
tween different types of carcinomas. We built a deep
learning model to classify the histopathology breast images
automatically. Discriminative features are primarily essen-
tial for successful classification. So, we proposed a residual
deep learning model called the Histopathology-Net Model
for robust computational systems.

2.1. Histopathology-RDNet Model. There are many chal-
lenges when increasing layers in a convolutional neural
network (CNN) and going deeper. One of these challenges is
the gradient vanishing problem, even if the network pa-
rameters are initialized carefully. Based on previous re-
search, increasing the depth of the network will not address
the degradation and the accuracy would not be improved
[35]. In addition to these challenges, a deeper network has
many parameters that require many images during training
to adapt these parameters for generalization. The
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FIGURE 1: Max-pooling layer process [12].

Histopathology-RDNet Model was proposed to classify the
histopathology of breast cancer. So, going deeper requires a
massive amount of histopathology breast cancer images,
which may not be available. We utilized the residual learning
method to overcome these challenges [36].

The novel deep learning “Histopathology-RDNet” used
the residual learning technique. Residual learning refor-
mulates layers and improves the information flow by
skipping the connection of the layer inputs to address the
degradation. Deep residual learning is working as CNN but
with a special form. The weights of each layer are computed
during training by the current training example and the
previous decisions made on earlier training data. The input
of the hidden layer comes from its immediate predecessor
(input) layer and the previous output layer. So, the weight of
any layer is calculated based on the input and the output
prediction from the previous term by the next equation.

Wx = F(W,,x) =F(W,_,). (1)

The proposed Histopathology-RDNet consists of 64
layers divided into a stacked-layer and a shortcut connec-
tion. The proposed model contains an input layer restricted
to width (W), height (H), and depth (D), where D refers to
the number of channels (red, green, and blue). In the
proposed model, the input layer is restricted to Wx Hx D
equals 300 x 300 x 3; several convolutional layers follow the
input layer, batch normalization, pooling layers, dropout
layer, rectified linear unit (ReLU) as activation layers, fully
connected, and SoftMax layers.

Neurons in the convolutional layer are used to connect
the subregions of the image. Image by image, the con-
volutional layer will learn to localize the features of image
regions. The convolutional layers record the position of the
features through the input images. Low-level features are
learned in the first convolutional layers, while the higher-
order features such as objects, shapes, and colors are learned
in the deeper layers. After convolutional layers, a down-
sampling technique is required because the region of interest
is not fixed. So, any slight movement in the input image
produced a new feature map. So, a pooling layer is required
to overcome this problem.

We utilized max-pooling layers to downsampling the
features map to extract the most significant elements in the
input image. It returns the maximum value in the feature

window map. Figure 1 is plotted to show the output of the
max-pooling layer. Each layer’s parameters are updated to
obtain the best performance during the training process. So,
the stochastic gradient descent (SGD) updates the network
parameters. SGD can address different issues. SGD follows
the negative gradient of any objective when a few or only a
single training example is fed to the layer. So, SGD updates
the network parameters during training to obtain the best
parameters setting. The SGD optimizer perceives excellent
performance using a lower learning rate. So, the learning rate
is updated to a lower rate every training epoch.

One of the main problems in the deep neural network is
the difference between batch size (features map) from one
layer to another. We utilized the batch normalization layer in
the proposed model to overcome this problem. The batch
normalization layer eliminates the internal covariate shift’s
effects by making the mean and variance standardization.
The batch normalization layer is located after the convo-
lution layer and before the RELU layer to reduce the
problem of update coordination between layers.

RELU is a nonlinear activation function [37]. We utilized
RELU followed the batch normalization layer because of
gradient vanishing, sparse representation, and computa-
tional simplicity. It works by the thresholding method; all
elements less than 0 are set to 0; otherwise, x. Finally, a fully
connected layer transforms the input into an N-dimensional
vector. Instead of using a sigmoid, a SoftMax layer followed
the fully connected layer. Instead of the probabilities,
summation must be 1 in the sigmoid; in the SoftMax layer, it
may be 1. The value of the target class in SoftMax will have a
higher probability. Figure 2 shows the proposed model
architecture.

3. Experimental Results and Analysis

3.1. Dataset. The BreakHis [38] database is the most widely
used database for histopathological diagnosis of breast
cancer among researchers. The BreakHis database includes
7909 images from 82 patients, which are arranged into four
magnification factors: 40X, 100X, 200X, and 400X. Pathol-
ogists begin by recognizing ROIs in the lowest magnification
level slide (X40), then go further into the latter using in-
creasing magnification levels (X100, X200), until they have a
profound insight (X400). To demonstrate this procedure, a
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FIGURE 2: The proposed deep network.
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BreakHis slide sample was collected with four different mag-
nification levels. We randomly selected four images displayed
in Figure 3. Each image is assigned to one of two categories:
benign or malignant, with 2480 benign and 5429 malignant
tumor images. Based on the appearance of the tumor under the
microscope, each benign class is divided into four subcate-
gories: Adenosis (A), Fibroadenoma (F), Phyllodes Tumor
(PT), and Tubular Adenoma (TA). Malignant ones include
Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous
Carcinoma (MC), and Papillary Carcinoma (PC). A summary
of image and patient distributions over main classes and dif-
ferent subcategories is presented in Table 1.

3.2. The Proposed Model’s Implementation and Performance
Metrics. The proposed method has been coded and
implemented over GPU using MATLAB 2018b x 64-bit. The
studies were carried out on an IBM-compatible machine
with a Core i7 processor, 16 GB of DDRAM, and an NVIDIA
MX150 GPU. For all experiments, the batch size, maximum
epochs, momentum, starting learning rate, and weight decay
were set to 4, 50, 0.9, 0.00001, and 0.00001, respectively. The
SGD is utilized to update the network parameters. Figure 4
depicts the overall process of the proposed method. The
proposed model has been evaluated using quantitative and
qualitative measures. As a quantitative metric, the average
measure of accuracy, sensitivity, specificity, and precision is
computed using the following formulae. On the other hand,
a receiver operating characteristic (ROC) is shown as a
qualitative measure in the following equation:

t,+t,
Accuracy=—t Tl A fort)

pTIp T n T
ensitivity = >

t,+ f

P n

(2)

Specificity t
pecificity = ,

fott

. tp

Precision = ,

tpt fp

where t,,t, f, f, refer to true positive, real negative, false-
positive, and false-negative.

3.3. Results and Discussions. 'The confusion matrix is applied
to the test data to see the performance of the designed model.
We evaluated the proposed model with different magnifying
factors (including 40x, 100x, 200x, and 400x). The proposed
model has been applied to classify the dataset into eight
classes. Tables 2-5 illustrate the confusion matrix of the
classification results of the BreakHis dataset using all mag-
nifications of images. Figure 5 shows the ROC curve of the
proposed model over the dataset images in all magnifications.
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FIGURE 3: Sample images.

TaBLE 1: The distribution of BreakHis images into four magnification levels for both main tumor categories and each subcategory.

Main category Magnification Benign Total Malignant Total Total of
Subcategory level A F TA PT benign DC LC MC PC malignant both
X40 114 253 109 149 625 864 156 205 145 1370 1995
Number of images at each X100 113 260 121 150 644 903 170 222 142 1437 2081
magnification level X200 111 264 108 140 623 896 163 196 135 1390 2013
X400 106 237 115 130 588 788 137 169 138 1232 1820
Total 444 1014 453 569 2480 3451 626 792 560 5429 7909
Adenosis
Fibroadenoma
Phyllodes Tumor
° ° Tubular Adenoma
? Malignant ones include
Ductal Carcinoma
Lobular Carci
Convolutional layers S MZcians (a;c:;::;a o
Papillary Carcinoma 2 3
S g
connected Softmax =
}Ground Truth Labels

TaBLE 2: The confusion matrix of the classification results of BreakHis dataset using magnification 40x images.

Weight optimizer

FIGURE 4: The overall process of the proposed method.
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TaBLE 3: The confusion matrix of the classification results of BreakHis dataset using magnification 100x images.

Predicted Classes

Actual Classes
]
o

TaBLE 4: The confusion matrix of the classification results of BreakHis dataset using magnification 200x images.

Predicted Classes

Actual Classes
]
;—]

TaBLE 5: The confusion matrix of the classification results of BreakHis dataset using magnification 400x images.

Predicted Classes

Actual Classes
]
—

The performance of the proposed model is shown in
the confusion matrices Tables 2-5 and the performance
measures shown in Table 6. It can be noticed that these
matrices vary across different magnifying factors (in-
cluding 40x, 100x, 200x, and 400x) using the same net-
work parameters and the same number of test samples.
The superiority of the proposed deep learning model is
also shown in the ROC curve in Figure 5. It illustrates the

ROC curve of applying the proposed curve of the clas-
sification results of BreakHis dataset using different
magnifying factors (including 40x, 100x, 200x, and 400x).
The proposed method was trained and evaluated using 8
more challenging classes than the state-of-the-art.
According to the author’s search, no study has
been published yet using the 8-classes for training and
testing.
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F1Gure 5: ROC curve of the classification results of BreakHis dataset using different magnification ratios. (a) ROC curve of magnification

40x. (b) ROC curve of magnification 100x. (c) ROC curve of magnification 200x. (d) ROC curve of magnification 400x.

TaBLE 6: The obtained result of the proposed method for classifying the BreakHis dataset for all magnifying factors.

Average (%)

40x 100x 200x 400x
Precision 85.2 80 79.9 81.6
Sensitivity 85.2 79.1 79.9 80.7
Specificity 97.9 97.1 97.1 97.4
Accuracy 96.3 95 95 95.4

From the obtained results, the proposed method can
classify up to 8-classes with a classification rate higher than
the other proposed methods in the literature review. Now, the
proposed method will be compared with several methods
[29-34]. The BreakHis dataset was used to analyze all of the

state-of-the-art techniques to provide a fair comparison and
evaluation with the strategy suggested in this paper. All the
proposed methods in the previous work used deep learning
with convolutional layers and transfer learning. Table 7 shows
and summarize the proposed methods while Figure 6
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TaBLE 7: The obtained result of the proposed method for classifying the BreakHis dataset for all magnifying factors.

Method Accuracy %

Asare et al. [29] Inception_ResNetV2 with a Softmax as a classifier 91.72
Mi et al. [30] Inception V3 with a Softmax as a classifier 85.19
Alkassar et al. [31] Inception network with an ECmax as a classifier 89.58
Boumaraf et al. [32] ResNet-18 with a Softmax as a classifier 92.03
Zerouaoui and Idri [33] DenseNet 201 with a MLP as a classifier 92.57
Liu et al. [34] ResNet-18 with a Softmax as a classifier 93.24
Proposed method Residual deep learning with a Softmax as a classifier 96.3

98

96

94 . . 93.24

92.57
91.72 92.03

92 - -

90 89.58

88

86 85.19-

84

82

80

78

Asare et al. Mi et al. [30] Alkassar et al. Boumaraf et al. Zerouaoui et Kun et al. [34] Proposed
[29] [31] [32] al. [33] Method

FIGURE 6: Results visualization for different methods.

visualized the obtained results for methods [29-34] in ad-
dition to the proposed method.

The proposed method achieved high-performance
measures that prove the proposed method’s ability. These
high measures were achieved because of several reasons. A
full and robust automated breast cancer classification and
high classification rates using residual learning with a new
end-to-end trained deep neural network. Several convo-
lution filters are applied to the same input in the suggested
method. The proposed method uses different filter sizes
that make the deep residual network extract feature ac-
curate without using any preprocessing step such as seg-
mentation or noise removal. The proposed model used skip
connection to overcome the problem of overfitting. Several
variables from several filters are combined to improve the
effectiveness of breast cancer classification. The proposed
method is able to classify multiclass instead of binary
classification. We used cross-channel correlation instead of
performing convolution on both spatial and channel-wise
domain. The suggested model, unlike shallow networks,
does not create substantial training mistakes. Another
reason that proves the superiority of the proposed method
is that no preprocessing step or augmentation has been

carried out in the images before training and testing. On
the other hand, the proposed method contains many layers
with different convolutional filter sizes with a skip con-
nection which is computationally expensive. The depth of
the network is huge which requires a large number of
images to adapt the appropriate parameters for the
network.

4. Ablation Study

A model or algorithm’s “feature” may be removed as part of
ablation research to examine how performance is impacted.
Understanding the impact of each of these breakthroughs
independently is helpful. The easier it is to understand, the
better (inductive prior to simpler model classes). Choose the
less complicated alternative if two models perform equally
but one is more complex. So, the ablation study can be done
by comparing the proposed method with a simple and
complex deep neural network using the same dataset.
According to the literature, we found that Mi et al. [30]
utilized inception V3. Inception V3 consisted of 48 layers
while our proposed method consisted of 56 layers, which
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makes inception V3 simpler than the proposed method. But,
the accuracy of this model is lower than the proposed
method at 85.19% versus 96.3% on the same dataset and 8-
classes. Another simple method using ResNet-18 was pro-
posed by Boumaraf et al. [32], and Liu et al. [34]. These
models obtain a lower accuracy rate equal to 92.03% and
93.24%, respectively, while the proposed model obtain
96.3%.

Asare et al. [29] and Zerouaoui and Idri [33] used much
more complex models such as Inception_ResNetV2 and
DenseNet 201 which consist of 164 and 201 layers, re-
spectively. These models contain many more layers than the
proposed model. The performance of these models was
lower than the proposed method equal to 91.72% and
92.57%, respectively, while the proposed method obtained
96.3%. Finally, we investigated the effects of adding and
removing a number of layers, and these impact the classi-
fication accuracy rate. As noticed, we find that the overall
classification performance generally decreases as a result of
ablations.

5. Conclusion

Compared to other medical imaging, histopathological
images are the gold standard for diagnosing and catego-
rizing breast cancer. Early detection is crucial in deter-
mining the best treatment plan for breast cancer. The
primary motivation for developing a better breast cancer
detection algorithm is to assist doctors familiar with the
molecular subtypes of breast cancer in controlling tumor
cell metastasis early in the disease’s prognosis and treat-
ment planning. So, a novel end-to-end deep learning model
consists of different layers. The proposed method utilized
the skip connection to achieve residual learning. The
proposed method is able to classify up to 8-classes of
histopathological breast cancer types. According to the
different layers, filters, and filter sizes, the proposed method
obtains higher performance measures compared with the
literature. The proposed algorithm performs well in clas-
sifying complex-natured histopathological images of breast
cancer.

Data Availability
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histopathological-database-breakhis/].
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